+ All Categories
Home > Documents > Kuliah 03. Respiration

Kuliah 03. Respiration

Date post: 22-Nov-2015
Category:
Upload: rini-rosita
View: 13 times
Download: 3 times
Share this document with a friend
Popular Tags:
43
RESPIRATION: Basic mechanisms, factors affecting, measurement PROGRAM STUDI S2 TEKNOLOGI PASCAPANEN DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM INSTITUT PERTANIAN BOGOR 2013 1 Oleh: Dr.Ir. Rokhani Hasbullah, MSi. Materi Kuliah TEKNIK PASCAPANEN TANAMAN HORTIKULTURA by RKH
Transcript
  • RESPIRATION:

    Basic mechanisms, factors affecting, measurement

    PROGRAM STUDI S2 TEKNOLOGI PASCAPANENDEPARTEMEN TEKNIK MESIN DAN BIOSISTEM

    INSTITUT PERTANIAN BOGOR2013

    1

    Oleh: Dr.Ir. Rokhani Hasbullah, MSi.

    Materi Kuliah

    TEKNIK PASCAPANEN TANAMAN HORTIKULTURA

    by RKH

  • by RKH 2

    Basic Mechanisms of Respiration

    The term of respiration: ... the physical and chemical

    processes by which an organism supplies its cells and

    tissues with the oxygen needed for metabolism and relieves

    them of the carbon dioxide produced in energy-producing

    reactions... (Webster).

    Biochemists ... Any of various energy-yielding oxidative reactions in living matter...

    Respiration is a vital process to humans and other animals.

    It is equally important to plant cells and tissues.

  • by RKH 33

    Respiration The electrical analogy

    The metabolic process in living cells is the high energy

    stored in the third phosphate bond of adenosine triphosphate

    (ATP).

    ATP in the cell ===> rechargeable batteries

    Batteries contain energy can be liberated to flashlights, radio, tape recorder, etc.

    Unlike batteries, without which our lives would continue

    (although much changed), a continued supply of ATP is

    absolutely vital to the fundamental processes of life.

    Maintaining the supply of ATP is the primary purpose of

    respiration.

  • by RKH 4

    Electricity generation

    A model for cell respiration

    Cell respiration

    The TCA cycle furnace (Krebs cycle) must be supplied with a specific molecular fuel, acetyl CoA. by the process of glycolysis (sugar splitting)

  • 5 Oksigen akan digunakan untuk mensintesis energi

    ATP dalam respirasi aerob.

    Pada sel, terjadi dalam mitokondria

    NADH = the spark

    fuel = glucose

    exhaust =carbon dioxide

    air = oxygen

    OUTPUTengine heat= body heat

    INPUT

    by RKH

  • by RKH 6

    A key enzyme in this process is phospho-fructokinase

    (PFK), a multicomponent enzyme which converts

    fructose-6-phosphate into fructose-1,6-diphosphate,

    thereby preparing the hexose for cleavage into 2 triose

    phosphate compounds, glyceraldehyde-3-phosphate and

    dihydroxyacetone phosphate.

    The powerhouse of the cell mitochondrion

    Contains nucleic acids

    and ribosomes for synthesis protein and

    enzymes.

  • by RKH 7

    Acetyl-CoA

    Oxaloacetate Citrate

    Malate Aconitate

    Fumarate Isocitrate

    Succinate

    -Ketoglutarate

    Succinyl-CoA

    H2O

    CO 2

    TCA Cycle

    CoACO 2

    CO 2

    O2ADP+P

    ATP

    Pyruvate

    Starch

    Glucose-1-P

    Glucose-6-P

    Fructose-6-P

    Fructose-1,6-diP

    Phosphoglyceraldehyde

    Phosphoenolpyruvate

    3-Phosphoglycerate

    1,3-Diphosphoglycerate

    2-Phosphoglycerate

    Lactate

    Acetaldehyde

    Ethanol

    CO 2

    Fermentation

    The Krebs (TCA) cycle

  • by RKH 8

    The basic chemistry of the process, in which the oxidation of

    glucose is coupled to regeneration of ATP from ADP

    (adenosine monophosphate) and Pi (inorganic phosphate)

    with the release of H2O and O2 is:

    C6H12O6 + 6O2 + 38 ADP + 38Pi => 6CO2 + 44 H2O + 38 ATP

    Respiration is a process whereby the free energy locked up in glucose is used to generate a membrane potential by oxidising the glucose molecule to CO2 and H2O.

    This membrane potential is used directly to replenish the cells supply of ATP.

  • by RKH 9

    In the Generator:

    The energy produced by fuel combustion is absorbed in

    a heat exchanger where water is converted to high

    pressure steam.

    Steam becomes the energy resource.

    In the Respiration:

    Oxidation implies the loss of electrons from the fuel

    molecule and their donation to an electron acceptor,

    which is thereby reduced.

    Low energy Nicotinamide adenine dinucleotide (NAD)

    is reduced to the high energy form, NADH, thus:

    NAD+ + H+ + 2e (from the fuel) NADH

  • by RKH 10

    The electron transport system

  • by RKH 11

    Concentration of ATP remains constant at all times. The net

    effect of respiration can be considered to be the oxidation of

    glucose to CO2 and H2O with the liberation of energy:

    C6H12O6 + 6 O2 + 6 H2O => 6 CO2 + 12 H2O + 673 Kcal

    Fase Respirasi

    Polisakarida gula sederhana

    Gula sederhana asam piruvat

    Asam piruvat karbon dioksida + as organik lainnya

  • 12

    Glucose+

    CellularRespiration

    Glucose+

    +

    +

    Respirasi

    by RKH

  • 13

    Perubahan yang terjadi pada produk akibat respirasi

    setelah dipanen

    Perombakan klorofil dan pembentukan karotenoid (warna hijau menjadi kuning/jingga)

    Pelepasan etilen (menjadi agen pemicu proses pematangan shg buah akan menjadi matang)

    Perombakan karbohydrat menjadi gula (rasa menjadi manis) Pembentukan zat-zat volatil (menimbulkan aroma buah

    matang)

    Penguapan air dan pelepasan panas

    Bila tidak segera dikonsumsi perubahan akan terus

    terjadi dan menjadi proses pembusukan

    by RKH

  • 14

    Faktor-faktor yang mempengaruhi respirasi

    1. Internal factors

    a. Genotype (Type of commodity)

    b. Type of plant part

    c. Stage of development at harvest

    d. Respiratory substrat

    e. Preharvest factor

    by RKH

  • 15

    Laju respirasi produk hortikultura pada suhu 5 C

    Respirasi

    (mg CO2/kg-jam)

    Rendah 5 - 10 apel, jeruk, anggur, melon, pepaya, nanas

    bw putih, bw merah, kentang, ubi jalar

    Sedang 10 -20 pisang, mangga, chery, peach, pear, kubis

    wortel, ketimun, batang selada, tomat

    Tinggi 20 - 40 alpukat, bunga kol, daun selada

    Sangat tinggi 40 - 60 brokoli, okra bunga potong

    Paling tinggi > 60 asparagus, jamur, bayam, jagung manis,

    jagung muda

    Kelompok Komoditas

    by RKH

    Jenis komoditi

  • 16

    umbi

    batang

    Buah/bunga

    daun

    tunasRespirasi paling tinggi

    Respirasi paling rendah

    Asal dari produk menentukan sifatnya

    by RKH

  • 17

    Perubahan fisiko-kimia

    (1) Fase pembelahan sel (cell division) danpembesaran sel (cell enlargement)

    (2) Fase pendewasaan (maturation)

    (3) Fase pematangan (ripening)

    (4) Fase pelayuan (senescence) dan diikuti fasepembusukan (deterioration).

    Stage of development at harvest

    by RKH

  • 18

    RespirasiNon-klimakterik

    RespirasiKlimakterik

    Pendewasaan Pematangan Pelayuan

    Laju

    res

    pir

    asi

    Perubahan selama proses pematangan: Warna Rasa Tekstur Terbentuknya vitamin Timbulnya aroma khas

    by RKH

  • 19

    Buah digolongkan menjadi dua kelompok

    Buah Klimakterik: pematangan terjadi setelah laju respirasimencapai puncaknya

    Dipanen tua, lalu proses pematangan akan terjadi dengansendirinya

    by RKH

    Buah Non-klimakterik: laju respirasi terus menurun dan tidakmempunyai puncak

    Dipanen setelah terjadi proses pematangan pada pohon

  • 20by RKH

    Buah Klimakterik Buah Non Klimakterik

    Apel

    Markisa

    Alpukat

    Pepaya

    Pisang

    Nangka

    Sirsak

    Melon

    Semangka Jambu biji

    Tomat

    Jeruk

    Nanas

    Anggur

    Stroberi

    Salak

    Ketimun

    Cabe

    Bawang

    PaprikaKakaoCherry

  • 21

    Respiratory Substrat

    Substrat gula/karbohidrat:

    C6H12O6 + 6 O2 6 CO2 + 6 H2O + 675 kal

    Substrat gula RQ = 6/6 = 1

    Substrat asam organik RQ < 1

    Berapa nilai RQ apabila substratnya Lemak?

    Protein?

    2

    2

    O Konsumsi

    CO ProduksiRQ Quotient y Respirator

    by RKH

  • by RKH 22

    Preharvest factor

    Lokasi tumbuh Iklim Musim Teknik budidaya pemupukan

    The respiration of apples grown under conditions

    of low Calcium nutrition is considerably higher

    than that of apples with adequate supply of that

    element.

  • 23by RKH

    2. Environmental factors

    a. Temperature

    b. Atmospheric composition

    i. Oxygen concentration

    ii. Carbon dioxide concentration

    iii. Ethylene

    c. Physical stress

  • 24by RKH

    Increased temperatures cause an exponential rise in the

    rate of respiration which is expressed by the Vant Hoff rule:

    The velocity of a biological reaction increases 2 to 3

    fold for every 10 oC rise in temperature.

    The temperature coefficient for 10 oC interval is called the

    Q10 can be calculated by measuring the rate of the reaction (eg. respiration) at two temperatures:

    0 10 oC Q10 = 2.5 - 3 10 20 oC Q10 = 2 2.520 30 oC Q10 = 2

    Berapa kali laju respirasi buah-buahan/sayuran dari

    suhu 0 oC ke suhu 30 oC ?

    Pengaruh Suhu (Temperature effect)

    12 TT

    10

    1

    210

    R

    RQ

  • by RKH 25

    Temperature Assumed Q10 Relative velocity of deterioration

    Relative shelf life

    0 1.0 100

    10 3.0 3.0 33

    20 2.5 7.5 13

    30 2.0 15.0 7

    40 1.5 22.0 4

    Effect of temperature on rate of deterioration.

  • by RKH 26

    Pengaruh Komposisi Gas (Atmospheric composition)

    In tissues where metabolism is high, reduced oxygen concentration

    increase the respiration rate, as measured by CO2 production.

    The low ATP in the cell stimulates glycolysis (PFK is turned on) to

    generate a modest amount of ATP and pyruvate NADH formed during the oxidation of triose phosphate must be reoxidized. This is

    achieved by the reductive decarboxylation of pyruvate to ethanol.

    C6H12O6 + 2 ADP + 2 Pi => 2C2H5OH + 2 CO2 + 2 ATP

    To maintain the supply of ATP at the aerobic rate, 19 times as

    many glucose molecules would be needed, and respiration would

    increase 19 fold.

    There would be substantial accumulation of ethanol, which is very toxic to plants.

  • 27

    Pengukuran respirasi

    jumlah substrat (gula) yang hilang

    jumlah gas O2 yang digunakan

    jumlah gas CO2 yang dikeluarkan

    jumlah panas yang dihasilkan

    jumlah energi (ATP) yang dihasilkan

    TEKNIK PENGUKURAN RESPIRASI

    by RKH

    Because the rate of respiration is so tightly coupled to

    the rate of cell metabolism, measurement of respiration

    can afford an easy non-destructive means of monitoring

    the metabolic and physiological state of the tissues.

  • by RKH 28

    Menghitung substrat yang hilang

    When hexose sugar is the substrate, 180 grams of sugar

    are lost for each 264 grams CO2 produced by the

    commodity.

    Dloss = rate of dry weight loss (g/kg.jam)

    %Dloss = persen dry weight loss per jam (%)

    R = respiration rate (mg CO2/kg.jam)

    264

    180

    1000

    RDloss

    10,000

    0.68 x R%Dloss

    Contoh:

    Bawang pada suhu 30 oC respirasinya 35 mg CO2/kg.jam.

    Berapa kehilangan berat kering setelah penyimpanan selama

    satu bulan?

    % 1.73 30 x 24 x 0.0024 bulan per lossesWeight

    % 0.0024 000,10

    0.68 x 35

    10000

    0.68 x R%Dloss

  • 29

    Cepat persiapannya

    Sederhana

    Relatif cepat

    Tidak dapat diterapkan dalam CAS/MAP

    Tidak dapat digunakan untuk periode

    penyimpanan lama

    Ketelitian data riskan terhadap

    kebocoran

    Channel tube

    Gas sampling port

    CO2O2

    Gas feeding

    Produce

    Glass jar 4.3 L

    W

    V

    t

    xR

    by RKH

    Closed System:

    R : respirasi (ml/kg.jam)

    X : konsentrasi O2 atau CO2 (desimal)

    t : waktu (jam)

    V : volume bebas (ml)

    W: berat sampel (kg)

    Mengukur Respirasi

  • 30

    Open System:

    Rumit persiapannya

    Memerlukan unit pencampur gas

    Boros dalam pemakaian gas

    Untuk periode penyimpanan lama

    Sangat diperlukan dalam perancangan CAS/MAP

    W

    QyGxR 111

    W

    GxQyR 222

    3

    3

    x

    QyG

    Kesetimbangn O2

    Kesetimbangan CO2

    Kesetimbangan N2

    by RKH

  • by RKH 31

    CO2O2

    Produk Glass jar 4.3 L

    Gas inlet

    O2 : Y 1

    CO2 : Y2

    N2 : Y 3

    Gas outlet

    O2 : X 1

    CO2 : X2

    N2 : X 3

    Flow in: Q Flow out: G

  • 32

    UNIT PENCAMPUR GAS

    by RKH

  • 33

    Komponen pengatur aliran gas

    by RKH

  • 34

    Respiration jar

    GC Integrator

    Gas

    sampling port

    Plastic pipe

    Mass flow meter

    Air compressor

    o Air humidifier

    Incubator Toggle valve

    Needle valve

    Schematic diagram of respiration rate measurement system.

    by RKH

  • 35

    Analisis Komposisi Gas Titrasi Metode Orsat Oxygen analyzer Infrared analyzer Kromatografi gas

    Dr. Rokhani - TMB IPB

  • Dr. Rokhani - TMB IPB 36

    KROMATOGRAFI GAS

    Kromatografi cara pemisahan campuran yang didasarkan atas perbedaan distribusi dari komponen suatu campuran. Pemisahan

    tersebut didasarkan pada dua fasa larutan, yaitu fase diam

    (stationary) dan fase bergerak (mobile).

    Keguanaan kromatografi gas (GC): Pengujian kemurnian zat tertentu Memisahkan komponen dari campuran Mengidentifikasi suatu senyawa

    Kromatografi gas terdiri gas pembawa (carrier gas), ruang suntik sampel (injection port), kolom, oven, detektor,pencatat (recorder), dan panel kontrol.

  • Dr. Rokhani - TMB IPB 37

    Flame Ionization Detector (FID)

    Thermal Conductivity Detector (TCD)

    Electron Capture Detector (ECD)

    Flame Photometric Detector (FPD)

    Thermionic Spesific Detector N, P spesific (TSD)

    Photo Ionization Detector (PID)

    Detektor kromatografi

  • 38

    Pengukuran Respirasi Detektor: TCD Carrier gas: Helium Kolom: CTR I

    WG-100

    Dr. Rokhani - TMB IPB

    Pengukuran Etilen Detektor: FID Carrier gas: Helium Gas pembakar H2, Udara Kolom: HayeSep T

    Kolom tempat terjadinya proses pemisahan karena di

    dalamnya terdapat fase diam.

    Jenis kolom:

    - packed column

    - capillary column

    Kolom kromatografi

  • Dr. Rokhani - TMB IPB 39

  • Dr. Rokhani - TMB IPB 40

  • Dr. Rokhani - TMB IPB 41

    Kromatografi Gas (GC)

  • Days Hours CO2 (%) O2 (%)

    1 8.00 2.3 19.7

    10.00 5.3 16.6

    2 8.00 2.2 19.6

    10.00 4.2 17.3

    3 8.00 2.0 19.8

    10.00 3.5 18.1

    4 8.00 2.1 19.9

    10.00 3.3 18.5

    5 8.00 2.3 20.0

    10.00 4.6 17.4

    6 8.00 2.3 20.1

    10.00 3.6 18.5

    7 8.00 2.3 19.7

    10.00 3.1 18.6

    8 8.00 2.3 19.7

    10.00 2.9 18.8

    Sampel : Mangga

    Berat : 1.28. kg

    Densitas : 1024 kg/m3

    Volume stoples : 4300 ml

    1. Hitung laju respirasi buah:

    Laju produksi CO2Laju konsumsi O2

    2. Tentukan nilai RQ

    3. Gambarkan grafik laju

    respirasi selama

    penyimpanan dan jelaskan

    pola respirasinya.

    TUGAS

    42by RKH

  • by RKH 43


Recommended