+ All Categories
Home > Documents > Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Date post: 15-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
14
Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 Korean Journal of Soil Science and Fertilizer Article https://doi.org/10.7745/KJSSF.2019.52.3.235 pISSN : 0367-6315 eISSN : 2288-2162 Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage ( Brassica rapa L. ssp. pekinensis) Young-jin Seo * , Hyo-hoon Nam, Won-cheol Jang, Jong-soo Kim 1 , and Bu-yong Lee 2 Bonghwa Herbal Crop Research Institute, Gyeongsangbuk-do A.T.A., Bonghwa 36229, Korea 1 Department of Agriculture Environment Research, Gyeongsangbuk-do A.T.A., Daegu 41404, Korea 2 Department of Environmental Science, Catholic Unuversity of Daegu, Gyeongsan 38430, Korea *Corresponding author: [email protected] A B S T R A C T Received: May 29, 2019 Revised: July 14, 2019 Accepted: August 26, 2019 ORCID Young-jin Seo https://orcid.org/0000-0001-5577-7376 Hyo-hoon Nam https://orcid.org/0000-0001-6437-1212 Won-cheol Jang https://orcid.org/0000-0002-6852-4367 Jong-soo Kim https://orcid.org/0000-0001-8127-4270 Bu-yong Lee https://orcid.org/0000-0003-3514-6694 An accurate evaluation of transpiration is required for many applications in agricultural and environmental management because crop yields and plant growth are primarily water limited. This study was aimed to determine the transpiration of Kimchi cabbage (Brassica rapa L. ssp. pekinensis) using weighing lysimeter, to evaluate the relationship between transpiration of Kimchi cabbage and meteorological factors such as solar radiation, air temperature, etc., Transpiration was increased as the leaf area increased with the growth stage. Also daily transpiration per unit leaf area was 0.46 ยฑ 0.13 g cm -2 day -1 and there was no significant difference during cultivation period. The maximum transpiration was 132.9 g hour -1 and diurnal changes of transpiration was highly correlated with solar radiation although the maximum transpiration was observed at 17 - 23ยฐC air temperature. The ratio of dry matter production to transpiration was 0.33% and carbon accumulation was 0.13%. This result shows that transpiration of Kimchi cabbage seem to be mainly governed by solar radiation energy in clear days and 96% of the water is discharged through transpiration for the heat dissipation. Therefore, weighing lysimeter can be used to measure transpiration accurately and may be useful in interpreting the plant growth. Keywords: Kimchi cabbage, Lysimeter, Solar radiation, Transpiration The transpiration of Kimchi cabbage follows the change of solar radiation. โ’ธ The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transcript
Page 1: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019

Korean Journal of Soil Science and Fertilizer

Articlehttps://doi.org/10.7745/KJSSF.2019.52.3.235

pISSN : 0367-6315 eISSN : 2288-2162

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis)

Young-jin Seo*, Hyo-hoon Nam, Won-cheol Jang, Jong-soo Kim1, and Bu-yong Lee2

Bonghwa Herbal Crop Research Institute, Gyeongsangbuk-do A.T.A., Bonghwa 36229, Korea1Department of Agriculture Environment Research, Gyeongsangbuk-do A.T.A., Daegu 41404, Korea2Department of Environmental Science, Catholic Unuversity of Daegu, Gyeongsan 38430, Korea

*Corresponding author: [email protected]

A B S T R A C T

Received: May 29, 2019

Revised: July 14, 2019

Accepted: August 26, 2019

ORCID

Young-jin Seo

https://orcid.org/0000-0001-5577-7376

Hyo-hoon Nam

https://orcid.org/0000-0001-6437-1212

Won-cheol Jang

https://orcid.org/0000-0002-6852-4367

Jong-soo Kim

https://orcid.org/0000-0001-8127-4270

Bu-yong Lee

https://orcid.org/0000-0003-3514-6694

An accurate evaluation of transpiration is required for many applications in agricultural and environmental

management because crop yields and plant growth are primarily water limited. This study was aimed to

determine the transpiration of Kimchi cabbage (Brassica rapa L. ssp. pekinensis) using weighing lysimeter, to

evaluate the relationship between transpiration of Kimchi cabbage and meteorological factors such as solar

radiation, air temperature, etc., Transpiration was increased as the leaf area increased with the growth stage.

Also daily transpiration per unit leaf area was 0.46 ยฑ 0.13 g cm-2 day-1 and there was no significant difference

during cultivation period. The maximum transpiration was 132.9 g hour-1 and diurnal changes of transpiration

was highly correlated with solar radiation although the maximum transpiration was observed at 17 - 23ยฐC air

temperature. The ratio of dry matter production to transpiration was 0.33% and carbon accumulation was

0.13%. This result shows that transpiration of Kimchi cabbage seem to be mainly governed by solar radiation

energy in clear days and 96% of the water is discharged through transpiration for the heat dissipation. Therefore,

weighing lysimeter can be used to measure transpiration accurately and may be useful in interpreting the plant

growth.

Keywords: Kimchi cabbage, Lysimeter, Solar radiation, Transpiration

The transpiration of Kimchi cabbage follows the change of solar radiation.

โ’ธ The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 2: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

236 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

Introduction

์ฆ์‚ฐ, ์ฆ๋ฐœ ๋“ฑ ๋ฌผ์ˆ˜์ง€ (Water balance)์˜ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ์€ ํ† ์–‘-์‹๋ฌผ-๋Œ€๊ธฐ ๊ณ„ (Soil-plant-

atmosphere system)์—์„œ ์ˆ˜๋ถ„์˜ ์ด๋™์„ ์ดํ•ดํ•˜๋Š”๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํ† ์–‘์ˆ˜๋ถ„์ด ์‹๋ฌผ์— ์˜ํ•ด ์ˆ˜์ฆ๊ธฐ๋กœ ๋ณ€ํ™”๋˜์–ด ๋Œ€๊ธฐ

์ค‘์œผ๋กœ ์ด๋™ํ•˜๋Š” ์ฆ์‚ฐ์€ ์ฆ๋ฐœ๊ณผ ๋”๋ถˆ์–ด ์ž‘๋ฌผ ์ƒ์‚ฐ์„ฑ๊ณผ ํ™˜๊ฒฝ์—์„œ ๋ฌผ ์ˆœํ™˜ ํŠน์„ฑ์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ์ด๋‹ค

(Colaizzi et al., 2017; Djaman et al., 2018). ์‹๋ฌผ์—์„œ ์ฆ์‚ฐ๊ณผ ์ด์— ๋”ฐ๋ฅธ ์ž ์—ด์˜ ์œ ยท์ถœ์ž… (Latent heat flux)์€ ํƒœ์–‘๋ณต์‚ฌ

์—๋„ˆ์ง€์˜ ์œ ์ž…, ์ˆ˜๋ถ„ ์ด์šฉ ํŠน์„ฑ, ๊ธฐ์ƒ์กฐ๊ฑด๋ณ„ ์ƒ๋ฆฌ ๋ฐ˜์‘, ๋Œ€๊ธฐ๋กœ ์ˆ˜๋ถ„์˜ ์ด๋™ ๋“ฑ์˜ ์ธ์ž์— ํฌ๊ฒŒ ์ง€๋ฐฐ๋˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ

์žˆ๋‹ค (Renner et al., 2019). ์ผ์‚ฌ, ๋ฐ”๋žŒ, ๊ธฐ์˜จ ๋ฐ ์Šต๋„ ๋“ฑ ๊ธฐ์ƒ์š”์†Œ์— ๋”ฐ๋ผ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ๊ฒฐ์ •๋˜๋ฏ€๋กœ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ํ‰๊ฐ€ ๊ธฐ์ˆ 

์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๊ฐ€ ์˜ค๋ž˜ ์ „๋ถ€ํ„ฐ ์ด๋ฃจ์–ด์กŒ๋‹ค.

FAO (The Food and Agriculture Organization) ๋Š” ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์„ ๋™์ผํ•˜๊ฒŒ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด Penman-Monteith (FAO

PM)์„ ์ž ์žฌ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ์ค€ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ถŒ๊ณ ํ•˜๊ณ  ์žˆ์œผ๋‚˜ ์ง€์—ญํŠน์„ฑ์— ๋”ฐ๋ฅธ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ FAO-56 PM,

Hargreaves equation, Penman-Kimberly 1996, FAO-24 Radiation ๋“ฑ์˜ ๋ฐฉ๋ฒ• (Hur et al., 2006; Yun et al, 2009;

Bakhtiari et al., 2011; Ghafouri-Azar et al., 2018; Li et al., 2018; Jeon et al., 2019; Seo et al., 2019; Yan et al., 2019)

๊ณผ ์ „ํ†ต์ ์ธ ๊ธฐ์ƒ๊ด€์ธก ์žฅ๋น„๋ฅผ ํ™œ์šฉํ•œ Bowen Ratio ๋ฒ• (Rana and Katerji, 2000), ๋Œ€ํ˜•์ฆ๋ฐœ๊ณ„๋ฅผ ์ด์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ฆ๋ฐœ๋Ÿ‰

์„ ํ‰๊ฐ€ (Han and Lee, 2005) ๋“ฑ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ฏธ๊ธฐ์ƒ/ํ†ต๊ณ„ํ•™์  ๋ถ„์„์— ๊ทผ๊ฑฐํ•œ ์—๋””๊ณต๋ถ„์‚ฐ (Eddy-

covariance) ๋ฐฉ๋ฒ•์€ ๋„“์€ ์ง€์—ญ์˜ ์—ฐ์†์ ์ธ ๊ด€์ธก์ด ๊ฐ€๋Šฅํ•œ ์žฅ์ ์œผ๋กœ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๊ด€์ธก์— ๋งŽ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜ (Kwon et

al., 2007; Hong et al., 2009; Kwon et al., 2009) ์ง€ํ‘œ๋ฉด์˜ ์ˆ˜๋ถ„์ƒํƒœ์— ๋”ฐ๋ผ ์ตœ๋Œ€ 3์‹œ๊ฐ„ ์ •๋„ ์˜ˆ์ธก ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ

์œผ๋ฉฐ (Renner et al., 2019), ์œ„์„ฑ์ž๋ฃŒ (Lim et al., 2010; Hu et al., 2018) ๋ฐ ๋“œ๋ก  ์›๊ฒฉ์ •๋ณด (Lee et al., 2016)๋ฅผ ์ด์šฉํ•˜

๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋‚˜ ์กฐ์‚ฌ์ง€์ ์˜ ๊ธฐ์ค€ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ์žˆ์–ด์•ผ ์ •ํ™•ํ•œ ํ‰๊ฐ€๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค.

๋ผ์ด์‹œ๋ฏธํ„ฐ๋Š” ์‹ค์ œ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์„ ์ธก์ •ํ•˜๋Š” ์œ ์ผํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ํ‰๊ฐ€๋˜๋ฉฐ (Schrader et al., 2013) ์ž‘๋ฌผ์˜ ๋ฌผ ์‚ฌ์šฉ๋Ÿ‰

(Marek et al., 1988; Martin et al., 2001; Bello and Van Rensburg, 2017; Kim et al., 2018; Ok et al., 2018), ํ† ์–‘์ˆ˜๋ถ„

์ด๋™ ๋ถ„์„ (Seo et al., 2016; Seo et al., 2017), ์ธก์ • ๋ฐฉ๋ฒ•๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„ (Tyagi et al., 2000), ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ ๊ฒ€์ฆ

(Steiner et al., 1989; Colaizzi et al., 2006)์— ๊ธฐ์ค€ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ํ‰๊ฐ€๋ฒ•์œผ๋กœ ํ™œ์šฉ๋˜์—ˆ๊ณ , ์ˆœ๋ณต์‚ฌ๋Ÿ‰ (Lee and Haginoya,

2011)๊ณผ ํ•ด๋ฐœ๊ณ ๋„์˜ ์˜ํ–ฅ (Lee et al., 2012)์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ๊ธฐ์ƒ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ๋งค์šฐ ์œ ์šฉ

ํ•˜๋‹ค๊ณ  ํ•˜์˜€๋‹ค.

๋ฐฐ์ถ”๋Š” ๋Œ€ํ‘œ์ ์ธ ์ฑ„์†Œ ์ž‘๋ฌผ๋กœ ์‹œ์›ํ•œ ๊ธฐํ›„๋ฅผ ์ข‹์•„ํ•˜์—ฌ ์—ฌ๋ฆ„์ฒ ์—๋Š” ํ•ด๋ฐœ๊ณ ๋„๊ฐ€ ๋†’์€ ๊ณ ๋žญ์ง€์—์„œ๋งŒ ์žฌ๋ฐฐ๋˜์–ด ๊ธฐ์ƒ

์š”์†Œ๊ฐ€ ์ƒ์‚ฐ์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ธ์ž์ด๋‹ค (Wi et al., 2018). ๋ฐฐ์ถ”์˜ ์ƒ์œก, ์ƒ๋ฆฌ์žฅํ•ด ๋ฐ ํ’ˆ์งˆ์€ ๊ธฐ์ƒ์— ์˜ํ–ฅ์„ ๋ฐ›

์œผ๋ฏ€๋กœ ์˜จ๋„์‹œ๊ฐ„ ๊ธฐ๋ฐ˜ ์ƒ์œก๋‹จ๊ณ„ ์ถ”์ • (Kim and Yun, 2015), ๊ธฐ์˜จ ๊ด€์ธก์— ์˜ํ•œ ์—ฝ๋ฉด์  ์ถ”์ • ๊ณผ ์ƒ์ฒด๋Ÿ‰ ์˜ˆ์ธก (Ahn et al.,

2014), ๊ธฐ์˜จ ๋ฐ ์ˆ˜๋ถ„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ƒ๋ฆฌ๋ฐ˜์‘ ์กฐ์‚ฌ (Oh et al., 2014; Lee et al., 2015; Son et al., 2015), ์ƒ์œก๋„์ผ

(Growing degree days)์„ ์ด์šฉํ•œ ์ƒ์œก ์˜ˆ์ธก (Kim et al., 2015), ์˜จ๋„์— ๋”ฐ๋ฅธ ๊ด‘ํ•ฉ์„ฑ ๋ฐ˜์‘ ๋ชจํ˜• ์ œ์ž‘๊ณผ ์ƒ๋ฆฌ๋ฐ˜์‘ ํ•ด์„

(Moon et al., 2018) ๋“ฑ ๋ฐฐ์ถ” ์ƒ์žฅ์— ๋ฏธ์น˜๋Š” ๊ธฐ์ƒ์กฐ๊ฑด ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๋‹ค. ์ˆ˜๋ถ„์š”๊ตฌ๋„๊ฐ€ ๋†’์€ ์ž‘๋ฌผ์ธ ๋ฐฐ์ถ”์˜ ๋ฌผ

์ด์šฉ ํŠน์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์œผ๋กœ ๊ธฐ์ƒ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ์ฆ์‚ฐ๋Ÿ‰์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ์ค‘์š”ํ•˜์ง€๋งŒ ํ˜„์žฌ๊นŒ์ง€ ์‹ค์‹œ

๊ฐ„ ์ฆ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ๊ด€์ธกํ•œ ์‚ฌ๋ก€๋Š” ์—†๊ณ  ๊ฐœ๋ฐœ๋œ ๋ชจ๋ธ์€ ํ™˜๊ฒฝ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ํŽธ์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ผ

์ด์‹œ๋ฏธํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฐฐ์ถ”์˜ ์‹ค์‹œ๊ฐ„ ์ฆ์‚ฐ๋Ÿ‰ ์ธก์ •๊ณผ ์ฆ์‚ฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ธฐ์ƒ์š”์†Œ์™€์˜ ๊ด€๊ณ„๋ฅผ ๊ตฌ๋ช…ํ•˜๊ณ  ๋ฐฐ์ถ”์˜ ์ƒ

์žฅ๋Ÿ‰์„ ์กฐ์‚ฌํ•˜์—ฌ ์ƒ์žฅ๋ฐ˜์‘ ๋ชจ๋ธ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ํ™•๋ณดํ•˜๊ณ ์ž ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

Page 3: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 237

Materials and Methods

์‹œํ—˜ํ† ์–‘ ์‹œํ—˜ ํ† ์–‘์€ ์ƒ์ฃผํ†ต (coarse loamy, mixed, mesic family of Dystric Fluventic Eutroudepts)์— ํ•ด๋‹นํ•˜๋Š”

์‚ฌ์–‘ํ† ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ† ์–‘ํ™”ํ•™์„ฑ์€ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์›์˜ ํ† ์–‘ ๋ฐ ์‹๋ฌผ์ฒด๋ถ„์„๋ฒ• (NAAS, 2011)์— ์ค€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€์œผ

๋ฉฐ ํ† ์–‘์˜ ํ™”ํ•™์  ํŠน์„ฑ์€ Table 1๊ณผ ๊ฐ™์•˜๋‹ค. pH๋Š” 6.8, ์ „๊ธฐ์ „๋„๋„ 0.29 dS m-1, ์œ ๊ธฐ๋ฌผ 19.3 g kg-1, ์œ ํšจ์ธ์‚ฐ 329 mg

kg-1, ์น˜ํ™˜์„ฑ K๋Š” 0.42 cmolc kg-1, ์น˜ํ™˜์„ฑ Ca 7.12 cmolc kg-1, ์น˜ํ™˜์„ฑ Mg๋Š” 1.53 cmolc kg-1๋กœ ๋ฐฐ์ถ” ์žฌ๋ฐฐ์— ์ ํ•ฉํ•œ ํ† 

์–‘ ํ™”ํ•™์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

Table 1. Soil chemical properties used in this experiment before transplanting.

pH ECโ€  OM Av.P2O5

Ex.Cation

K Ca Mg

1:5, H2O dS m-1 g kg-1 mg kg-1 ------------------------ cmolc kg-1 ------------------------

6.8 0.29 19.3 329 0.42 7.12 1.53

โ€ EC, Electrical conductivity; OM, organic matter, Av.P2O5, available phosphate.

๋ผ์ด์‹œ๋ฏธํ„ฐ ์„ค์น˜ ๋ผ์ด์‹œ๋ฏธํ„ฐ์—์„œ ๋ฐฐ์ถ” ์žฌ๋ฐฐ๋ฅผ ์œ„ํ•˜์—ฌ ์ง๊ฒฝ 34.6 cm, ๋†’์ด 38 cm ํฌ๊ธฐ์˜ ์Šคํ…Œ์ธ๋ ˆ์Šค ์žฌ์งˆ๋กœ ๋œ

์›ํ˜• ์šฉ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํƒœ์–‘๋ณต์‚ฌ์— ์˜ํ•œ ํ† ์–‘ ์˜จ๋„ ์ƒ์Šน์„ ๋ง‰๊ธฐ ์œ„ํ•˜์—ฌ ์šฉ๊ธฐ ๋‚ด๋ถ€์— 1 mm ๋‘๊ป˜์˜ ๋ฐœํฌ ํ”Œ๋ผ์Šคํ‹ฑ์ธ

ํฌ๋งˆํŠธ์™€ ํด๋ฆฌ์—ํ‹ธ๋ Œ ์žฌ์งˆ ์™„์ถฉ์žฌ๋ฅผ ๊ฐ๊ฐ ๋ถ€์ฐฉํ•˜์˜€๊ณ , ์šฉ๊ธฐ ์™ธ๋ถ€์—๋Š” ์‚ฌ๊ฐ ์•Œ๋ฃจ๋ฏธ๋Š„ ๊ธฐ๋‘ฅ์„ ์„ธ์šฐ๊ณ  ๋น› ์ฐจ๋‹จ์šฉ ํ•„๋ฆ„์ด

๋ถ€์ฐฉ๋œ ํด๋ฆฌ์นด๋ณด๋„ค์ดํŠธ ํŒ์„ ์„ค์น˜ํ•˜์˜€๋‹ค. ์šฉ๊ธฐ ํ•˜๋‹จ์—๋Š” ๊ณผ์ž‰์˜ ์ˆ˜๋ถ„ ๋ฐฐ์ถœ์„ ์œ„ํ•˜์—ฌ 40 mm ๋ฐฐ์ˆ˜๊ตฌ๋ฅผ ์„ค์น˜ ํ•˜๊ณ  ํ† ์–‘

์œ ์‹ค์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ง๊ฒฝ 10 mm ์ดํ•˜์˜ ์ž๊ฐˆ์„ 20 mm ๋†’์ด๋กœ ๊น”๊ณ  ํ† ์–‘ 40 kg์„ ์ถฉ์ง„ํ•˜์˜€๋‹ค. ์ˆ˜๋ถ„์ฆ๋ฐœ์„ ๋ง‰๊ธฐ ์œ„

ํ•˜์—ฌ ๋ฐฐ์ถ”๋ฅผ ์‹์žฌํ•œ ํ›„ ์ˆ˜๋ถ„๊ณต๊ธ‰์šฉ ํŠœ๋ธŒ๋ฅผ ๋งค์„คํ•˜๊ณ  0.05 mm ๋‘๊ป˜์˜ ํด๋ฆฌ์—ํ‹ธ๋ Œ ๋น„๋‹๋กœ ํ”ผ๋ณตํ•˜์˜€๊ณ  ์ง€์˜จ์ƒ์Šน์„ ๋ง‰

๊ธฐ ์œ„ํ•˜์—ฌ 1 cm ์ •๋„ ๋ณตํ† ๋ฅผ ํ•˜์˜€๋‹ค. ์šฉ๊ธฐ ํ•˜๋‹จ์—๋Š” 0.01%์˜ ๋ถ„ํ•ด๋Šฅ์„ ๊ฐ€์ง€๋Š” 20 kg ์šฉ๋Ÿ‰์˜ ๋กœ๋“œ์…€ (HBS-20L, CAS,

Korea) 3๊ฐœ๋ฅผ ์„ค์น˜ํ•˜๊ณ  ๋กœ๋“œ์…€์˜ ์‹ ํ˜ธ๋Š” ๋ณ„๋„์˜ ์ฆํญ์—†์ด ๋ฐ์ดํ„ฐ๋กœ๊ฑฐ (CR 1000, Campbell Sci., USA)์— ์—ฐ๊ฒฐํ•˜์—ฌ

๋งค 1๋ถ„๋งˆ๋‹ค ์ธก์ •ํ•˜๊ณ  10๋ถ„ ๊ฐ„๊ฒฉ ๊ด€์ธก๋œ ์ž๋ฃŒ์˜ ํ‰๊ท ๊ฐ’์„ ๊ธฐ๋กํ•˜์˜€๋‹ค (Fig. 1).

Fig. 1. Lysimeter diagram for measuring a transpiration of Kimchi cabbage.

Page 4: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

238 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

์ฆ์‚ฐ๋Ÿ‰ ๋ฐ ๋ฏธ๊ธฐ์ƒ ๊ด€์ธก ์ฆ์‚ฐ๋Ÿ‰ ๊ด€์ธก์€ ๊ฒฝ์ƒ๋ถ๋„๋†์—…๊ธฐ์ˆ ์› ๋ด‰ํ™”์•ฝ์šฉ์ž‘๋ฌผ์—ฐ๊ตฌ์†Œ ์œ ๋ฆฌ์˜จ์‹ค (ํญ 9.6 m ร— ๊ธธ์ด 21 m

ร— ๋†’์ด 5.4 m)์—์„œ ์ˆ˜ํ–‰์„ ํ•˜์˜€๋‹ค. ๋ด„๋ฐฐ์ถ”๋กœ ๋งŽ์ด ์žฌ๋ฐฐ๋˜๊ณ  ์žˆ๋Š” โ€˜์ถ˜๊ด‘โ€™ ํ’ˆ์ข… (์‚ฌ์นด๋‹ค์ฝ”๋ฆฌ์•„)์„ ์‹œํ—˜์ž‘๋ฌผ๋กœ ์‚ฌ์šฉํ•˜์˜€

์œผ๋ฉฐ, 72๊ณต ํ”Œ๋Ÿฌ๊ทธ ํŠธ๋ ˆ์ด์— ์›์˜ˆ์šฉ ์ƒํ† ๋ฅผ ๋„ฃ์€ ํ›„ ํŒŒ์ข…ํ•˜๊ณ  20์ผ๊ฐ„ ์œก๋ฌ˜ํ•˜์˜€๋‹ค. 3์›” 5์ผ ๋ผ์ด์‹œ๋ฏธํ„ฐ์— ๋ฐฐ์ถ”๋ฅผ ์ •์‹

ํ•˜๊ณ  ์ผ์ฃผ์ผ๊ฐ„ ํ™œ์ฐฉ์‹œํ‚จ ํ›„ 4์›” 22์ผ๊นŒ์ง€ ์ฆ์‚ฐ๋Ÿ‰์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๋ผ์ด์‹œ๋ฏธํ„ฐ์—์„œ 10๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์ธก์ •ํ•œ ๋ฌด๊ฒŒ ๊ฐ์†Œ๋ถ„

์„ ์ฆ์‚ฐ๋Ÿ‰์œผ๋กœ ๊ฐ„์ฃผํ•˜์˜€๊ณ  ๊ด€์ˆ˜๋Š” ์ฆ์‚ฐ์˜ ๋ณ€ํ™”๊ฐ€ ๋‚ฎ์€ ์ผ๋ชฐ ์ดํ›„์— ์ˆ˜๋ถ„๊ฐ์†Œ์œจ์„ ๊ณ ๋ คํ•˜์—ฌ ์ฃผ๊ธฐ์ ์œผ๋กœ ์‹ค์‹œํ•˜์˜€๋‹ค.

๋ฏธ๊ธฐ์ƒ ๊ด€์ธก์„ผ์„œ๋Š” ์˜จ์‹ค ์ค‘๊ฐ„์ง€์  ๋ผ์ด์‹œ๋ฏธํ„ฐ ๋ถ€๊ทผ์˜ 1.5 m ๋†’์ด์— ์„ค์น˜๋ฅผ ํ•˜์—ฌ ๋ผ์ด์‹œ๋ฏธํ„ฐ์˜ ์ฆ์‚ฐ ๊ด€์ธก์ž๋ฃŒ์™€ ๊ด€

๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๋ถ€ ๊ธฐ์ƒํ™˜๊ฒฝ์ด ์˜จ์‹ค์˜ ๋ฏธ๊ธฐ์ƒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์—ฐ๊ตฌ์†Œ ๊ธฐ์ƒ๊ด€์ธก ํฌ์žฅ์— ์„ค์น˜๋œ

๋ฏธ๊ธฐ์ƒ ๊ด€์ธก์ž๋ฃŒ์™€ ๋น„๊ต๋ฅผ ํ•˜์˜€๋‹ค. ๊ธฐ์˜จ๊ณผ ์ƒ๋Œ€์Šต๋„๋Š” HMP 155 ์„ผ์„œ (Vaisala, Finland), ์ผ์‚ฌ๋Ÿ‰์€ CMP 6 ์„ผ์„œ

(Kipp & Zonen, The Netherlands)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐฐ์ถ”์˜ ์—ฝ์˜จ์€ ์ ์™ธ์„  ์˜จ๋„์„ผ์„œ (SI-431, Apogee, USA)๋ฅผ ์‚ฌ์šฉํ•˜

์˜€์œผ๋ฉฐ ์—ฝ๋ฉด์ ์— ๋”ฐ๋ผ 0.2 - 0.45 m ๋†’์ด๋กœ ์กฐ์ •ํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. ๋Œ€๊ธฐ ๋ฐ ๋ฐฐ์ถ” ํ‘œ๋ฉด์˜ ์ˆ˜์ฆ๊ธฐ์••์€ Tetens์‹์„ ์ด์šฉํ•˜

์—ฌ ์‚ฐ์ถœํ•˜์˜€๋‹ค. (Eq. 1)๊ณผ ๊ฐ™์ด ์˜จ๋„์— ๋”ฐ๋ฅธ ํฌํ™”์ˆ˜์ฆ๊ธฐ์••์„ ๊ตฌํ•œ ํ›„ (Eq. 2)์ฒ˜๋Ÿผ ์ƒ๋Œ€์Šต๋„๋ฅผ ๊ณฑํ•˜์—ฌ ์ˆ˜์ฆ๊ธฐ์••์„ ์‚ฐ์ถœ

ํ•˜์˜€๋‹ค. ๋ฐฐ์ถ” ์žŽ์˜ ํฌํ™”์ˆ˜์ฆ๊ธฐ์••์€ ์žŽ ํ‘œ๋ฉด์˜จ๋„๋ฅผ ์ธก์ •ํ•˜์—ฌ ์‚ฐ์ถœํ•˜์˜€๋‹ค. ์ˆ˜์ฆ๊ธฐ์•• ์ฐจ์ด๋Š” (Eq. 3)๊ณผ ๊ฐ™์ด ๋Œ€๊ธฐ์˜ ์ˆ˜์ฆ

๊ธฐ์••์—์„œ ๋ฐฐ์ถ” ์žŽ ํ‘œ๋ฉด์˜ ํฌํ™”์ˆ˜์ฆ๊ธฐ์••์„ ๋บ€ ๊ฐ’์œผ๋กœ ํ•˜์˜€๋‹ค.

Ps = 0.61078exp

(Eq. 1)

Pa = ร— (Eq. 2)

VPD = Paair - Pscabbage (Eq. 3)

Ps : the saturation vapor pressure (kPa)

Pa : the vapor pressure (kPa)

T : Temperature (ยฐC)

RH : Relative humidity (%)

VPD : Vapor pressure deficiet (kPa)

์‹๋ฌผ์ฒด ๋ฐ ์—ฝ๋ฉด์  ๋ถ„์„ ๋ฐฐ์ถ”์˜ ํƒ„์†Œํ•จ๋Ÿ‰์€ ์ง€์ƒ๋ถ€์™€ ์ง€ํ•˜๋ถ€๋กœ ๋‚˜๋ˆ„์–ด ์ˆ˜ํ™•ํ•˜๊ณ  ์ˆ˜๋—๋ฌผ๋กœ ์„ธ์ฒ™ํ•œ ํ›„ 80ยฐC ์—ดํ’

๊ฑด์กฐ๊ธฐ์—์„œ 48์‹œ๊ฐ„ ๊ฑด์กฐ์‹œ์ผฐ์œผ๋ฉฐ ๊ฑด์กฐ๋œ ์‹œ๋ฃŒ๋ฅผ ๋ถ„์‡„ํ•˜์—ฌ ๊ท ์งˆํ™” ๋œ ์‹œ๋ฃŒ๋ฅผ ์›์†Œ๋ถ„์„๊ธฐ (Variomax Cube, Elementar,

Germany)๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค.

๋ฐฐ์ถ”์˜ ์—ฝ๋ฉด์  ๋ณ€ํ™” ๋ถ„์„์„ ์œ„ํ•˜์—ฌ 5,616 ร— 3,744 Pixel์˜ ์ถœ๋ ฅ ํ•ด์ƒ๋„๋ฅผ ๊ฐ€์ง€๋Š” ๋””์ง€ํ„ธ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ •์‚ฌ์˜

์ƒ์„ ์ดฌ์˜ํ•˜์˜€๋‹ค. ์—ฝ๋ฉด์  ๋ถ„์„์„ ์œ„ํ•ด Image J ์†Œํ”„ํŠธ์›จ์–ด (NIH, USA)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋ถ„์„์„ ํ•˜์˜€์œผ๋ฉฐ ํƒœ์–‘์—

์˜ํ•ด ์žŽ ํ‘œ๋ฉด์—์„œ ๋ฐ˜์‚ฌ๋˜๋Š” ๋น›์˜ ๋ณ€์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ชฐ ์ดํ›„์— ์ดฌ์˜ํ•˜์—ฌ ์˜์ƒ ์ด๋ฏธ์ง€๋ฅผ ํš๋“, ์ด๋ฏธ์ง€ ๋ฌธํ„ฑ๊ฐ’

(Threshold) ์กฐ์ ˆ, Pixel ๋ถ„์„์˜ ์ˆœ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ์—ฝ๋ฉด์ ์„ ๊ตฌํ•˜์˜€๋‹ค.

Page 5: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 239

Results and Discussion

์žฌ๋ฐฐ๊ธฐ๊ฐ„์˜ ๊ธฐ์ƒ ๊ด€์ธก ๋ฐฐ์ถ” ์žฌ๋ฐฐ๊ธฐ๊ฐ„์˜ ๊ธฐ์ƒ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ๋Š” Fig. 2์™€ ๊ฐ™์•˜์œผ๋ฉฐ 3์›” 13์ผ๋ถ€ํ„ฐ 4์›” 22์ผ ๊นŒ

์ง€ ํ‰๊ท  ๊ธฐ์˜จ์€ 14.8ยฐC์˜€๊ณ  ์ตœ๊ณ ๊ธฐ์˜จ์€ 49.6ยฐC, ์ตœ์ €๊ธฐ์˜จ์€ -1.8ยฐC๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ  ํ‰๊ท  ์ผ๊ต์ฐจ๋Š” 26.8ยฐC๋กœ ์ตœ๋Œ€ ์ผ๊ต

์ฐจ๋Š” 42.2ยฐC, ์ตœ์ € ์ผ๊ต์ฐจ๋Š” 15.2ยฐC๋กœ ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ ์ผ๊ต์ฐจ๊ฐ€ ์ž˜ ๋‚˜ํƒ€๋‚˜๋Š” ๋‚ ์”จ์ƒํƒœ๋ฅผ ๋ณด์˜€๋‹ค. ์ƒ๋Œ€์Šต๋„๋Š” ํ‰๊ท 

41.9%๋กœ ๋‹ค์†Œ ๊ฑด์กฐํ•œ ์ƒํƒœ์˜€์œผ๋‚˜ ๊ธฐ์˜จ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ผ๊ต์ฐจ๊ฐ€ ๋งค์šฐ ์ž˜ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

์ผ์‚ฌ๋Ÿ‰์€ 4์›” 10์ผ, 4์›” 14์ผ, 4์›” 19์ผ์„ ์ œ์™ธํ•˜๊ณ  ์ „ํ˜•์ ์ธ ๋ง‘์€ ๋‚ ์˜ ๋พฐ์กฑํ•œ ์ข…๋ชจ์–‘์˜ ์ผ์‚ฌํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ

๋ฉฐ ์ผ ์ตœ๋Œ€ ์ผ์‚ฌ๋Ÿ‰์€ 4์›” 17์ผ์— 734 W m-2๋กœ ๊ด€์ธก๋˜์—ˆ๋‹ค. ๋ฐฐ์ถ” ์žŽ ํ‘œ๋ฉด์—์„œ ๋Œ€๊ธฐ์ค‘์œผ๋กœ ์ˆ˜์ฆ๊ธฐ ํ™•์‚ฐ ์ •๋„๋ฅผ ํ‰๊ฐ€ํ•˜

๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์ฆ๊ธฐ์•• ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋ฐฐ์ถ” ์žŽ ํ‘œ๋ฉด๊ณผ ๋Œ€๊ธฐ์ค‘ ์ˆ˜์ฆ๊ธฐ์•• ์ฐจ์ด๋Š” ํ‰๊ท  1.45 kPa์˜€๊ณ  ์ตœ๋Œ€ ์ˆ˜์ฆ์•• ์ฐจ์ด

๋Š” 4์›” 19์ผ์— 7.93 kPa๋กœ ์žŽ ํ‘œ๋ฉด์—์„œ ๋Œ€๊ธฐ์ค‘์œผ๋กœ ์ˆ˜์ฆ๊ธฐ๊ฐ€ ํ™•์‚ฐ๋˜๋Š” ์กฐ๊ฑด์ด ๋งŽ์•˜์œผ๋‚˜ ์ตœ์ € ์ˆ˜์ฆ๊ธฐ์•• ์ฐจ์ด๋Š” -0.55

kPa๋กœ ์ผ์‚ฌ๊ฐ€ ์—†๋Š” ์•ผ๊ฐ„์— ์ˆ˜์ฆ๊ธฐ๊ฐ€ ์žŽ์œผ๋กœ ์‘๊ฒฐ๋˜๋Š” ์กฐ๊ฑด๋„ ํ˜•์„ฑ๋˜์—ˆ๋‹ค.

์˜จ์‹ค์—์„œ๋Š” ์ฐจ๊ด‘์‹œ์„ค๊ณผ ์ฐฝํ˜ธ ๋“ฑ์— ์˜ํ•œ ๊ทธ๋ฆผ์ž๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ์˜จ์‹ค๋‚ด ์„ค์น˜๋œ ์ผ์‚ฌ๊ณ„๋Š” ๊ทธ๋ฆผ์ž์— ์˜ํ•œ ์ผ์‚ฌ๊ฐ€ ์ฐจ

๋‹จ๋  ์ˆ˜ ์žˆ์œผ๋‚˜ ๋ผ์ด์‹œ๋ฏธํ„ฐ์—์„œ ์ƒ์žฅํ•˜๋Š” ๋ฐฐ์ถ”๋Š” ์ผ๋ถ€๋งŒ ๊ทธ๋ฆผ์ž๊ฐ€ ์ƒ๊ฒจ ์ผ์‚ฌ๋Ÿ‰ ๊ด€์ธก ์ž๋ฃŒ์™€ ๋ฐฐ์ถ”๋กœ ์œ ์ž…๋˜๋Š” ๋‹จํŒŒ๋ณต

Fig. 2. Daily changes of air temperature (A), relative humidity (B), solar radiation (C) and vapor pressure deficit (D)

during the experiment period.

Page 6: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

240 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

์‚ฌ๋Ÿ‰์€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค. ์‹œ์„ค ๋‚ด ๊ตฌ์กฐ๋ฌผ ์ข…๋ฅ˜์— ๋”ฐ๋ฅธ ๋ณต์‚ฌ ํŠน์„ฑ๊ณผ ํ™˜๊ธฐ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์˜จ๋„ ๋ณ€ํ™”๋Š” ์™ธ๋ถ€ ๊ธฐ์˜จ๊ณผ ์ƒ์ดํ•  ์ˆ˜

์žˆ์œผ๋ฏ€๋กœ ๋ด‰ํ™”์•ฝ์šฉ์ž‘๋ฌผ์—ฐ๊ตฌ์†Œ์˜ ๊ธฐ์ƒ์„ ๋Œ€ํ‘œํ•˜๋Š” ๊ณณ์— ์„ค์น˜๋œ ๊ธฐ์ƒ๊ด€์ธก ํฌ์žฅ์˜ ์ž๋ฃŒ์™€ ์˜จ์‹ค ๋‚ด ๊ด€์ธก์ž๋ฃŒ๋ฅผ ๋น„๊ตํ•˜์˜€

๋‹ค (Fig. 3).

์˜จ์‹ค ์•ˆ์˜ ๊ธฐ์˜จ๊ณผ ์™ธ๋ถ€ ๊ธฐ์˜จ์€ ๊ฒฐ์ •๊ณ„์ˆ˜๊ฐ€ 0.8113์œผ๋กœ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ ๊ธฐ์šธ๊ธฐ๋Š” 1.150์œผ๋กœ ์™ธ๋ถ€ ๊ธฐ

์˜จ๋ณด๋‹ค ์˜จ์‹ค ์•ˆ์—์„œ ๋†’์€ ๊ฒฝํ–ฅ์ด์—ˆ๋‹ค. ์ผ์‚ฌ๋Ÿ‰์€ ๊ฒฐ์ •๊ณ„์ˆ˜๊ฐ€ 0.9424๋กœ ๋งค์šฐ ๋†’์€ ์„ ํ˜•๊ด€๊ณ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ ๊ธฐ์šธ๊ธฐ๋Š” 0.662

๋กœ ์˜จ์‹ค ๋‚ด๋กœ ์œ ์ž…๋˜๋Š” ๋น›์ด ์•ฝ 34% ์ •๋„ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ฐฐ์ถ” ์—ฝ๋ฉด์  ๋ณ€ํ™” ์ •์‹ ์ „ ๋ฐฐ์ถ”์˜ ์—ฝ๋ฉด์ ์€ 9.3 cm2์ด์—ˆ์œผ๋ฉฐ ์žฌ๋ฐฐ๊ธฐ๊ฐ„์ค‘ ๊ฒฝ์‹œ์  ์—ฝ๋ฉด์  ๋ณ€ํ™”๋Š” Fig. 4, Fig. 5์™€

๊ฐ™์•˜๋‹ค. ๋ผ์ด์‹œ๋ฏธํ„ฐ 2๊ฐœ์†Œ์— ์„ค์น˜๋œ ๋ฐฐ์ถ”์˜ ์—ฝ๋ฉด์ ์€ 3์›” 13์ผ (์ •์‹ 10์ผ)์— ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ๋Š” 18.6 cm2, ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ

18.3 cm2์ด์—ˆ๊ณ  3์›” 18์ผ์€ ๊ฐ๊ฐ 81.9, 72.8 cm2, 3์›” 25์ผ์€ 339.5, 257.2 cm2, 4์›” 4์ผ์€ 963.6, 726.4 cm2์˜€์œผ๋ฉฐ 4

์›” 11์ผ์€ 1,067.3, 877.0 cm2, ์ˆ˜ํ™•์ผ์ธ 4์›” 22์ผ์€ 1,424.3, 1192.6 cm2๋กœ 3์›” 25์ผ์—์„œ 4์›” 4์ผ๊ฒฝ ๊ธ‰๊ฒฉํ•œ ์—ฝ๋ฉด์ 

์ฆ๊ฐ€๊ฐ€ ์žˆ์—ˆ๋‹ค. ์˜จ์‹ค ๊ตฌ์กฐ๋ฌผ์˜ ๊ทธ๋Š˜์— ์˜ํ•ด ์ผ์‚ฌ ์œ ์ž…์ด ๋‹ค์†Œ ๋‚ฎ์€ ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ์˜ ์—ฝ๋ฉด์ ์ด ์ดˆ๊ธฐ์—๋Š” ๋‹ค์†Œ ์ž‘์•˜์œผ๋‚˜ ์ƒ

์œก์ผ์ˆ˜ ๊ฒฝ๊ณผ์— ๋”ฐ๋ผ ์—ฝ๋ฉด์  ์ฆ๊ฐ€๋กœ ๋ณต์‚ฌ ์ฐจ๋‹จ์šฉ ํด๋ฆฌ์นด๋ณด๋„ค์ดํŠธ ํŒ์— ๋ฐฐ์ถ” ์žŽ์ด ์ ‘์ด‰๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐฐ์ถ”

Fig. 3. Correlation between the outside and the greenhouse for air temperature (A), solar radiation (B), respectively.

Fig. 4. Changes in the leaf area of Kimchi cabbage grown in lysimeter during the experiment period.

Page 7: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 241

ํ•˜๋‹จ์„ ๋ˆ์œผ๋กœ ๊ณ ์ •์„ ์‹œ์ผฐ๋Š”๋ฐ ๋ฐฐ์ถ” ์ƒ๋‹จ์—์„œ ์ดฌ์˜ํ•œ ํ‰๋ฉด ๋„“์ด๊ฐ€ ์ƒ์ดํ•˜์—ฌ ์ˆ˜ํ™•์‹œ์— ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ์˜ ์—ฝ๋ฉด์ ์ด ๋„“๊ฒŒ

๋ถ„์„๋˜์—ˆ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ์ž‘๋ฌผ ์ƒ์žฅ๋Ÿ‰์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ด‘ํ•ฉ์„ฑ์ด ์ด๋ฃจ์–ด์ง€๋Š” ์—ฝ๋ฉด์ ์˜ ๊ฒฝ์‹œ์  ๋ณ€ํ™”๋ฅผ ์ถ”์ •ํ•˜๋Š”

๋ฐ, ์‹œ๊ฐ„์— ๋”ฐ๋ผ์„œ ์ฆ๊ฐ€ํ•˜๋Š” ์ž‘๋ฌผ์˜ ์ƒ์žฅ์€ ์„ธํฌ์˜ ์ฆ์‹ ๋˜๋Š” ์ƒ์žฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ํ•จ์ˆ˜์ธ โ€˜Logistic growth functionโ€™์„

์ฃผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค (Byrne, 1981; Ahn et al., 2014). ๋ณธ ์—ฐ๊ตฌ์—์„œ๋„ ๋ฐฐ์ถ”์˜ ์—ฝ๋ฉด์  ๋ณ€ํ™”๋Š” Fig. 4์˜ ๊ฒฐ๊ณผ์™€ ๊ฐ™์ด ์žฌ๋ฐฐ๊ธฐ๊ฐ„

์— ๋”ฐ๋ผ โ€˜Logistic growth functionโ€™์™€ ์ž˜ ์ผ์น˜ํ•˜๋Š” ์ฆ๊ฐ€๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ (r2 = 0.9964), 4์›” 11์ผ ์ดํ›„์—๋Š” ์—ฝ๋ฉด์  ์ฆ

๊ฐ€๋กœ ์žฌ๋ฐฐ์šฉ๊ธฐ๋ฅผ ์™„์ „ํžˆ ํ”ผ๋ณต์„ ํ•˜์˜€๋‹ค (Fig. 5). ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ, ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ๋Š” ๋™์ผํ•œ ์—ฝ๋ฉด์  ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€๋‹ค.

์ฆ์‚ฐ๋Ÿ‰ ํ‰๊ฐ€ ๋ฐฐ์ถ”์˜ ๊ฒฝ์‹œ์  ์ฆ์‚ฐ์œจ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” Fig. 6๊ณผ ๊ฐ™์•˜๋‹ค. ์ผ์‚ฌ๊ฐ€ ์—†๋Š” ์•ผ๊ฐ„์—๋Š” ์ฆ์‚ฐ์ด ๊ฑฐ์˜ ์—†์—ˆ์œผ

๋ฉฐ ์ผ์ถœ๊ณผ ํ•จ๊ป˜ ์ฆ๊ฐ€ํ•˜๊ณ  ๋‹ค์‹œ ๊ฐ์†Œํ•˜๋Š” ์ผ ๋ณ€ํ™” ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ ์ƒ์œก๊ธฐ๊ฐ„ ๋™์•ˆ ์œ ์‚ฌํ•œ ์–‘์ƒ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ƒ์œก

์ดˆ๊ธฐ์ธ 3์›” 13์ผ์—์„œ 3์›” 17์ผ์˜ ์ตœ๋Œ€ ์ฆ์‚ฐ์œจ์€ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ์—์„œ 9.9 g h-1, ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ๋Š” 23.2 g h-1์ด์—ˆ์œผ๋‚˜ ํ‰๊ท  ๊ฐ’

์€ ๊ฐ๊ฐ 0.8, 0.7 g h-1๋กœ ๋น„์Šทํ•œ ์ˆ˜์ค€์ด์—ˆ๊ณ  3์›” 18์ผ์—์„œ 3์›” 25์ผ๊นŒ์ง€๋Š” ์ตœ๋Œ€ ์ฆ์‚ฐ์œจ์ด ๊ฐ๊ฐ 18.1, 33.8 g h-1์ด๋‚˜ ํ‰

๊ท  ๊ฐ’์€ 1.8, 1.5 g h-1๋กœ ์œ ์‚ฌํ•œ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์—ฝ๋ฉด์ ์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ€๋ฅผ ๋‚˜ํƒ€๋‚ธ 3์›” 26์ผ์—์„œ 4์›” 5์ผ๊นŒ์ง€์˜ ์ตœ๋Œ€

์ฆ์‚ฐ์œจ์€ ๊ฐ๊ฐ 61.4, 61.6 g h-1์œผ๋กœ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  4์›” 6์ผ๋ถ€ํ„ฐ 4์›” 11์ผ์€ 89.1, 82.5 g h-1, 4์›” 12์ผ์—์„œ 4์›” 22์ผ

์€ 136.7, 129.0 g h-1์ด์—ˆ์œผ๋ฉฐ, ์ƒ์œก๋‹จ๊ณ„์˜ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ๋ฐฐ์ถ”์˜ ์—ฝ๋ฉด์ ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ฆ์‚ฐ์œจ๋„ ๋†’์•„์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด

์˜€๋‹ค.

๋ณต์‚ฌ ์œ ์ž… ๋“ฑ ์˜จ์‹ค์˜ ํ™˜๊ฒฝ์ด ๋ผ์ด์‹œ๋ฏธํ„ฐ ์„ค์น˜ ์œ„์น˜์— ๋”ฐ๋ผ ๋‹ค์†Œ ์ฐจ์ด๊ฐ€ ๋‚  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ฒ˜๋ฆฌ๊ฐ„ ์ฆ์‚ฐ์œจ ๋ณ€ํ™”์— ๋Œ€ํ•œ

์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค (Fig. 7). ๊ธฐ์šธ๊ธฐ ๊ฐ’์€ 1.053, ๊ฒฐ์ •๊ณ„์ˆ˜๋Š” 0.9250์œผ๋กœ ์œ ์˜ํ•œ ์„ ํ˜•์  ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์–ด ์˜จ

์‹ค๋‚ด์—์„œ ์œ„์น˜์— ๋”ฐ๋ฅธ ํ™˜๊ฒฝ์กฐ๊ฑด์ด ๋‹ค์†Œ ์ƒ์ดํ•˜๋”๋ผ๋„ ๋™์ผํ•œ ์ฆ์‚ฐ๋ฐ˜์‘์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.

Fig. 5. Kimchi cabbage growth for the experiment period.

Page 8: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

242 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

Fig. 6. Daily changes in the transpiration rate of Kimchi cabbage during the experiment period.

Fig. 7. Correlation of transpiration rate between Kimchi cabbages cultivated in different lysimeters.

๋‹จ์œ„ ์—ฝ๋ฉด์ ๋‹น ํ•˜๋ฃจ ๋™์•ˆ์˜ ์ฆ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋Š” Fig. 8๊ณผ ๊ฐ™์•˜์œผ๋ฉฐ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ๋Š” 0.28 - 0.63 g cm-2 day-1,

๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ๋Š” 0.38 - 0.67 g cm-2 day-1์˜ ๋ฒ”์œ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ ์žฌ๋ฐฐ๊ธฐ๊ฐ„์ค‘ ๋‹จ์œ„ ์—ฝ๋ฉด์ ๋‹น ํ•˜๋ฃจ ๋™์•ˆ ์ฆ์‚ฐ๋Ÿ‰์€ 0.46 ยฑ 0.13

g cm-2 day-1์œผ๋กœ ์ฒ˜๋ฆฌ๊ฐ„ ํฐ ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Page 9: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 243

ํƒœ์–‘๋ณต์‚ฌ ์—๋„ˆ์ง€ ์œ ์ž…์ด ๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํƒœ์–‘๋ณต์‚ฌ ์—๋„ˆ์ง€๊ฐ€ ๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ์— ๋ฏธ์น˜๋Š”

์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋‹จ์œ„ ์—ฝ๋ฉด์ ๋‹น ์ฆ์‚ฐ๋Ÿ‰์€ ํฐ ์ฐจ์ด๊ฐ€ ์—†์ง€๋งŒ ์„ฑ์žฅ์— ๋”ฐ๋ฅธ ์—ฝ๋ฉด์  ์ฆ๊ฐ€๋กœ ํƒœ์–‘๋ณต์‚ฌ ์—๋„ˆ์ง€์˜ ์œ ์ž… ๋ฉด

์ ์ด ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ผ์‚ฌ ์œ ์ž…๋Ÿ‰์— ์—ฝ๋ฉด์ ์„ ๊ณฑํ•˜์—ฌ ๋ฐฐ์ถ” ์žŽ์˜ ์ˆ˜๊ด‘ ๋ฉด์ ์„ ๋ณด์ •ํ•˜์˜€๊ณ  ํ•˜๋ฃจ ๋™์•ˆ ๋ˆ„์  ์ผ์‚ฌ

๋Ÿ‰์— ๋”ฐ๋ฅธ ์ผ ์ฆ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค (Fig. 9). Fig. 4์˜ ์—ฝ๋ฉด์  ๋ณ€ํ™”์™€ ๊ฐ™์ด ์žฌ๋ฐฐ๊ธฐ๊ฐ„์ด ๊ฒฝ๊ณผํ• ์ˆ˜๋ก ํ•˜๋ฃจ ๋™์•ˆ์˜ ๋ˆ„

์  ์ผ์‚ฌ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. 3์›” 13์ผ๋ถ€ํ„ฐ 3์›” 17์ผ ๊นŒ์ง€์˜ ํ•˜๋ฃจ ๋™์•ˆ์˜ ์ฆ์‚ฐ๋Ÿ‰์€ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ์—์„œ 5.8 - 36.8 g h-1, ๋ฐฐ์ถ”

2 ์ฒ˜๋ฆฌ๋Š” 2.9 - 32.4 g day-1์˜ ๋ฒ”์œ„๋ฅผ ๋ณด์˜€๊ณ  3์›” 18์ผ์—์„œ 3์›” 25์ผ๊นŒ์ง€๋Š” ๊ฐ๊ฐ 8.7 - 75.0 g day-1, 11.5 - 63.5 g day-1

์ด๊ณ  3์›” 26์ผ์—์„œ 4์›” 5์ผ๊นŒ์ง€ ๊ฐ๊ฐ 81.5 - 350.1 g day-1, 50.4 - 323.6 g day-1์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  4์›” 6์ผ๋ถ€ํ„ฐ 4์›” 11์ผ

์€ 154.8 - 542.0 g day-1, 155.5 - 461.6 g day-1์ด์—ˆ์œผ๋ฉฐ 4์›” 12์ผ์—์„œ 4์›” 22์ผ์€ 198.2 - 857.0 g day-1, 184.3 - 869.5

g day-1์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ์€ ์ผ์‚ฌ๋Ÿ‰์˜ ๋ณ€ํ™”์™€ ๋™์ผํ•œ ์–‘์ƒ์œผ๋กœ ๋ณ€ํ™”๋ฅผ ํ•˜์˜€์œผ๋ฏ€๋กœ ์ผ์‚ฌ์กฐ๊ฑด๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„

๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.

Fig. 8. Changes in the daily transpiration of Kimchi cabbage per leaf area during the experiment period.

Fig. 9. Changes in the transpiration of Kimchi cabbages from lysimeter and solar radiation. Solar radiation of given area

was corrected for logistics regression of leaf area growth calculated by the following equation :

รท

, r2 = 0.9964.

Page 10: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

244 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

๋ฐฐ์ถ”์˜ ๊ธฐ์˜จ์— ๋”ฐ๋ฅธ ์ƒ์žฅ๋ฐ˜์‘ ๋ชจํ˜•๊ฐœ๋ฐœ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ (Kim and Yun, 2015), ๋ด„๋ฐฐ์ถ”๋กœ ๋„๋ฆฌ ์žฌ๋ฐฐ๋˜๋Š” โ€˜์ถ˜๊ด‘โ€™์€ ์ƒ์œก๋„

์ผ (Growing degree days)์ด 478 - 724์ด์—ˆ๊ณ  (Wi et al., 2018) ๊ณ ์˜จ์—์„œ๋Š” ์ˆ˜๋ถ„์ด์šฉํšจ์œจ์ด ๊ฐ์†Œํ•˜๊ณ  ์—ฝ๋ก์†Œ ํ˜•๊ด‘๋ฐ˜

์‘์˜ ์ €ํ•˜, ๋ฌด๋ฆ„๋ณ‘ ๋ฐœ์ƒ ์ฆ๊ฐ€ (Oh et al., 2014) ๋“ฑ์˜ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์–ด ์˜จ๋„๋Š” ๋ฐฐ์ถ”์˜ ์ƒ์œก๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€

๊ณ  ์žˆ๋‹ค. ๊ธฐ์˜จ๊ณผ ์ผ์‚ฌ๋Ÿ‰์ด ๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ๋Š” Fig. 10๊ณผ ๊ฐ™์•˜๋‹ค. ์ฒ˜๋ฆฌ๊ฐ„ ์ฆ์‚ฐ์œจ ํŽธ์ฐจ๊ฐ€ ์ ๊ณ 

ํ™˜๊ฒฝ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ถฉ๋ถ„ํ•œ ์ฆ์‚ฐ๋Ÿ‰์„ ๊ฐ€์ง€๋Š” 4์›” 19์ผ๋ถ€ํ„ฐ 4์›” 22์ผ ๋™์•ˆ 4์ผ๊ฐ„ ๊ธฐ์˜จ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ฆ์‚ฐ๋Ÿ‰์„ ๋ถ„์„ํ•˜์˜€์œผ

๋ฉฐ ์ผ์ถœ ํ›„์— ๊ธฐ์˜จ์ด ๋†’์•„์ง์— ๋”ฐ๋ผ ์ฆ์‚ฐ๋Ÿ‰๋„ ๋†’์•„์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ์ง€๋งŒ ํ•˜๋ฃจ์ค‘ ์ตœ๊ณ ๊ธฐ์˜จ์„ ๋‚˜ํƒ€๋‚ผ ๋•Œ ์ฆ์‚ฐ์ด ๋‚ฎ

์•„์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ์€ 4์›” 20์ผ 12์‹œ 10๋ถ„์— ์ฆ์‚ฐ์œจ์ด ๊ฐ€์žฅ ๋†’์•˜๋Š”๋ฐ ์ด๋•Œ ๊ธฐ์˜จ์€ 17.0ยฐC์˜€๊ณ  ๋ฐฐ์ถ” 2

์ฒ˜๋ฆฌ๋Š” 13์‹œ 10๋ถ„์— ๊ฐ€์žฅ ๋†’์•˜๊ณ  ๊ธฐ์˜จ์€ 19.4ยฐC์˜€๋‹ค. 4์›” 21์ผ์€ ๊ฐ๊ฐ 11์‹œ 10๋ถ„, 11์‹œ์— ๊ฐ€์žฅ ๋†’์€ ์ฆ์‚ฐ์„ ๋ณด์˜€๊ณ 

๊ธฐ์˜จ์€ 19.7, 19.3ยฐC๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ  4์›” 22์ผ์€ ๊ฐ๊ฐ 11์‹œ 10๋ถ„, 10์‹œ 40๋ถ„์— ๊ฐ€์žฅ ์ฆ์‚ฐ์ด ๋†’์•˜๊ณ  ๊ธฐ์˜จ์€ 22.7, 21.8ยฐC

๋กœ ๊ธฐ์˜จ์ด 17 - 23ยฐC์˜ ๋ฒ”์œ„๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.

๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ์€ ์ผ์ถœ๊ณผ ๋™์‹œ์— ์ผ์‚ฌ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ฆ์‚ฐ์œจ์ด ๋†’์•„์กŒ๊ณ  ์ผ๋ชฐ๊ณผ ํ•จ๊ป˜ ์ฆ์‚ฐ์œจ์€ ๋‚ฎ์•„์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด

์—ฌ ๊ธฐ์˜จ๋ณด๋‹ค ์ผ์‚ฌ๋Ÿ‰์ด ์ฆ์‚ฐ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๊ด€์ธก๋˜์—ˆ๋‹ค (Fig. 10). Lee and Haginoya (2011)๋Š” ์ž”๋””๋กœ ํ”ผ

๋ณต๋œ ํ† ์–‘์—์„œ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์˜ ์‹ค์‹œ๊ฐ„ ๋ณ€ํ™”๋Ÿ‰์„ ์ค‘๋Ÿ‰์‹ ๋ผ์ด์‹œ๋ฏธํ„ฐ๋กœ ๊ด€์ธกํ•œ ๊ฒฐ๊ณผ ์ผ์‚ฌ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๋•Œ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€

ํ•˜๊ณ  ์ผ์‚ฌ๋Ÿ‰ ๊ฐ์†Œ์‹œ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ๋™์‹œ์— ๊ฐ์†Œํ•˜์—ฌ ์ผ์‚ฌ๋Ÿ‰๊ณผ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์˜ ๊ฒฐ์ •๊ณ„์ˆ˜๋Š” 0.9470๋กœ ๋งค์šฐ ์œ ์˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„

๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ ๋‹จํŒŒ๋ณต์‚ฌ๋Ÿ‰์˜ 46%๊ฐ€ ์ฆ๋ฐœ์‚ฐ ์—๋„ˆ์ง€๋กœ ๋ณ€ํ™”๋œ๋‹ค๊ณ  ํ•˜์˜€๋‹ค. ํ•ด๋ฐœ ๊ณ ๋„๋ณ„ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๊ด€์ธก์‹œ ๋‹จํŒŒ๋ณต์‚ฌ

๋Ÿ‰๊ณผ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ ๊ฒฐ์ •๊ณ„์ˆ˜ 0.8885๋กœ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„์˜€์œผ๋ฉฐ (Lee et al., 2012), ์•ฝ์šฉ์ž‘๋ฌผ์ธ ์ฒœ๊ถ (Cnidium officinale

Makino)์€ ๊ธฐ์˜จ์— ๋”ฐ๋ผ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ ๊ฒฐ์ •๊ณ„์ˆ˜๋Š” 0.2260๋กœ ๊ด€๋ จ์„ฑ์ด ๋‚ฎ์•˜๊ณ  ํ’์†์˜ ๊ฒฐ์ •

Fig. 10. Changes in the transpiration rate of Chinese cabbages according to air temperature and solar radiation during

cultivation from April 19 to April 22 in 2019.

Page 11: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 245

๊ณ„์ˆ˜๋Š” 0.6400, ์ผ์‚ฌ๋Ÿ‰์€ 0.7778๋กœ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค (Seo et al., 2018). ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ 600 W m-2๊นŒ์ง€ ์„ ํ˜•์ ์œผ

๋กœ ์ฆ๊ฐ€๋ฅผ ํ•˜๊ณ  ๊ทธ ์ด์ƒ์—์„œ๋Š” ์ฆ๊ฐ€๊ฐ€ ์—†์–ด ์ผ์‚ฌ๋Ÿ‰์˜ ์•ฝ 40% ์ •๋„๋ฅผ ์ฆ๋ฐœ์‚ฐ ์—๋„ˆ์ง€๋กœ ๋ณ€ํ™˜ํ•˜๋ฏ€๋กœ ๊ณ ์˜จ ์กฐ๊ฑด์—์„œ ์žŽ

ํ‘œ๋ฉด์œผ๋กœ ์ž…์‚ฌ๋˜๋Š” ๋ณต์‚ฌ์—๋„ˆ์ง€๊ฐ€ ๊ณผ๋‹คํ•˜๊ฒŒ ๋†’์•„์งˆ ๊ฒฝ์šฐ ์—ฝ์˜จ ์ƒ์Šน์— ๋”ฐ๋ฅธ ์ƒ๋ฆฌ์žฅํ•ด ๋ฐœ์ƒ๊ณผ ์ƒ์œก ๋ถˆ๋Ÿ‰ ํ˜„์ƒ์„ ์ดˆ๋ž˜ํ•˜

๋ฏ€๋กœ ์ผ์‚ฌ๋Ÿ‰์„ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ํ•˜์˜€๋‹ค. ์˜จ์‹ค ๊ตฌ์กฐ๋ฌผ์˜ ๊ทธ๋ฆผ์ž์— ์˜ํ•ด ์ˆ˜๊ด‘๋ฉด์ ์ด ๋‹ฌ๋ผ์ ธ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ์™€ ๋ฐฐ

์ถ” 2 ์ฒ˜๋ฆฌ์˜ ์ผ์‚ฌ๋Ÿ‰ ํ”ผํฌ๊ฐ€ ์ƒ์ดํ•œ ์–‘์ƒ์„ ๋ณด์˜€์ง€๋งŒ ์ตœ๋Œ€ ์ผ์‚ฌ๋Ÿ‰์€ ๋น„์Šทํ•œ ์ˆ˜์ค€์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ผ์‚ฌ๋Ÿ‰์ด 149 W m-2๋กœ

๋‚ฎ์€ 4์›” 19์ผ์˜ ์ตœ๋Œ€ ์ฆ์‚ฐ์œจ์€ 32.7 g h-1์˜€์œผ๋‚˜ 4์›” 20์ผ, 21์ผ, 22์ผ์—๋Š” ์ตœ๋Œ€ ์ผ์‚ฌ๋Ÿ‰์ด ๊ฐ๊ฐ 648, 573, 651 W m-2

๋กœ ์ตœ๋Œ€ ์ฆ์‚ฐ์œจ์€ 122.4, 97.9, 133.8 g h-1๋กœ ์ผ์‚ฌ๊ฐ€ ๊ฐ•ํ•ด์ง์— ๋”ฐ๋ผ ์ฆ์‚ฐ์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ผ์‚ฌ๋Ÿ‰ ๊ด€์ธก์œผ๋กœ ์ผ์ • ๊ธฐ๊ฐ„ ๋™์•ˆ

์˜ ์ฆ์‚ฐ๋Ÿ‰ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋˜์—ˆ๋‹ค.

๊ฑด๋ฌผ ์ƒ์‚ฐ๋Ÿ‰, ํƒ„์†Œ ์ถ•์ ๋Ÿ‰ ๋ฐ ์ฆ์‚ฐ๋Ÿ‰์˜ ๊ด€๊ณ„ ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ ๋ฐฐ์ถ”์˜ ๊ฑด๋ฌผ์ƒ์‚ฐ๋Ÿ‰, ํƒ„์†Œ์ถ•์ ๋Ÿ‰ ๋ฐ ์ด ์ฆ์‚ฐ๋Ÿ‰์„

์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ๋Š” Table 2์˜ ๊ฒฐ๊ณผ์™€ ๊ฐ™์•˜๋‹ค. ์ง€์ƒ๋ถ€ ์ƒ์ฒด์ค‘์€ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ 489.62 g, ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ๋Š” 503.08 g์ด์—ˆ๊ณ  ๊ฑด๋ฌผ

์ƒ์‚ฐ๋Ÿ‰์€ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ์˜ ์ง€์ƒ๋ถ€๋Š” 34.15 g, ์ง€ํ•˜๋ถ€๋Š” 1.15 g์ด์—ˆ๊ณ , ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ์—์„œ๋Š” ๊ฐ๊ฐ 34.20, 0.95 g์œผ๋กœ ์ด ํƒ„์†Œ

๋Ÿ‰์€ ๋ฐฐ์ถ” 1 ์ฒ˜๋ฆฌ๋Š” 13.78 g, ๋ฐฐ์ถ” 2 ์ฒ˜๋ฆฌ 13.00 g๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ด ์ฆ์‚ฐ๋Ÿ‰์€ ๊ฐ๊ฐ 11,041, 10,267

H2O g์ด์—ˆ๊ณ  ๋ฐฐ์ถ”์˜ ์ƒ์ฒด์— ํฌํ•จ๋œ ๋ฌผ์„ ๊ณ„์‚ฐํ•˜๋ฉด ๊ฐ๊ฐ 454,32, 467,93 g์ด์—ˆ์œผ๋ฉฐ, ์ด ์ฆ์‚ฐ๋Ÿ‰์— ๋Œ€ํ•˜์—ฌ ๊ฑด๋ฌผ ์ƒ์‚ฐ๋Ÿ‰

์˜ ํ‰๊ท  ๋น„์œจ์€ 0.33%, ์ง€ํ•˜๋ถ€๋ฅผ ์ œ์™ธํ•œ ์ง€์ƒ๋ถ€ ์ƒ์ฒด๋Ÿ‰์˜ ๋น„์œจ์€ 4.67%, ํƒ„์†Œ ์ถ•์ ๋Ÿ‰์˜ ๋น„์œจ์€ 0.13%๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ๊ด‘ํ•ฉ์„ฑ ๋ฐ˜์‘์‹์€ 6 CO2 + 6 H2O โ†’ C6H12O6 + 6 O2๋กœ ํ‘œํ˜„๋˜๋Š”๋ฐ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์ฒด์— ํ•จ์œ ๋œ ์ˆ˜๋ถ„

์€ ํ‰๊ท  25.62 mol์ด์—ˆ๊ณ  ์ฆ์‚ฐ์„ ํ†ตํ•ด ๋ฐฐ์ถœ๋œ ์ˆ˜๋ถ„์€ 591.89 mol๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋ฐฐ์ถ”์˜ ํƒ„์†Œ ์ถ•์ ๋Ÿ‰์€ 1.12 mol๋กœ ์‚ฐ

์ถœ๋˜์—ˆ์œผ๋ฉฐ ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ ๋ฐฐ์ถ”์˜ ๊ด‘ํ•ฉ์„ฑ ๋ฐ˜์‘์‹์€ ์•„๋ž˜ (Eq. 4)์™€ ๊ฐ™์ด ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค.

1.00 CO2 + 552.35 H2O โ†’ 0.17 C6H12O6 + 22.88 H2O (WC) + 528.47 H2O (TR) + 1.00 O2 (Eq. 4)

WC : Water content of fresh Kimchi cabbage (H2O mol)

TR : Water content by transpiration (H2O mol)

๋”ฐ๋ผ์„œ ๋ฐฐ์ถ”์˜ ์žฌ๋ฐฐ๊ณผ์ •์ค‘ ํก์ˆ˜๋œ ์ˆ˜๋ถ„์˜ ์•ฝ 96%๊ฐ€ ์ฆ์‚ฐ์— ์˜ํ•œ ์ž ์—ด ์—๋„ˆ์ง€๋กœ ๋ฐฉ์ถœ๋˜๋ฏ€๋กœ ์‹๋ฌผ์ฒด๋‚ด ์—ด ์†Œ์‚ฐ ๋ฐ˜์‘

์— ๋Œ€๋ถ€๋ถ„ ์ด์šฉ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Table 2. Biomass production, carbon content and total transpiration of cabbages from March 13 to April 22 in 2019.

CabbageF.Wโ€  D.W. C concentration C content Total

transpirationLeaf Leaf Root Leaf Root Leaf Root Sum

-------------- g plant-1 -------------- ----------- % ----------- ------------------------ g plant-1 ------------------------

1 489.62 34.15 1.15 39.0 40.3 13.32 0.46 13.78 11,041

2 503.08 34.20 0.95 34.8 42.9 11.90 0.41 12.31 10,267

โ€ F.W., fresh weight; D.W., Dry weight; C concentration, total carbon concentration

Page 12: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

246 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

Conclusions

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘๋Ÿ‰์‹ ๋ผ์ด์‹œ๋ฏธํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฐฐ์ถ”์˜ ์ฆ์‚ฐ๋Ÿ‰์„ ํ‰๊ฐ€ํ•˜๊ณ  ํƒ„์†Œ ์ถ•์ ๋Ÿ‰๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ฐฐ

์ถ”์˜ ์ฆ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”๋Š” ์ผ์ถœ์ด ์‹œ์ž‘๋จ๊ณผ ๋™์‹œ์— ์ฆ๊ฐ€ํ•˜์˜€๊ณ  ์ผ๋ชฐ๊ณผ ํ•จ๊ป˜ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ์—ฝ๋ฉด์ ์ด ์ปค์ง์— ๋”ฐ๋ผ ์ฆ์‚ฐ๋Ÿ‰์€

์ฆ๊ฐ€ํ•˜์˜€๊ณ  ๋‹จ์œ„ ์—ฝ๋ฉด์  ์ฆ์‚ฐ๋Ÿ‰์€ 0.46 g cm-2day-1๋กœ ์ผ์ •ํ•œ ์ˆ˜์ค€์ด์—ˆ๊ณ  ์ตœ๋Œ€ ์ฆ์‚ฐ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ธ ์˜จ๋„๋Š” 17 - 23ยฐC์˜

๋ฒ”์œ„์˜€์œผ๋‚˜, ํ•˜๋ฃจ ๋™์•ˆ์˜ ๋ˆ„์  ์ฆ์‚ฐ๋Ÿ‰๊ณผ ์ฆ์‚ฐ์œจ์˜ ์ผ ๋ณ€ํ™”๋Š” ์ผ์‚ฌ๋Ÿ‰์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋ฏ€๋กœ ์ผ์‚ฌ๊ฐ€ ์ฆ์‚ฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”

๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์ธ์ด์—ˆ๋‹ค. ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ด ์ฆ์‚ฐ๋Ÿ‰์— ๋Œ€ํ•œ ๊ฑด๋ฌผ ์ƒ์‚ฐ๋Ÿ‰์˜ ๋น„์œจ์€ 0.33%, ์ง€์ƒ๋ถ€ ์ƒ์ฒด๋Ÿ‰์€ 4.67%,

ํƒ„์†Œ ์ถ•์ ๋Ÿ‰์€ 0.13%๋กœ ๊ณ„์‚ฐ๋˜์–ด, ์ฆ์‚ฐ๋Ÿ‰์„ ๊ด€์ธกํ•˜์—ฌ ์ƒ์žฅํ•ด์„์ด ๊ฐ€๋Šฅํ•œ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋˜๊ณ  ์žฌ๋ฐฐ๊ธฐ๊ฐ„ ๋™์•ˆ ํก์ˆ˜๋œ ๋ฌผ

์˜ 96%๋Š” ์ฆ์‚ฐ์— ์˜ํ•ด ์‹๋ฌผ์ฒด๋‚ด ์—ด ์†Œ์‚ฐ ๋ฐ˜์‘์— ์ด์šฉ๋˜๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ผ์ด์‹œ๋ฏธํ„ฐ๋Š” ๋†’์€ ์ •ํ™•๋„๋กœ ๋ฐฐ

์ถ”์˜ ์‹ค์‹œ๊ฐ„ ์ฆ์‚ฐ๋Ÿ‰ ๊ด€์ธก์ด ๊ฐ€๋Šฅํ•œ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๊ณ  ๋ฐฐ์ถ”์˜ ์ƒ์žฅํ•ด์„์— ๋งค์šฐ ์œ ์šฉํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

Acknowledgement

The author wishes to acknowledge Dr. Lee, Hyunsuk from HQ Tech, Co., Inc. for his indispensable remarks and

technical assistance of Lysimeter.

References

Ahn, J.H., K.D. Kim, and J.T. Lee. 2014. Growth model of Chinese cabbage in an alpine area. Korean J. Agric. Forest

Meteor. 14:309-315.

Bakhtiari, B., N. Ghahreman, A.M. Lighat, and G. Hoogenboom. 2011. Evaluation of reference evapotranspiration

models for a semiarid environment using lysimeter measurements. J. Agric. Sci. Tech. 13:223-237.

Bello, Z.A. and L.D. Van Rensburg. 2017. Development, calibration and testing of low cost small lysimeter for monitoring

evaporation and transpiration. Irrigation and Drainage. 66:263-272.

Byrne, G.F. 1981. Fitting a growth curve equation to field data. Agric. Meteor. 22:1-9.

Colaizzi, P.D., S.A. Oโ€™Shaughnessy, S.R. Evett, and R.B. Mounce. 2017. Crop evapotranspiration calculation using

infrared thermometers aboard pivots. Agric. Water Manag. 187:173-189.

Djaman, K., M. Oโ€™Neill, C.K. Owen, D. Smeal, K. Koudahe, M. West, S. Allen, K. Lombard, and S. Irmark. 2018.

Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data

under semiarid climate. Water. 10:405-422.

Ghafouri-Azar, M., D.H. Bae, and S.H. Kang. 2018. Trend analysis of long term reference evapotranspiration and its

components over the Korean peninsula. Water. 10:1373-1391.

Han, J.S. and B.Y. Lee. 2005. Measurements and analysis of free water evaporation at Haenam paddy field. Korean J.

Agric. Forest Meteor. 7:91-97.

Hong, J.K., H.J. Kwon, J.H. Lim, Y.H. Byun, J. Lee, and J. Kim. 2009. Standardization of KoFlux eddy covariance

data processing. Korean J. Agric. Forest Meteor. 11:19-26.

Hu, X.L., L.S. Shi, L.Lin, B.Z. Zhang, and Y.Y. Zha. 2018. Optical based and thermal based estimation surface

conductance and actual evapotranspiration estimation study in the North China Plain. Agric. Forest Meteor.

263:449-464.

Hur, S.O., K.H. Jung, S.K. Ha, and J.G. Kim. 2006. Evaluation of meteorological elements used for reference

Page 13: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

Lysimeteric Evaluation for Transpiration and Carbon Accumulation of Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) โˆ™ 247

evapotranspiration calculation of FAO Penman-Monteith Model. Korean J. Soil Sci. Fert. 39:274-279.

Jeon, M.J., W.H. Nam, E.M. Hong, S.A. Hwang, J.H. Ok, H.R. Cho, K.H. Han, K.H. Jung, Y.S. Zhang, and S.Y.

Hong. 2019. Comparison of reference evapotranspiration estimation methods with limited data in South Korea.

Korean J. Agric. Sci. 46:137-149.

Kim, D.J., K.H. Han, Y.S. Zhang, H.R. Cho, J.H. Ok, K.S. Choi, and J.S. Choi. 2018. Evaluation of evapotranspiration

in difference paddy soils using weighable lysimeters before flooding stage. Korean J. Soil Sci. Fert. 51:510-521.

Kim, J.H. and J.I. Yun. 2015. A thermal time based phenology estimation in Kimchi cabbage (Brassica campestris L.

spp. Pekinensis). Korean J. Agric. Forest Meteor. 17:333-339.

Kim, K.D., J.T. Suh, J.N. Lee, D.L. Yoo, M. Kwon, and S.C. Hong. 2015. Evaluation of factors related to productivity

and yield estimation based on growth characteristics and growing degree days in highland Kimchi Cabbage.

Korean J. Hortic. Sci. Technol. 33:911-922.

Kwon, H.J., J.H. Lee, Y.K. Lee, J.W. Lee, S.W. Jung, and J. Kim. 2009. Seasonal variations of evapotranspiration

observed in a mixed forest in the Seolmacheon catchment. Korean J. Agric. Forest Meteor. 11:39-47.

Kwon, H.J., S.B. Park, M.S. Kang, J.I. Yoo, R. Yuan, and J. Kim. 2007. Quality control and assurance of eddy covariance

data at two KoFlux sited. Korean J. Agric. Forest Meteor. 9:260-267.

Lee, B.Y. and S. Haginoya. 2011. The latent heat exchange on the ground. J. Environ. Sci. 20:1061-1068.

Lee, B.Y., S.K. Yang, K.H. Kwon, and J.B. Kim. 2012. The effect of evapotranspiration by altitude and observation

of lysimeter. J. Environ. Sci. 21:749-755.

Lee, G.S., S.W. Kim, S.Y. Hamm, and K.H. Lee. 2016. Computation of actual evapotranspiration using drone based

remotely sensed information; preliminary test for a drought index. J. Environ. Sci. Inter. 25:1653-1660.

Lee, S.G., H.J. Lee, S.K. Kim, S.T. Park, Y.A. Jang, and K.R. Do. 2015. Effect of vernalization, temperature and soil

drying periods on the growth and yield of Chinese cabagge. Korean J. Hortic. Sci. Technol. 33:820-828.

Li, M., R.H. Chu, A.M.T. Islam, and S. Shen. 2018. Reference evapotranspiration variation analysis and its approaches

evaluation of 13 empirical models in sub humid and humid regions: a case study of the Huai river basin, eastern

China. Water. 10:493-515.

Lim, Y.J., K.Y. Byun, T.Y. Lee, and J. Kim. 2010. Evaluation of evapotranspiration estimation using Korea land data

assimilation system. Korean J. Agric. Forest Meteor. 12:298-306.

Moon, K.H., E.Y. Song, S.H. Wi, and S.J. Oh. 2018. Development of Chinese Cabbage model using Mocrosoft

Excel/VBA. Korean J. Agric. Forest Meteor. 20:228-232.

NAAS. 2011. Soil and plant analysis. National Institute of Agricultural Science, RDA, Suwon, Korea.

Oh, S.J., K.H. Moon, I.C. son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll

fluorescence of chines cabbage in response to high temperature. Korean J. Hort. Sci. 32:318-329.

Ok, J.H., K.H. Han, Y.J. Lee, Y.S. Zhang, H.R. Cho, S.A. Hwang, S.S. Kim, J.H. Lee, and D.J. Kim. 2018. Water

balance for Chinese cabbage in spring season with difference upland soils evaluated using weighable lysimeters.

Korean J. Soil Sci. Fert. 51:555-563.

Rana, G. and N. Katerji. 2000. Measurements and estimation of actual evapotranspiration in the field under Mediterranean

climate. European J. Agron. 13:125-153.

Renner, M., C. Brenner, K. Mallick, H.D. Wizemann, L. Conte, I. Trebs, J. Wei, V. Wulfmeyer, K. Schulz, and A.

Kleidon. 2019. Using phase lags to evaluate model biaes in simulating the diurnal cycle of evapotranspiration : a

case study in Luxembourg. Hydrol. Earth Syst. Sci. 23:515-2019. https;//doi.org/10.5194/hess-23-515-2019.

Schrader, F., W. Durner, J. Fank, S. Gebler, T. Putz, and M. Hannes. 2013. Estimating precipitation and actual

evapotranspiration from precision lysimeter measurements. Proc. Environ. Sci. 19:543-552.

Seo, M.J., K.H. Han, H.R. Cho, J.H. Ok, Y.S. Zhang, Y.H. Seo, K.H. Jung, H.S. Lee, and G.S. Kim. 2017. Interpreting

in situ soil water characteristics curve under different paddy soil types using undisturbed lysimeter with soil sensor.

Page 14: Korean J. Soil Sci. Fert. Vol.52, No.3, pp.235-248, 2019 ...

248 โˆ™ Korean Journal of Soil Science and Fertilizer Vol. 52, No. 3, 2019

Korean J. Soil Sci. Fert. 50:336-344.

Seo, M.J., K.H. Han, K.H. Jung, Y.S. Zhang, and S.Y. Choi. 2016. Effect of temperature and plow pan on water

movement in monolithic weighable lysimeter with paddy sandy loam soil during winter season. Korean J. Soil

Sci. Fert. 49:300-309.

Seo, Y.H., S.J. Lim, S.J. Heo, B.S. Yoon, S.Y. Hong, Y.H. Park, and D.K. Hong. 2019. Modification of Hargreaves

equation coefficient to estimate reference evapotranspiration in Gangwondo. Korean J. Soil Sci. Fert. 52:1-10.

Seo, Y.J., H.H. Nam, W.C. Jang, J.S. Kim, and B.Y. Lee. 2018. Effect of meteorological factors on evapotranspiration

change of Cnidium officinale Makino. Korean J. Agric. Forest Meteor. 20:366-375.

Son, I.C., K.H. Moon, E.Y. Song, S.J. Oh, H.H. Seo, Y.E. Moon, and J.Y. Yang. 2015. Effects of differentiated

temperature based on growing season temperature on growth and physiological response in Chinese cabbage

โ€˜Chunkwangโ€™. Korean J. Agric. Forest Meteor. 17:254-260.

Steiner, J.L., T.A. Howell, and A.D. Schneider. 2018. Lysimetric evaluation of daily potential evapotranspiration

models for grain sorghum. Agron. J. 83:240-247.

Tyagi, N.K., D.K. Sharma, and S.K. Luthra. 2000. Determination of evapotranspiration and crop coefficients of rice

and sunflower with lysimeter. Agric. Water Manag. 45:41-54.

Wi, S.H., E.Y. Somg, S.J. Oh, I.C. Son, S.G. Lee, H.J. Lee, B.H. Mun, and Y.Y. Cho. 2018. Estimation of optimum

period for spring cultivation of โ€˜Chunhwangโ€™ Chinese cabbage based on growing degree days in Korea. Korean J.

Agric. Forest Meteor. 20:175-182.

Yan, H.F., S.J. Acquah, C.A. Zhang, G.Q. Wang, S. Huang, H.N. Zhang, B.S. Zhao, and H.M. Wu. 2019. Energy

partitioning of greenhouse cucumber based on the application of Penman-Monteith and bulk transfer models.

Agric. Water Manag. 217:201-211.

Yun, S.K., S.O. Hur, S.H. Kim, S.J. Park, J.B. Kim, and I.M. Choi. 2009. Prediction of evapotranspiration from grape

vein in Suweon with FAO Penman-Monteith equation. Korean J. Agric. Forest Meteor. 11:111-117.


Recommended