+ All Categories
Home > Documents > L06_kvs_transfer_function_full.pdf

L06_kvs_transfer_function_full.pdf

Date post: 04-Jun-2018
Category:
Upload: sai-saurab
View: 213 times
Download: 0 times
Share this document with a friend

of 75

Transcript
  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    1/75

    ESc201: IntroductiontoElectronicsFrequencyDomainResponse

    r. . . r vas avaDept. of Electrical Engineering

    IIT Kanpur

    1

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    2/75

    Time domain vs. Frequency domain analysis

    Signal

    2

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    3/75

    signalSpectrum Analyzer

    spectrum

    f

    0.1KHz 1KHz 10KHz

    signal spectrum

    Fourier Analysis(Mathematical tool)

    3

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    4/75

    Speech signal

    4

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    5/75

    System What does this circuit do ?

    5V

    0V

    5

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    6/75

    Suppose the capacitor is reduced to ~21pF.

    It is hard to find out what impact the change in capacitor has on circuit behavior6

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    7/75

    Frequency domain analysisVO

    7

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    8/75

    Measure response at many different frequencies for a constant input amplitude

    f=1KHz

    f=10KHz 8

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    9/75

    Measure response at many different frequencies for a constant input amplitude

    f=100KHz

    f=1000KHz

    9

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    10/75

    Plot the amplitude and phase as a function of frequency

    Amplitude as a function of frequency

    One can clearly see the frequency selective (often called a filter) nature of the

    c rcu

    10

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    11/75

    Phase as a function of frequency

    11

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    12/75

    Suppose the capacitor is reduced to ~21pF.

    12

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    13/75

    Anal sis of si nals and s stems in fre uenc domain

    often provides useful insight into their behavior.

    13

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    14/75

    Frequency domain analysis

    Transfer function is a useful tool for finding the frequency

    response of a system

    Linear System

    Y

    asor or asor or

    rans er unct on: ( )X =

    Transfer function has a magnitude and a phase14

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    15/75

    ( )

    Y

    H

    = ( )X

    15

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    16/75

    Because of the wide dynamic range of frequency, plotting

    frequency on log axis is often more revealing !

    16

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    17/75

    Logarithmic frequency scale

    1 decade1 octave

    f (Hz)1041031021011 50

    2 decades

    210

    1

    No. of decades = log ( )f

    210

    flog ( )

    2 12

    1 10

    No. of octaves = log ( ) =f log (2)

    17

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    18/75

    Decibel scale often reveals more information about

    behavior

    18

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    19/75

    The magnitude of transfer function is often specified in decibels

    210

    1

    10 log ( )dBGP

    =

    Because power is proportional to V2 or I2, voltage gain and

    current ain in decibels is s ecified as

    220lo VG = 2

    1020log ( )dBI

    G =1V 1

    Decibel scale is more convenient for our perception of hearing

    19

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    20/75

    Decibel Scale

    10

    1000 60

    10 20

    2 31 0

    1/2 3

    0.5

    6

    0.1 20

    0.01 4020

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    21/75

    dB Scale

    10.1

    0.01

    0.001

    A plot of the decibel magnitude of transfer function versus

    requency us ng a ogar m c sca e or requency s ca e a

    Bode plot 21

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    22/75

    = 10

    )(2

    jjH

    +

    +

    50001

    1001

    500

    400

    300

    200

    100

    0 2 4 6 8 10

    x 104 (rad/s) 22

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    23/75

    = 10

    )(2

    jjH

    +

    +

    50001

    1001

    300

    200

    |H|

    100

    101

    102

    103

    104

    105

    0

    (rad/s)

    23

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    24/75

    = 10

    )(2

    jjH

    60 +

    +

    5000100

    40

    20

    |(

    dB)

    0|H

    -

    -

    101

    102

    103

    104

    105

    (rad/s) 24

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    25/75

    How to determine the transfer function?

    VO

    VS 0 1/jC

    )( 0

    VjH = jH =

    1)(

    11

    =

    ( )2

    1 RC+25

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    26/75

    21

    1)(

    RCjH

    +=

    Plot Magnitude

    ( )210 1log20 RCH dB +=

    21

    3

    10 1log20

    +=dB

    dBH

    RC

    dB3 =

    dB3

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    27/75

    dB3

    >>

    dB

    H10

    log20

    dB3

    H3dB 0

    3dB

    100

    3dB

    40

    -

    110lo =

    27

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    28/75

    RC

    dB

    13 =

    3dB point

    10HdB

    corner frequency or half

    power frequency

    0 HdB 0

    -10 103dB 20

    1003dB 40

    -20

    -30 2

    3

    10 1log20

    +=dB

    dBH

    101 102 103 104 105-40

    (rad/s) 28

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    29/75

    Example10 3

    3101 + j2

    3dB

    310 101log2020

    +=

    dBH

    3

    10

    3

    log20:10

    >>

    HdB

    20

    310-20dB/decade

    410

    29

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    30/75

    ( )

    1

    H

    j CR

    =

    +

    0.1KHz 10KHz

    3

    3

    ( )1 10

    110

    Hj

    j

    = =+ +

    4( ) 1 (100 ) 0.1 (10 )O

    V t Sin t Sin t = +

    10

    -20dB/decade

    30

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    31/75

    31

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    32/75

    -20dB/decade

    -40dB/decade

    32

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    33/75

    Adding more RC stages, makes the characteristics sharper

    33

    Sk t hi f T f f ti 10 1

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    34/75

    Sketching of Transfer function:

    Bode Magnitude Plot10 1

    ( )

    1 1

    H

    =

    + +10 10

    2 2 20Lo 20 20 1 20 1H Lo Lo

    = + +10 10

    3

    410-20dB/decade

    -20dB/decade

    -20dB/decade

    -40dB/decade

    34

    Sketching of Transfer function

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    35/75

    Sketching of Transfer function

    Bode Magnitude Plot 10 1 1

    3 4 5

    1 1 1

    10 10 10j j j

    + + +

    2 2 2

    10 10 10 103 4 520Log ( ( ) ) 20 20 (1 ( ) ) 20 (1 ( ) ) 20 (1 ( ) )

    10 10 10H Log Log Log

    = + + +

    ( ) ( )H dB

    3

    410510

    -20dB/decade

    -20dB/decade-20dB/decade

    -40dB/decade

    -60dB/decade35

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    36/75

    ( ) ( )NH j =Bode Magnitude Plot

    10 1020Log ( ( ) ) 20 ( )H N Log =

    ( ) ( )H dB

    1

    36

    D t i t f f ti ?

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    37/75

    Determine transfer function?

    1

    vO(t) ( )

    ( )

    O

    S

    HV

    = j C

    vS R ( )1

    j CRHj CR

    = +

    3( / )dBj 1 13

    1 ( / )

    dBj + 3dB 3dBRC 2 RC

    210 10 10

    3 3

    20Log ( ( ) ) 20 ( ) 20 (1 ( ) )dB dB

    H log log

    = +

    37

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    38/75

    Bode Magnitude Plot

    2

    10 10 10

    3 3

    20Log ( ( ) ) 20 ( ) 20 (1 ( ) )dB dB

    H log log

    = +

    20 dB/decade( ) ( )H dB

    3dB

    -20 dB/decade

    High Pass Filter

    38

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    39/75

    313dB

    2 RC= =

    High Pass Filter 39

    Bode Plot segments

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    40/75

    Bode Plot segments

    1 1n t

    = 31 2 ( / ) {1 ( / )}o r mj j +

    20log(K)

    20t dB/decade

    3

    o 1

    20n dB/decade-

    -20r dB/decade

    40

    Example: 1 1

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    41/75

    Example: 1 1 ( ) 200

    10 100H j

    =

    + +

    1 1 ( ) 0.2H j

    =

    10 100

    + +

    ( ) ( )H dB 10 10020 dB/decade +6 dB

    -14 -20 dB/decade

    .

    -

    -20dB/decade

    -34

    41

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    42/75

    Filter -pass a band of frequency and reject the remaining

    |H(f)| H fLow pass High pass

    ff

    |H(f)||H(f)|

    Band Stop

    42

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    43/75

    C 1 FvS

    vO

    vO(t)

    C

    vS R

    43

    3dB Frequency of single capacitor fil ters

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    44/75

    =

    3dB Frequency of single capacitor fil ters

    v

    vO 33dB

    1= 10 /

    RCrad s =

    v

    vO

    1

    3dB

    1 2

    =

    R R C

    2

    CLinear Circuit3dB

    eq

    1 1=R C

    =

    44

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    45/75

    Bandpass Filter

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    46/75

    p

    >

    C1 R2

    vS C2

    vO(t)

    2 1

    1 1 2 2

    f ; f

    2 2R C R C

    46

    Example: Band Pass filter

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    47/75

    p

    47

    Bandstop Filter

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    48/75

    p

    f1 f2>f1

    48

    What does this circuit do?

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    49/75

    Low f

    High f

    Vo ~Vin Vo ~Vin 49

    What does this circuit do?

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    50/75

    Bandstop or Notch Filter

    50

    R-L Circuits (Filters) ( )V

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    51/75

    ( ) ( ) O

    VH

    =

    vO(t)S

    3( / )

    dBjj L

    H

    = =vS

    31 ( / )

    dBR j L j + +

    R3dB

    L=

    High pass filter

    51

    R-L Circuits ( )( ) O

    VH

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    52/75

    ( ) OHV

    =j L

    vS

    vO(t)L

    R1

    ( ) R

    H = =3dB

    R =

    L

    Low pass filter

    52

    Amplitude Modulated (AM) Radio

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    53/75

    .

    For example, one may want to receive a 450KHz signal but reject 460KHz or

    z

    ( ) ( )H dB 450KHz

    460KHz

    -60dB

    2460log( ) 10 decades

    This implies an attenuation of -6000 dB/decade !!

    53

    Resonance

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    54/75

    ,

    Washington, United States. The bridge opened on July 1, 1940 and fromthe start became notorious for its movement during windy days, earning

    the nickname "Gallo in Gertie". The wind-induced colla se occurred on

    November 7, 1940, due partially to a physical phenomenon known

    as mechanical resonance..wikepedia54

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    55/75

    Nuclear ma netic resonance

    55

    Resonance

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    56/75

    A small disturbance leads to oscillatory behavior 56

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    57/75

    T = 1.1s57

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    58/75

    T = 0.9s58

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    59/75

    = s

    The amplitude is 10 times larger even though input magnitude is same !59

    Series Resonant Circuit

    R i diti i hi h iti d i d ti

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    60/75

    Resonance is a condition in which capacitive and inductive

    reactance cancel each other to give rise to a purely resistivecircuit

    1eqZ R j L j C = +

    vS C

    Resonant frequency: 1 1

    0O OO

    j L jC LC

    = =

    12

    Of

    LC=

    eqZ R=

    Current and voltage are in phase (power factor is unity) and

    current is maximum ! 60

    LR( ) m

    VI =

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    61/75

    ( )I

    vS Ci(t) ( )R L C +

    1 and 2 are called half-power frequenciessince P I2

    61

    ( )1

    mV

    I =

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    62/75

    2 21

    C

    1( )

    1 2

    m mV V

    I

    R

    = =

    1

    1C

    +

    2

    2 2

    ( )1 2

    m mV VIR

    = =

    2C1 2 -

    power frequencies since P I2

    62

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    63/75

    = 1 2O2 1B

    L = =

    ua y ac or: arpness o resonance

    Peak Stored Energy2Q =

    21m

    L IL

    1 1

    21

    2 m O

    RI R T

    = =

    O

    OCRLC

    63

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    64/75

    LR. j0.9K

    vS C

    -j1.1K

    Z=0.1K-j0.2K

    LR j1K0.1K

    vS C -j1K Z=0.1KImpedance is in k

    Not very large change in impedance as we approach resonance !64

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    65/75

    LR. Z=0.1K-j0.2meg

    Im edance is in MvS C

    -j1.1meg

    LR j1meg0.1K = .

    Impedance is in k

    vS C -j1meg

    very large change in impedance as we approach resonance !

    Implying high quality factor 65

    Quality factor Q

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    66/75

    LR j1K.

    vS C -j1K Z=0.1K

    LR j1meg

    0.1K

    vS C -j1meg Z=0.1K

    O OQ or Q

    R R

    = =66

    RB O

    L

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    67/75

    B = =O=LR

    O OQ

    B = =

    For high Q circuits:

    67

    R-L-C filters

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    68/75

    vO(t)

    LR

    vO(t)

    R

    vS C

    j C

    vS L

    j L

    68

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    69/75

    LC

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    70/75

    vO

    RvS

    j Lj C

    How much Q do we need to pass 450KHz but reject 460KHz by

    60dB?( )

    ( ) OV R

    H

    V

    = =

    ( )C

    +

    Assumin V = 1V and notin that Q = L/R

    1V =

    For =O, VO = 1 so the signal simply passesthrough !

    2 2

    21 ( 1)

    O

    Q

    + 3 62 450 10 2.8 10 /O

    rad s = = 70

    2

    1( )OV =

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    71/75

    2 221 (1 )OQ +

    srad

    sra

    /1089.2104602

    .

    63

    0

    ==

    ==

    For an attenuation of -60dB or 10-3 at : Q=23,000

    Example: for Q = 104 at 450KHz

    3

    Suppose 10 ; 0.28 ; 125L H R C pF

    = = =o

    Q R

    =

    71

    Suppose 0.1 ; 28 ; 1.25L H R C pF= = =

    Parallel Resonance

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    72/75

    C LIM 0 R 1 1=

    eqR L

    L

    Resonant frequency: 1 10O OO

    j C jL LC

    = =

    2

    Of

    LC

    =eqZ R=

    72

    L+ 2 2( ) m

    I RV =

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    73/75

    L

    M

    - C 21 ( )LL C +

    73

    2 22

    ( )1

    mI R

    VR C

    =

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    74/75

    2

    2L C

    For high Q:74

    What is the resonant frequency ?

  • 8/14/2019 L06_kvs_transfer_function_full.pdf

    75/75

    752

    oO

    f

    =