+ All Categories
Home > Documents > Kraft Reactions

Kraft Reactions

Date post: 07-Jul-2018
Category:
Upload: fabio-calliari
View: 220 times
Download: 0 times
Share this document with a friend

of 35

Transcript
  • 8/18/2019 Kraft Reactions

    1/35

    1

    Pulping and Bleaching

    PSE 476

    Lecture #8

    Kraft Pulping: Early Reactions andKraft Pulping Lignin Reactions

  • 8/18/2019 Kraft Reactions

    2/35

    2

    Agenda

    •Basic Chemical Pulping Discussion

    •Loss of Components During Kraft Pulping

    •Reactions in the Early Portion of the Cook»Saponification

    »Neutralization of Extractives

    •Initial Lignin Discussion•Kraft Pulping Lignin Reactions

  • 8/18/2019 Kraft Reactions

    3/35

    3

    Wood Chemistry

    •For the students who donot recognize thismolecule (did not takePSE 406), there is ashort appendix at theend of this lecture tohelp you. Additionally,

    the class notes areavailable for review.

  • 8/18/2019 Kraft Reactions

    4/35

    4

    Pulping

    •The goal of kraft pulpingis to remove the majorityof lignin from chips (or

    other biomass) whileminimizing carbohydrateloss and degradation.

    •Removal of lignin is

    accomplished throughtreatment of raw materialwith NaOH and Na2S at

    elevated temperatures.

  • 8/18/2019 Kraft Reactions

    5/35

    5

    The Goal of Lignin Reactions

    in Kraft Pulping

    CH2   O

    OH

    OCH3

    COHH

    HC

    CH2OH

    OH   CH2OHC

    O

    H3CO

    C   O

    CH

    CH

    H

    CH

    CHOH2

    HO

    H

    CH

    OCH3

    OH

    C

    OH2C

    CHO

    O

    C

    CH2OHH3C

    O

    O

    COH

    O CH

    H3C

    CH2OH

    H

    HCOH

    1

    2

    3

    4

    5

    6

    7

    H

    HC CH

    O

    O CH

    CH2O

    C

    OCH3

    O

    CHO

    H2C

    H3C

    8

    OHC CH CH2OH

    CH2OH

    OO

    C

    OH

    H3C  9

    10

    O

    HC CH

    COHH2

    CH2O

    CH

    O

    OH

    H3C

    11

    H3C

    12

    HO

    CH2OHH3C

    13

    O

    C

    O

    CH

    O CH

    O

    H3C

    H

    CH3

    CH

    OH

    O

    CH

    H3C

    CH

    H2COH

    15

    16

    Carbohydrate

    CH2OH

    OH

    OCH3

    HC   14

    H2COH

    HC

    CHO

    17

    HOCHO

    O

    C   O CH2

    H3C

    18

    H

    CHO

    O

    H

    H3C

    19

    O

    CH

    OCH

    O

    CH

    O

    COHH2

    OH

    OCH3

    COHHCOHH2

    20

    H

    CH

    H2COH

    OCH3

    O

    HC O

    C

    OCH3

    CH

    CH

    CHO

    22

    21

    O

    H2COH

    CH2

    CH2

    H

    C O

    C

    OCH3

    24

    25

    26CH

    28

    27

    O

    CH2OH

    H

    CH3

    CH

    O

    O

    H2COH

    H

    H2COH

    H3C

    H3C

    H2COH

    O

    CH

    CH

    OHC

    O

    O

    O

    H

    23

    COH

    OCH3

    Kraft Pulpin   !oluble

    "ra#ent$

     During kraft pulping, the

    large insoluble lignin

    molecules are converted

    into small alkali soluble

     fragments.

    Carbohydrates are also

    degraded during pulping 

  • 8/18/2019 Kraft Reactions

    6/35

    6

    Yield of Wood Components

    After Kraft Pulping %ote$

    & 'ield$ ( ) of *ood +pulp, -o#ponent$

  • 8/18/2019 Kraft Reactions

    7/35

    7

    Initial Reactions:Low Temperature

    •Carbohydrates»Alkaline hydrolysis of acetyl groups on xylan (see nextslide).

    »Removal of certain soluble carbohydrates.

    -Certain galactoglucomannans.

    -Arabinogalactans.

    •Extractives

    »Alkaline hydrolysis of fats (saponification), waxes, and otheresters.

    »Neutralization of extractives.

    -There are a number of acidic extractives which consume NaOH.

  • 8/18/2019 Kraft Reactions

    8/35

    8

    Alaline !"drol"sis:#$ample %sing Acet"l Groups

    • Esters are cleaved in alkaline solutions through hydrolysisreactions forming carboxylic acids and alcohols.

    • Hydrolysis of acetyl groups occurs readily in alkaline solutions.

    »Reaction occurs rapidly even at room temperature.

    • Reaction consumes alkali.

    O

    OH

    OH

    HO

    CH2OH

    O CO

    . CH3

    OH

    O

    OH

    OH

    HO

    CH2OH

    O C

    O

    CH3

    HO.

    O

    OH

    OH

    OH

    HO

    CH2OH

    C

    O

    CH3HO

    /

  • 8/18/2019 Kraft Reactions

    9/35

    9

    Saponification of Fats(Review slide from PSE 406)

    C

    O

    OH2C 

    OH.

    C

    O.

    OH2C

        OHH2O

    C

    O

    O.

     

    H2C   OH

    •Treatment of fats with alkali converts them to fatty acidsand glycerol through saponification.

    HOCH2CHCH2OH

    OH

    1ly-erol +ly-erine,

    Once again this reaction

    consumes part of the alkalicharge.

  • 8/18/2019 Kraft Reactions

    10/35

    10

    Acidic #$tracti&e 'pecies

    OH

    OCH3

    O

    HO

    CH3O

    O

    COOH

    COOH

    e$in -id$  inan$ onoterpenoid$

  • 8/18/2019 Kraft Reactions

    11/35

    11

    Consumption of Alali

    0

    1

    2

    3

    4

    0 50 100 150

    Time (minutes)

       R  e  s   i   d  u  a   l   N  a   O   H

        (  m  o   l  e  s   /   k  g  w  o

      o   d   )

    0

    1

    2

    3

    4

    0 50 100 150

    Time (minutes)

       R  e  s   i   d  u  a   l   N  a

       O   H

        (  m  o   l  e  s   /   k  g  w

      o  o   d   )

    #prenation

    one

  • 8/18/2019 Kraft Reactions

    12/35

    12

    Where Does All the Alkali

    Go?•Spruce wood was soda pulped at a NaOHconcentration of 19% (as Na2O).

    •12.5% (or 66% of alkali) consumed to lowerlignin content of wood to 2.8%.»2.3-3% used in dissolution of lignin.

    »1.3% for hydrolysis of acetyl and formyl groups.

    »8.2-8.9% for neutralization of acidic products-Some extractives

    -Mostly carbohydrate degradation products (discussed later).

  • 8/18/2019 Kraft Reactions

    13/35

    13

    Lignin Remo&al during Kraft

    Pulping• This chart shows the lignin removal rate during a kraft cook. It isimportant to note that the rate of lignin removal is temperaturedependent. What does this fact tell us about of lignin removal inthis slide?

    0

    20

    40

    60

    80

    100

    0 50 100 150 200 250

    Time (minutes)

          i  g  n   i  n   !   i  e   l   d   (   "   )

    0

    50

    100

    150

    200

       T  e  m  #

      e  $  a   t  u  $  e   (   %   )

    ignin

    Tem#e$atu$e

    0

    20

    40

    60

    80

    100

    0 50 100 150 200 250

    Time (minutes)

          i  g  n

       i  n   !   i  e   l   d   (   "   )

    0

    50

    100

    150

    200

       T  e  m  #  e  $  a   t  u  $  e   (   %   )

    ignin

    Tem#e$atu$e

  • 8/18/2019 Kraft Reactions

    14/35

    14

    Lignin Removal

    •In the last slide, the rate of lignin removal appears to be linear over a large portion of the cook; even as thetemperature increases.

    •This means that lignin removal in the first portion ofthe cook is easier than as the cook proceeds.

    •Lignin removal has been broken into three sections:

    »Initial Phase (fast lignin removal reactions)

    »Bulk Phase (slow lignin removal reactions)

    »Residual Phase (really slow lignin removal)

  • 8/18/2019 Kraft Reactions

    15/35

    15

    Kraft Pulping:Reaction Phases of Lignin Removal

    0

    10

    20

    30

    40

    50

    60

    0 5 10 15 20 25 30

     !ield o& ignin (")

       '   &   &  e     t   i    e   *   l   k  a   l   i   (  g

       /   l   N  a   O   H   )

    0

    10

    20

    3040

    50

    60

    0 5 10 15 20 25 30

     !ield o& ignin (")

       '   &   &  e     t   i    e   *   l   k  a   l   i   (  g   /   l   N  a   O   H   )

    ul Pha$e

    nitial Pha$e#prenation one

    e$idual Pha$e

    70C

    70C

    137C170 C

     %ote$

  • 8/18/2019 Kraft Reactions

    16/35

    16

    Kraft Pulping Lignin Reactions

  • 8/18/2019 Kraft Reactions

    17/35

    17

    Dissolution of Lignin

    •In review the goal in kraft pulping is the cleavage oflignin into alkali soluble fragments.

    •Cleavage is affected by the following factors:»Type of linkage

    »Presence of free phenolic hydroxyl group

    »Functional groups (benzyl hydroxyl, carbonyl)

    »Type and amount of nucleophiles (OH-, HS-)

    »Reaction temperature•We are going to first look at the chemical mechanismsof the reactions and then the kinetics.

  • 8/18/2019 Kraft Reactions

    18/35

    18

    •The cooking chemicalsused in kraft cooking(NaOH and Na2S: OH- 

    and HS-) both act asnucleophiles* because oftheir free pair ofelectrons.

    •Sites for nucelophilicattack in lignin are thoseareas of reduced electrondensity (partiallypositive sites).

    Sites for Nucleophilic Attack

    l8aline 4edia

     1 ( OH: Or or Ol 

    .

    .. 1

    O

    OCH3

    HC  1

    O

    OCH3

    HC δ+

    δ+δ+

    δ+

    * Notes

  • 8/18/2019 Kraft Reactions

    19/35

    19

    Formation of Quinone Methide

    O-

    HC

    OCH3

    OH

    O

    OCH3

    HC

    +uinone ,et-ide

    (e$. $eatie)These arrows indicate that a pair 

     of electrons are moving

    Nucleophillic

    attack

    site!

  • 8/18/2019 Kraft Reactions

    20/35

    20

    Formation of Nucleophilic AttackSites

    • Afree phenolic hydroxylgroup is needed for theformation of a quinonemethide.

    • The oxygen of the quinonegroup (carbonyl) attracts theelectron density on thedouble bond thus makingthe carbon more positive.

    This in turn shifts theelectron densities of theother bonds on thisconjugated system.

      O

    OCH3

    HC   δ+

    δ+δ+

    δ+

  • 8/18/2019 Kraft Reactions

    21/35

    21

    Two Additional Examples ofNucleophilic Addition Sites

     1 ( OH: Or or Ol 

    . . 1

    HC

    H2C  1

    .O

    OCH3

    HC

    HC

    H2Cδ

    +

    O

    OCH3

    HC δ+

    δ+

    δ+

    δ+

    Coniferaldehyde type structuresThis structure contains an α -keto

    group. Notice that a free phenolic 

    hydroxyl groups is not needed! 

    O

    OCH3

    C O

    C

    HC "

    .  1

    O

    OCH3

    C O

    C

    HC δ/

    δ/

    ( Or: r or l:  1 ( OH: Or: or Ol 

    Notes

  • 8/18/2019 Kraft Reactions

    22/35

    22

    Important Issues!!!!

    •When learning about alkaline pulpingmechanisms, remember to ask yourselves

    these questions!»Which reactant are we concerned with:OH- orHS-?

    »Does the lignin structure have a free phenolichydroxyl group or is it etherified?

    »Which linkage are you hoping to cleave?»Is there anα-carbonyl or benzyl hydroxyl?

  • 8/18/2019 Kraft Reactions

    23/35

    23

    Reactions of α-O-4 LinkagePhenolic and Etherified

    •In kraft pulping, α-O-4linkages do not reactwith HS-

    •Reaction with OH-»Phenolic Units:α -O-4 arevery rapidly cleaved byalkali. This is the fastest ofthe lignin degradationreactions. (Will occur at lowtemperatures)

    »Etherified Units:α -O-4linkages are stable (noreaction).

    »Please work out reactionmechanism.

    OH

    O

    CH3O

    C   OH

     

    +.,

    +.,

    O

    CH3O

    CH

     

    O

    +.,

    CH3O

    C   OH

     

    OH+.,

     %o ea-tion

  • 8/18/2019 Kraft Reactions

    24/35

    24

    Reactions of ()(* Linages:

     +ree Phenolic !"dro$"l,-en."l !"dro$"l

    • Reaction with OH- alone»The ether linkage is notcleaved; a vinyl etherstructures is formed.

    »Vinyl ether linkages aredifficult to cleave.

    • Reaction with HS- (OH-present)»HS- is a very strong

    nucleophile which cleavesthe β-O-4 linkage.

    »Reaction is very rapid evenat lower temperatures.

    OH.

    OOCH3

    CH   O  

    HC O

    CH3OH2COH

    .

    ;inyl

  • 8/18/2019 Kraft Reactions

    25/35

    25

    Kraft Reactions of ()(* Linage/+ree Phenolic !"dro$"l0

    #inyl $ther 

         %    o    r    m    a     l     d    e

         h    y     d    e

    Notice that the

    β-O-& 'ond isnot cleaved(

    Notes

    HCHO/

    O

    OCH3

    CH

    HC O

    CH3O

    .

    H

    .OOCH3

    CH

    C O

    CH3OH2COH

    H

    O

    OCH3

    CH

    HC O

    CH3OH2CO

    O

    OCH3

    CH

    C O

    CH3OH2COH

    OH.

    O

    OCH3

    CH   O  HC O

    CH3OH2COH

    .

    HO.

    HO.

  • 8/18/2019 Kraft Reactions

    26/35

    26

    Appendix

    Basic Wood Chemistry

  • 8/18/2019 Kraft Reactions

    27/35

    27

    What is the Chemical

    Makeup of Wood?

    0

    10

    20

    30

    40

    50

    60

    "

    /ouglas

    i$ 

    Redwood !ellow

    ine

    alsam i$ 

    Cellulose1

    !emicellulose1

    Lignin1

    #$tracti&es

    1 2ata for Cellulose3 !emicellulose 4 Lignin on e$tracti&e free wood 5asis

  • 8/18/2019 Kraft Reactions

    28/35

    28

    Cellulose

    •Very long straight chain polymer of glucose (a sugar): approximately 10,000 in a row in wood. Cotton is nearlypure cellulose.»Think about a very long string of beads with each bead being a glucose molecule.

    •Cellulose molecules link up in bundles and bundles of bundles and bundles of bundles of bundles to make fibers.•Uncolored polymer.

    O

    O   O

    O

    O

    O

    O

    O

    CH2OH

    OHHO

    OHHO

    CH2OHOH

    CH2OH

    HO

    OH

    CH2OH

    HO

    O

    β

    ββ

    β

    β

    Cellulo$e

    Cellobio$e =nit

  • 8/18/2019 Kraft Reactions

    29/35

    29

    Hemicelluloses

    •Branched little uncolored sugar polymers (~50 to 300 sugar units)»Composition varies between wood species.-5 carbon sugars: xylose, arabinose.-6 carbon sugars: mannose, galactose, glucose.-Uronic Acids: galacturonic acid, glucuronic acid.-Acetyl and methoxyl groups (acetic acid & methanol).

    •Major hemicelluloses:»Xylans - big in hardwoods»Glucomannans: big in softwoods

    •Minor hemicelluloses: pectins, others.

  • 8/18/2019 Kraft Reactions

    30/35

    30

    6"lan 'tructure

    →&-β-)-lyρ-"→&-β-)-lyρ-"→&-β-)-lyρ -"→&-β-)-lyρ −1→ &-β-)-lyρ −1→2

    &-O-+e-α-)-,lc ρΑ

       →1

    2

    3

       →

    1α--.raf 

    5

    O   O

    O

    O

    O

    O

    OH

    OHHO

    HO

    HO  OH

    OO

    O

    HO   OH

    O

    O

    CO2H

    H3CO OHHOH2C

    O

    O

    OH

  • 8/18/2019 Kraft Reactions

    31/35

    31

    Glucomannan 'tructure

    1→&-β-)-,lcρ-"→&-β-)-+anρ-"→&-β-)-+anρ-"→&-β-)-+anρ-"→

    /3

       →

     .cetyl

    0

       →

    α-)-,alρ

    "

    •There are different structured glucomannans in

    hardwoods and softwoods (and within softwoods)•Glucomannans are mostly straight chained polymerswith a slight amount of branching. The higher the branching, the higher the water solubility.

  • 8/18/2019 Kraft Reactions

    32/35

    32

    Lignin

    •Phenolic polymer -the glue that holdsthe fibers together.

    •Lignin is a verycomplex polymerwhich is connectedthrough a variety

    of different types oflinkages.

    •Colored material.

    CH2   O

    OH

    OCH3

    COHH

    HC

    CH2OH

    OH   CH2OHC

    O

    H3CO

    C   O

    CH

    CH

    H

    CH

    CHOH2

    HO

    H

    CH

    OCH3

    OH

    C

    OH2C

    CHO

    O

    C

    CH2OHH3C

    O

    O

    COH

    O   CH

    H3C

    CH2OH

    H

    HCOH

    1

    2

    3

    4

    5

    6

    7

    H

    HC CH

    O

    O   CH

    CH2O

    C

    OCH3

    O

    CHO

    H2C

    H3C

    8

    OHC   CH CH2OH

    CH2OH

    O

    O

    C

    OH

    H3C  9

    10

    O

    HC CH

    COHH2

    CH2O

    CH

    O

    OH

    H3C

    11

    H3C

    12

    HO

    CH2OHH3C

    13

    O

    C

    O

    CH

    O CH

    O

    H3C

    H

    CH3

    CH

    OH

    O

    CH

    H3C

    CH

    H2COH

    15

    16

    Carbohydrate

    CH2OH

    OH

    OCH3

    HC   14

    H2COH

    HC

    CHO

    17

    HO

    CHO

    O

    C O CH2

    H3C

    18

    H

    CHO

    O

    H

    H3C

    19

    O

    CH

    OCH

    O

    CH

    O

    COHH2

    OH

    OCH3

    COHHCOHH2

    20

    H

    CH

    H2COH

    OCH3O

    HC O

    C

    OCH3

    CH

    CH

    CHO

    22

    21

    O

    H2COH

    CH2

    CH2

    H

    C O

    C

    OCH3

    24

    25

    26CH

    28

    27

    O

    CH2OH

    H

    CH3

    CH

    O

    O

    H2COH

    H

    H2COH

    H3C

    H3C

    H2COH

    O

    CH

    CH

    OHC

    O

    O

    O

    H

    23

    COH

    OCH3

  • 8/18/2019 Kraft Reactions

    33/35

    33

    Lignin Nomenclature

    OH

    OCH3

    C

    C

    C

     etho>yl roup

    Phenoli- Hydro>yl

    1

    2

    3

    45

    6

    α

    β

    γ 

    1henylpropane 2nit

    C4 Common Names

    5ide Chain

    Notes

  • 8/18/2019 Kraft Reactions

    34/35

    34

    Lignin Reactions:

    Linage +re7uencies

    O

    C

    C

    C

    C

    O

    C

    C

    C

    O C

    O

    C

    C

    C

    O

    C

    C

    C

    O

    C

    C

    C

    O   C

    O

    C

    C

    C

    O

    C

    C

    C

    O

    C

    C

    C

    O

    C

    C

    C

    O

    C

    C

    C

    O

    O

    β.O.4 α.O.4 β.1

    β.β   5.5   4.O.5 β.5

    inkage 5oftwood6

    Hardwood6

    β-O-& 78 08

    α-O-& -9 :

    β-7 -" 0

    7-7 "8-"" 7

    &-8-7 & :

    β-" : :

    β-β  3

     %ote$

  • 8/18/2019 Kraft Reactions

    35/35

    35

    Extractives

    •The term extractives refers to a group of unique chemicalcompounds which can be removed from plant materials throughextraction with various solvents.

    •Typically these chemicals constitute only a small portion of the tree

    (


Recommended