+ All Categories
Home > Documents > Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Date post: 14-Jan-2016
Category:
Upload: kaiser
View: 28 times
Download: 3 times
Share this document with a friend
Description:
Cyclodextrin Dimers as Simple Myoglobin Models in Aqueous Solution. Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan). Carrier of Diatomic Molecules. His 64 (distal His). His 93 (proximal His). Myoglobin (Mb) is an oxygen-storage hemoprotein. - PowerPoint PPT Presentation
Popular Tags:
44
Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan) Cyclodextrin Dimers as Simple Myoglobin Models in Aqueous Solution
Transcript
Page 1: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Koji KANO and Hiroaki KITAGISHI

(Doshisha University, Kyoto, Japan)

Cyclodextrin Dimers as Simple Myoglobin Models in

Aqueous Solution

Cyclodextrin Dimers as Simple Myoglobin Models in

Aqueous Solution

Page 2: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Carrier of Diatomic Molecules

Fe(II)

Fe(II)-O2

O2 CO

Fe(II)-CO

h NOFe(II)-NO

Page 3: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Myoglobin (Mb) is an oxygen-storage hemoprotein.

Oxygen bound to Mb is stabilized by two His residues.

Heme center is surrounded by a hydrophobic wall of the protein.

His 64(distal His)

His 93(proximal His)

Page 4: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

A picket-fence Por prepared by Prof. Collman’s groupA picket-fence Por prepared by Prof. Collman’s group

Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu. L. Chem. Rev. 2004, 104, 561-588.

Jameson, G. B.; Rodley, G. A.; Robinson, W. T.; Gagne, R. R.; Reed, C. A.; Collman, J. P. Inorg. Chem. 1978, 17, 850-857.

N N

NN

NHO

HNO

FeHN

O

HNO

2MeIm

N N

NN

NHO

HNO

FeHN

O

HNO

2MeIm

Page 5: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)
Page 6: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Many artificial dioxygen receptors have been prepared.

These model compounds can bind dioxygen only in absolute organic solvents such as toluene.

Dioxygen adducts are easily autoxidized in the presence of a trace amount of water.

Many artificial dioxygen receptors have been prepared.

These model compounds can bind dioxygen only in absolute organic solvents such as toluene.

Dioxygen adducts are easily autoxidized in the presence of a trace amount of water.

Page 7: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

N N

NN

X

X

X

X

Fe

X =O

O

O

O

O

O

CH3

CH3

CH3

CH34

Jiang, D.-L.; Aida, T. Chem. Commun. 1996, 1523-1524.

Zingg, A.; Felber, B.; Gramlich, V.; Fu, L.; Collman, J. P.; Diederich, F. Helv. Chim. Acta 2002, 85, 333-351.

Dendrimers as Mb models

Page 8: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Difficulty in preparation of five coordinate Fe(II)Por Difficulty in preparation of five coordinate Fe(II)Por

Why is modeling of the Mb or Hb functions so difficult?Why is modeling of the Mb or Hb functions so difficult?

N N

NNFe

N

N

H N N

NNFe

N N

NNFe

Im

Im

Im

N N

NNFe

N

N

H N N

NNFe

N N

NNFe

Im

Im

Im

Page 9: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Easy oxidative dimerization of O2-Fe(II)Por yielding a -oxo-dimer of Fe(III)Por

Easy oxidative dimerization of O2-Fe(II)Por yielding a -oxo-dimer of Fe(III)Por

Why is modeling of the Mb or Hb functions so difficult?Why is modeling of the Mb or Hb functions so difficult?

Fe(II)Fe(II)

OO

Fe(III)

O

O+

Fe(III)

Fe(IV)

O

Fe(IV)

O

Fe(II)+

Fe(III)

O

Fe(III)

Fe(II)Fe(II)

OO

Fe(III)

O

O+

Fe(III)

Fe(IV)

O

Fe(IV)

O

Fe(II)+

Fe(III)

O

Fe(III)

Page 10: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Direct oxidation of Fe(II)Por to Fe(III)Por with O2 Direct oxidation of Fe(II)Por to Fe(III)Por with O2

Why is modeling of the Mb or Hb functions so difficult?Why is modeling of the Mb or Hb functions so difficult?

N N

NNFeII N N

NNFeIII

O2N N

NNFeII N N

NNFeIII

O2

Page 11: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Water-promoted autoxidation of O2-Fe(II)Por Water-promoted autoxidation of O2-Fe(II)Por

Why is modeling of the Mb or Hb functions so difficult?Why is modeling of the Mb or Hb functions so difficult?

N N

NNFeII N N

NNFeIII

H2O

O2

+

H2O

O2

B B

N N

NNFeII N N

NNFeIII

H2O

O2

+

H2O

O2

B B

Page 12: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

FeIII

OH2

FeII

O2

H2O+

+ O2•

The main reason why modeling in aqueous solution is so difficult.The main reason why modeling in aqueous solution is so difficult.

Page 13: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Chem. Lett. 1996, 925-926.

J. Am. Chem. Soc. 2002, 124, 9937-9944.

Chem. Lett. 1996, 925-926.

J. Am. Chem. Soc. 2002, 124, 9937-9944.

H3CO

OCH3

OO

OCH3

7N

HNNNH

SO3-

-O3S

-O3S SO3-

TPPS-O3S

-O3S SO3-

NHNN

NH

SO3-

TMe--CD

2

very stable 2 : 1 inclusion complex

+

pKa 4.8

pKa 0.4

Page 14: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Inorg. Chem. 2006, 45, 4448-4460.

J. Am. Chem. Soc. 2008, 130, 8006-8015.

SO3-

S S

N

NN

NN

SO3--O3S

-O3S

FeII

3 3

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeII

2 2

hemoCD1

SS

N

O

O OHH3CO

OCH3

O

O

O

OCH3

H3CO

OCH3

OO

OCH3

OCH3

H3CO O

O

H3CO

OCH3

H3CO

O

O

H3COOCH3

OCH3

O

OH3CO

OCH3

OCH3O

OCH3

H3CO

O

OHO

OCH3

OCH3

O

O

O

H3CO

OCH3

OCH3

O O

H3CO

H3COOCH3O

O

OCH3

H3CO

OCH3

O

O

OCH3

H3CO

OCH3

O

O OCH3

H3CO

OCH3

O

OCH3

OCH3

33

OCH3

O

O OH3CO

OCH3

OO

O OCH3

OCH3

OCH3

OO

OCH3

OCH3

H3CO

O

O

H3CO

OCH3

H3CO

O

O

H3COOCH3

OCH3

OO

H3CO

H3CO OCH3O

OCH3

H3CO

O

OOOCH3

OCH3

O O

OH3CO

OCH3

OCH3

OO

OCH3

H3CO

OCH3

O

O

OCH3

H3CO

OCH3

O

O

OCH3H3CO

OCH3

OO

OCH3

OCH3H3CO

O

H3CO

OCH3N2

2CH3O

Py3CD

Py2CD Fe(II)PCD

Page 15: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

OH[HO]7

[OH]13

O[HO]7 O [OH]7

N

[OH]13 [HO]13

2 2 2

-CD

O[MeO]7 O [OMe]7

N

[OMe]13 [MeO]13

2 2

NaOH,

N

CH2BrBrH2C

dry DMSO

NaH, CH3I

dry DMF

16 % 25 %

OH[HO]7

[OH]13

OTs[HO]7

[OH]13

O[HO]7

[OH]12

O[MeO]7

[OMe]12

S[MeO]7 S [OMe]7

N

[OMe]12 [MeO]12

N

HSH2C CH2SH

2 22

3

2

3

2

3 3

NaH, TsCl

0.2 M NaHCO3

NaH, CH3I

0.1 M NaHCO3

-CD

OH HO 2

33%67%

61% 20%

DMF

DMF/ THF

Synthetic route of Py2CD and Py3CD

Py2CD

Py3CD

Page 16: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Experimental procedures for examining O2 and CO binding of Fe(II)PCD in an aqueous solution at pH 7.0.

Experimental procedures for examining O2 and CO binding of Fe(II)PCD in an aqueous solution at pH 7.0.

SO3-

O ON

NN

NN

SO3--O3S

-O3S

FeIII

OCH3

O

O OH3CO

OCH3

OO

O OCH3

OCH3

OCH3

OO

OCH3

OCH3

H3COO

O

H3CO

OCH3

H3CO

O

O

H3COOCH3

OCH3

OO

H3CO

H3CO OCH3O

OCH3

H3CO

O

OOOCH3

OCH3

O O

OH3CO

OCH3

OCH3O

O

OCH3

H3CO

OCH3O

O

OCH3

H3CO

OCH3

O

O

OCH3H3CO

OCH3

OO

OCH3

OCH3H3CO O

H3CO

OCH3N2

2

CH3O

Py2CD

+ FeIIITPPS

SO3-

O ON

NN

NN

SO3--O3S

-O3S

FeII

CO-Fe(II)PCD

CO

Na2S2O4

SO3-

O ON

NN

NN

SO3--O3S

-O3S

FeII

Fe(II)PCD

Air

SO3-

O ON

NN

NN

SO3--O3S

-O3S

FeII

O2-Fe(II)PCD

O2

CO

Fe(III)PCD

Page 17: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

300 400 500 600 7000

0.4

0.8

1.2

1.6

Wavelength / nm

CO adductmax = 422 nm

O2 adductmax = 422 nm

deoxymax = 435 nm

x 5

Ab

so

rban

ce

UV-vis spectra of Fe(II)PCD, O2-Fe(II)PCD and CO-Fe(II)PCD in

phosphate buffer at pH 7.0 and 3 oC.

Page 18: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

O2 affinity at 25 oC and pH 7.0

P1/2: hemoCD 17 Torr

Fe(II)PCD 176 Torr

P1/2: Mb (sperm whale) 0.29 Torr

Hb (human R) 0.17

Hb (human T) 26

Model systems in organic solvents

0.1 ~ 2150

O2 affinity at 25 oC and pH 7.0

P1/2: hemoCD 17 Torr

Fe(II)PCD 176 Torr

P1/2: Mb (sperm whale) 0.29 Torr

Hb (human R) 0.17

Hb (human T) 26

Model systems in organic solvents

0.1 ~ 2150

Page 19: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

CO affinity at 25 oC and pH 7.0

P1/2: hemoCD 1.5 x 10-5 Torr

Fe(II)PCD 0.016 Torr

P1/2: Mb (sperm whale) 0.02 Torr

Hb (human R) 0.013

CO affinity at 25 oC and pH 7.0

P1/2: hemoCD 1.5 x 10-5 Torr

Fe(II)PCD 0.016 Torr

P1/2: Mb (sperm whale) 0.02 Torr

Hb (human R) 0.013

Page 20: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

(a) (b)eclipsed staggered

A conformation of Fe(II)PCD is similar to that of Mb or Hb.

A conformation of hemoCD is similar to that of leghemoglobin.

Page 21: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Cage Effects

The Fe center of FeTPPS is

completely capped with the

two CD cavities.

O2 as well as CO released

from the Fe(II) center cannot

slip out of the cleft of CD  capsule because of its

hydrophobic nature.

Released O2 or CO rebinds

to the Fe(II) center.

Fe(II)PCD

Page 22: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Picket-fence porphyrin

Page 23: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Oxy-hemoCD

Page 24: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Reductive nitrosylation of Fe(III)PCD and oxidation of (NO)Fe(II)PCD

Reductive nitrosylation of Fe(III)PCD and oxidation of (NO)Fe(II)PCD

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeIII

2 2

Fe(III)PCD

NO

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeII

2 2

(NO)Fe(II)PCD

NO

O2

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeIII

2 2

Fe(III)PCD

NO3-+

Page 25: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Nitric Oxide N ONO is biosynthesized from arginine and dioxygen by nitric oxide synthases (NOS).

NO causes relaxation of smooth muscle to control blood pressure.

NO stimulates the soluble guanylate cyclase leading to subsequent formation of cyclic GMP.

Macrophages generate NO to kill antigen.

etc.

Page 26: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Nitrosylation of Fe(II)PCD

NO

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeIII

2 2

Fe(III)PCD

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeII

2 2

Fe(II)PCD

e

NO

NO

SO3-

O O

N

NN

NN

SO3--O3S

-O3S

FeII

2 2

(NO)Fe(II)PCD

FeIIINO

FeIII

NOH2O

FeII

N

OHO

-H+ -NO2-, -H+

FeIINO

FeII

NO

max 420 nm

Page 27: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

max 401 nm

Reductive nitrosylation of Fe(III)P(TMe--CD)2 complex

NN

NN

SO3--O3S

-O3S

FeIII

Fe(III)TPPS/TMe--CD

NO

SO3-

NN

NN

SO3--O3S

-O3S

FeII

(NO)Fe(II)P(TMe--CD)2

SO3-

NO

Page 28: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

NN

NN

SO3--O3S

-O3S

FeIII

Fe(III)TPPS

NO

SO3-

No reductive nitrosylation occurs in the absence of cyclodextrin.

Page 29: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

FeIII

NO

FeII

NO

max = 401 nm

max = 420 nm

No reductive nitrosylation

FeIII

Py

NOFeII

Py

NO

FeIII NOFeII

NO

Page 30: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

FeII

OO

NOFeII

OO N O

FeIII + NO3-

FeII

NO

+ O2

FeIII

NOO-O

FeII

OO

+ NO

FeIII + NO3-

This mechanism has been well established.

Oxy-Mb regulates NO in biological system.

The mechanism has not been clarified.

NO inhibits the activities of proteins such as cyt P450, cyt c oxidase, nitrile hydrase, and catalase.

Page 31: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

3000

0.2

0.4

0.6

0.8

1.0

400 500 600 700

420 nm

Wavelength / nm

404 nm

Ab

sorb

ance Time / h

0 10 20 30 40

0.6

0.8

1.0

kobs = (3.04 ± 0.05) x 10-5 s-1 ( t1/2 = 6.3 h)

Ab

sorb

ance

at

420

nm

(NO)Fe(II)PCD is gradually oxidized to

Fe(III)PCD and NO3- in an aerobic aqueous

solution at pH 7.0,

(NO)Fe(II)P(TMe--CD)2 is not oxidized at all.

Page 32: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

300 400 500 600 700Wavelength / nm

0

0.2

0.4

0.6

Ab

so

rban

ce

(a)

0 200 400 600 800 1000 12000.2

0.3

0.4

0.5

0.6

Ab

sorb

ance

at

413

nm

Time / s

(b)

In the case without cyclodextrin

In the absence of CD, reductive nitrosylation cannot be applied.

(NO)Fe(II)TPPS can be prepared from nitrosylation of Fe(II)TPPS in a glove box.

(NO)Fe(II)TPPS is very unstable in an aerobic aqueous solution. Ring-opening reaction of FeTPPS may occur.

Page 33: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

FeII

NOO2

FeII

NOO2

t1/2 = 6.3 h

t1/2 = ∞No oxidation occurs.

Decomposition of the porphyrin ring occurs.

FeII

NO

O2FeII

Py

NO

+FeIII

Py

NO3-

Page 34: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

FeII

NO

Py

FeIII

NO3-

Py

O2

kmax

FeII

NO

Py

FeIII

NO

Py

COCO

koff

kmax : the maximum reaction rate constant for autoxidation of

(NO)Fe(II)PCD kmax = 5.1 x 10-5 s-1

koff : the reaction rate constant for the dissociation of NO from

(NO)Fe(II)PCD koff = 5.6 x 10-5 s-1

Page 35: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Mechanism for oxidation of (NO)Fe(II)PCD with dioxygen

Mechanism for oxidation of (NO)Fe(II)PCD with dioxygen

N

Fe(II)

OO

NO

O2

N

Fe(II)

OO

NO

O2

N

Fe(II)

OO

O2

N

Fe(III)

OO

NO3-

NO

Rate-determining stepRate-determining step

Page 36: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

-14

-15

-16

-17

-183.2 3.3 3.4 3.5

103 / T (K-1)

ln (

k ob

s /

T)

Eyring plot for autoxidation of (NO)Fe(II)PCD.

H‡ = 98.9 kJ mol-1

S‡ = 0.17 J mol-1K-1

A large activation enthalpy change reflects the endothermic dissociation of the NO-Fe(II) bond.

Since activation entropy change is almost zero, no bimolecular reaction participates in the rate-determining step.

The thermodynamic parameters support the reaction mechanism proposed herein.

The thermodynamic parameters support the reaction mechanism proposed herein.

Page 37: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

N

Mn(III)

OO

Na2S2O4

N

Mn(II)

OO

NO

N

Mn(II)

OO

NO

N

Mn(II)

OO

NO O2

N

Mn(III)

OO

+ NO3-

Oxidation of (NO)Mn(II)PCD by O2

Page 38: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

300 400 500 600 7000

0.2

0.4

0.6

0.8

1.0

1.2428 nm

471 nm

Ab

sorb

ance

Wavelength / nm

0

0.4

0.8

1.2

20 40 60 80 100 1200

428 nm

Time / h

t1/2 ~ 35 h

471 nm

Ab

sorb

ance

s at

428

an

d 4

71 n

m

Autoxidation of (NO)Mn(II)PCD

(NO)Mn(II)

Mn(III)

Zero-order kinetics was

observed for the aut-

oxidation of (NO)Mn(II)PCD.

t1/2 ~ 35 h

N

Mn(II)

OO

NO O2

N

Mn(III)

OO

+ NO3-

Page 39: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Mn(II)

NO

Mn(II)

NOO2

Mn(III)

NOO2

Mn(III) + NO3-

relatively fast

If the equilibrium A B exclusively shifts to A and a ⇌very small amount of B existing in the system

relatively rapidly reacts to yield a final product, such a

reaction obeys zero-order kinetics.

If the equilibrium A B exclusively shifts to A and a ⇌very small amount of B existing in the system

relatively rapidly reacts to yield a final product, such a

reaction obeys zero-order kinetics.

very slow

Page 40: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

300 400 500 600 700

Wavelength / nm

0

0.4

0.8

1.2

442 nm

471 nm

Ab

s. 0 10 20 30 400

0.4

0.8

1.2

Time / h

kobs = (3.31 ± 0.09) x 10-5 s-1 (t1/2 = 5.8 h)

Ab

s at

44

2 n

m

Mn(II) O2 Mn(III)+ + O2

The rate of autoxidation of

Mn(II)PCD is much faster

than that of

(NO)Mn(II)PCD.

Page 41: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

300 400 500 600 7000

0.4

0.8

1.2

1.6

426 nm

465 nm

(a)

Wavelength / nm

Ab

sorb

an

ce

5 10 15 2000

0.4

0.8

1.2

1.6

Time / h

(b)

465 nm

426 nm

t1/2 ~ 6 h

Ab

so

rban

ce

Autoxidation of (NO)Mn(II)P(TMe--CD)2

(NO)Mn(II)

Mn(III)

Mn(II)

Page 42: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Mn(II)

NO

Mn(II)

NOO2

Mn(III)

NOO2

Mn(III) + NO3-

relatively fast

Mechanism for Oxidation of (NO)Mn(II)PCD with Dioxygen

Mechanism for Oxidation of (NO)Mn(II)PCD with Dioxygen

Page 43: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

Mechanism for oxidation of (NO)Fe(II)PCD with dioxygenMechanism for oxidation of (NO)Fe(II)PCD with dioxygen

N

Fe(II)

OO

NO

O2

N

Fe(II)

OO

NO

O2

N

Fe(II)

OO

O2

N

Fe(III)

OO

NO3-

NO

Page 44: Koji KANO and Hiroaki KITAGISHI (Doshisha University, Kyoto, Japan)

HemoCD and Fe(II)PCD are good carriers of simple diatomic molecules such as O2, CO, and NO in aqueous solution.

HemoCD shows the extremely high CO affinity that might be used for medicinal purposes.

Fe(II)PCD is a good model for studying interactions of NO with hemoproteins.

The mechanism for oxidation of (NO)Fe(II)Por by O2 was clarified in the present study.

HemoCD and Fe(II)PCD are good carriers of simple diatomic molecules such as O2, CO, and NO in aqueous solution.

HemoCD shows the extremely high CO affinity that might be used for medicinal purposes.

Fe(II)PCD is a good model for studying interactions of NO with hemoproteins.

The mechanism for oxidation of (NO)Fe(II)Por by O2 was clarified in the present study.

SummarySummary


Recommended