+ All Categories
Home > Documents > L19 Lecture

L19 Lecture

Date post: 07-Apr-2018
Category:
Upload: anup-dakre
View: 223 times
Download: 0 times
Share this document with a friend
24
EECS 247 Lecture 19: Oversampling © 2002 B. Boser 1 A/D DSP Oversampled ADCs One-bi t quantizati on  Quan tiza tion noise shap ing A fir st- order, 1- Bit s igma-delt a modul ator  The name … si gma-d elta, d elta -sig ma, Σ∆, ∆Σ, …  Time domain model  Sma ll-si gna l model  Oversampli ng EECS 247 Lecture 19: Oversampling © 2002 B. Boser 2 A/D DSP Oversampling Nyq ui st rate ADCs  Sample at f s around 2x bandwidth  Resolution set by numbe r of decision levels of quantizer Ov ersampl ed AD Cs  Sa mp le at f s >> bandwidth (16 … 500x)  Use few quantization lev els (ty pica l 1-Bi t)  Empl oy DSP t o redu ce qua ntization error
Transcript

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 1/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 1A/DDSP

Oversampled ADCs

• One-bit quantization

 – Quantization noise shaping

• A first-order, 1-Bit sigma-delta modulator

 – The name … sigma-delta, delta-sigma, Σ∆, ∆Σ, …

 – Time domain model

 – Small-signal model

 – Oversampling

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 2A/DDSP

Oversampling

• Nyquist rate ADCs

 – Sample at fs around 2x bandwidth

 – Resolution set by number of decision levels of quantizer

• Oversampled ADCs

 – Sample at fs >> bandwidth (16 … 500x) – Use few quantization levels (typical 1-Bit)

 – Employ DSP to reduce quantization error

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 2/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 3A/DDSP

One-Bit Quantization

• Let’s examine some properties of one bit randomsequences

 – Values in the sequence are constrained to be either +1 or –1

• By picking +1’s and –1’s at random (using MATLAB’srand.m random number generator), we generate asequence with zero mean

 – The sequence values model outputs of a hypothetical 1-Bit,1MHz ADC

 – Nothing stops us from doing a DFT of this sequence …

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 4A/DDSP

Zero Mean 1-Bit DFT

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 3/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 5A/DDSP

One-Bit DFTs

• For 1-Bit DFT plots, we’ll use a different normalizationscheme

 – The dBWN (dB White Noise) scale sets the 0dB line at thenoise/bin of a random +1, -1 sequence

 – From the energy theorem,

Σn=0

N-1

an2 Σ

m=0

N-1

Am21

N= N = ⇒ Am = √N

(+1)2 or (–1)2 = 1

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 6A/DDSP

Zero Mean 1-Bit DFTaverage of 30 spectra

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 4/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 7A/DDSP

Non-zero Mean Sequences

• Of course, 1-Bit sequences can represent dc

inputs from –1 to +1

• For example, an average value of +1/11 can

be generated by a sequence with

 – 5/11 probability of –1

 – 6/11 probability of +1

• Let’s look at DFTs of a non-zero mean

sequence …

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 8A/DDSP

+1/11 Mean 1 Bit DFT

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 5/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 9A/DDSP

+1/11 Mean 1-Bit DFTaverage of 30 spectra

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

averaging makes the dc component clearly visible

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 10A/DDSP

+1/11 Minimum Error Sequence

• No random number generator is required to producethe 1-Bit sequence which represents +1/11 with theminimum mean-squared quantization error

• This 11 term sequence averages to 1/11:

[–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1] – The sequence in []’s repeats

 – Its DFT follows …

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 6/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 11A/DDSP

+1/11 Minimum Error DFT

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30 fS

11

fS

11

fS

2

1

2

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 12A/DDSP

+1/11 Minimum Error Sequence

• Minimum error is periodic error with a period of fs /11

 – Note that the fundamental term in this Fourier series is thesmallest (a bit unusual)

• A quantization noise model is completelyinappropriate for this type of sequence

• Let’s deliberately increase the quantization error alittle and attack its periodicity …

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 7/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 13A/DDSP

3 Pattern Options

• Generate another 1-Bit sequence by concatenation ofthe following sequences:  – [–1 +1 –1 +1 –1 +1 –1 +1 +1]

  – [–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1]

  – [–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1]

• Selection of the above 9, 11, and 13 term sequencesat random yields an average of +1/11 and thefollowing DFT …

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 14A/DDSP

3 Pattern Options DFT

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 8/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 15A/DDSP

3 Pattern Options

• The randomized concatenation of longer patternscertainly breaks up periodic error

 – Some concentration of energy near fs /11 and its harmonics(especially 5fs /11) is still visible

• Noise below 50kHz is significantly lower than that ofthe sample-by-sample random sequences of slide 9

 – The “noise shaping” obtained with 3 pattern options benefitslow frequencies at the expense of increased quantization

error at high frequencies

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 16A/DDSP

3 Pattern Options DFTaverage of 30 spectra

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 9/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 17A/DDSP

5 Pattern Options

• Let’s add two more patterns to our set of pattern options: – [–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1]

 – [–1 +1 –1 +1 –1 +1 +1]

• Selection of 7, 9, 11, 13, and 15 term sequences atrandom preserves the +1/11 average

 – Think of this process as a sort of time-variant dither

 – DFT follows …

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 18A/DDSP

3/5 Pattern Optionsaverage of 30 spectra

Frequency (kHz)

      

    A   m

      

    (    d    B    W    N    ) 0

-30

-60

-900 400300200100 500

30

3 options5 options

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 10/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 19A/DDSP

5 Pattern Noise Shaping

• Noise vs. frequency still follows the general upwardtilt of the periodic error harmonics

 – 5 pattern options further reduce the fs /11 bump

 – The 5f s /11 component remains large

• The model that quantization error is uncorrelated withthe input signal becomes reasonable with only 5pattern options

 – Such reasonableness is required for small-signal analysis ofthe sigma-delta modulator …

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 20A/DDSP

Sigma- Delta Modulators

Analog 1-Bit Σ∆ modulators convert a continuous timeanalog input vIN into a 1-Bit sequence dOUT

H(z)+

 _ vIN

dOUT

+1 or -1

Loop filter 1b Quantizer (a comparator)

fs

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 11/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 21A/DDSP

Sigma-Delta Modulators

• The loop filter H can be either a SC or continuous time• SC’s are “easier” to implement and scale with the clock rate

• Continuous time filters provide anti-aliasing protection

• Can be realized with passive LC’s at very high frequencies

H(z)+

 _ vIN

dOUT

+1 or -1

fs

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 22A/DDSP

1st Order Σ∆ Modulator

In a 1st order modulator, the loop filter is an integrator

+

 _ vIN

dOUT

+1 or -1∫ 

H(z) =z-1

1 – z-1

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 12/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 23A/DDSP

1st Order ∆Σ Modulator

• Properties of the first-order modulator: – Analog input range is the dout times the DAC reference

 – The average value of dOUT must equal the average value of v IN

 – +1’s (or –1’s) density in dOUT is an inherently monotonic function of v INà linearity is not dependent on component matching

 – Alternative multi-bit DAC (and ADCs) solutions reduce the quantization errorbut loose this inherent monotonicity

+

 _ vIN

dOUT

+1 or -1

∫ -∆/2≤vIN≤+∆/2

DAC-∆/2 or +∆/2

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 24A/DDSP

Simulation

0 10 20 30 40 50 60-1.5

-1

-0.5

0

0.5

1

1.5

Time [ t/T ]

   A  m  p   l   i   t  u   d  e

XQY

3

Y

2

Q

1

X

Sine Wave

z-1

1-z-1

Discrete Filter Comparator

see L19_level1

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 13/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 25A/DDSP

1st Order Σ∆, +1/11 dc Input

• Let’s continue our +1/11 dc input example with themodulator sampling frequency of 1MHz

• A 1024 sample DFT plot appears on the followingslide…

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 26A/DDSP

1st Order Σ∆, +1/11 dc Input

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Frequency [ f/fs

]

   A  m  p   l   i   t  u   d  e

   [   d   B   W   N   ]

Looks familiar?

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [t/11]

   A  m  p   l   i   t  u   d  e

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 14/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 27A/DDSP

1st Order Σ∆, +1/11 dc Input

• A check of the time samples confirms the

obvious: the 1st order ∆Σ modulator produces

the minimum error 11 term sequence:

[–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1]

• Of course, with this modulator model we can

look at much more interesting inputs than

dc…

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 28A/DDSP

1st Order Σ∆, Sinewave Input

vIN(k) = 0.99sin(2π 0.100001 t)dOUT = [ +1 –1 +1 +1 +1 +1 –1 –1 –1 –1 … ]

0 0.1 0.2 0.3 0.4 0.5-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs

]

   A  m  p   l   i   t  u   d  e

   [   d   B   W   N   ]

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 15/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 29A/DDSP

1st Order Σ∆, Sinewave Input

• The modulator output for the undistorted sinewaveinput produces huge distortion, suggesting the needfor dither

• We’ll add a dither signal q at the comparator input:

+

 _ vIN

dOUT∫  +

q

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 30A/DDSP

Dithered 1st Order Σ∆

0 0.1 0.2 0.3 0.4 0.5-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs

]

   A  m  p   l   i   t  u   d  e

   [   d   B   W   N   ]

single DFTaverage

q: σ = ∆/2

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 16/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 31A/DDSP

Dithered 1st Order Σ∆

• 1Vrms Gaussian dither is difficult if not impossible toproduce on mixed-signal ICs

 – On-chip digital circuitry adds excessive non-Gaussianinterference to analog noise generators

• First-order modulators are too prone to limit cycles tobe of much practical use

 – They do provide the basis for higher-order Σ∆’s

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 32A/DDSP

1st Order Noise ShapingIf q(k) and vIN(k) are uncorrelated, we can compute the signal and noisetransfer functions independently:

How do we model the quantizer?

+ _ 

vINdOUT∫  +

q

H(z) =z-1

1 – z-1

( )( )

( )( )

( )( )

inin

out 

 zV 

 zQ z NTF 

 zV 

 z D zSTF  ==  

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 17/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 33A/DDSP

• Nonlinear elements like comparators are frequentlymodeled by some sort of linearized “effective gain”, G

• One measure of effective gain that’s proven itselfuseful for Σ∆ analysis is:

• The value of G depends on the input signal and can

be determined with simulation – E.g. for the simulation in slide 30, G=0.7 (-3.1dB)

1st Order Noise Shaping

G ≡rms value of the comparator output

rms value of the comparator input

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 34A/DDSP

1st Order Noise Shaping

• The input q models both dither, if added, and theinput-referred noise of the comparator

+

 _ vIN dOUT∫  +

q

H(z)

G

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 18/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 35A/DDSP

1st Order Noise Shaping

+

 _ vIN dOUT∫  +

q

H(z)

G

)(1 

)(1

)(

 zGH 

G

Q NTF 

 zGH 

 zGH 

 DSTF 

inin

out 

+==

+==

When H(z) is large, this is approximately 1.

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 36A/DDSP

1st Order Noise Shaping

+

 _ vIN dOUT∫  +

q

H(z)

G

)(1 

)(1

)(

 zGH 

G

Q NTF 

 zGH 

 zGH 

 DSTF 

inin

out 

+==

+==

For large H(z), this is ≈0.

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 19/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 37A/DDSP

Noise Transfer Function, NTF

0 0.1 0.2 0.3 0.4 0.5-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs

]

   A  m  p   l   i   t  u   d  e

   [   d   B   W   N   ]

Output SpectrumNTF

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 38A/DDSP

“Integrated” Noise

• Just as we did for thermal noise, let’s look at

the integrated noise at the output of the

modulator

• In the discrete time case, noise integrals aresummations, but the result is called

“integrated noise” nonetheless

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 20/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 39A/DDSP

Noise Summations

• Integrated noise is computed from theenergy theorem (N even):

arms =A0/ N , M=0

arms = Σm=1

M

2Am21

NA0 +

2, 0<M<N/2

arms = Σm=1

N/2-12Am

21

NA0 +

2, M=N/2AN/2 +

2

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 40A/DDSP

Integrated Noise

0 0.1 0.2 0.3 0.4 0.5-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs ]

   A  m  p   l   i   t  u   d  e   [   d   B

   W   N   ]   /

   I  n   t  e  g  r  a   t  e   d   N  o   i  s  e   [   d   B   V   ] Output Spectrum

Integrated Noise

The total “noise” atthe modulatoroutput with no inputsums to 0dBà

This is consistentwith a binary signal

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 21/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 41A/DDSP

Integrated Output

The total power stillsums to 0dB

Only little“quantization noise”at low frequency

0 0.1 0.2 0.3 0.4 0.5-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs

]

   A  m  p   l   i   t  u   d  e   [   d   B   W   N   ]   /

   I  n   t  e  g  r  a   t  e   d   N  o   i  s  e   [   d   B   V   ] Output Spectrum

Integrated Noise

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 42A/DDSP

Oversampling and Noise Shaping

• Σ∆ modulators have interesting characteristics

 – Unity gain for the the input signal VIN

 – Large attenuation of quantization noise injected at q

 – Much better than 1-Bit noise performance is possible if we’reonly interested in frequencies << fs

• ADCs which sample their inputs at much higherfrequencies than the Nyquist rate minimum are called“oversampling ADCs”

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 22/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 43A/DDSP

Oversampling and Noise Shaping

• Higher order loop filters consisting of several integratorsprovide much better noise shaping than 1st order realizations

• They are also less prone to limit cycles or need less dither

• If a 1-Bit DAC is used, the converter is inherently linear—independent of component matching

• References

J. C. Candy and G. C. Temes, “Oversampling Methods for A/D and D/A Conversion”, Oversampling

Delta-Sigma Data Converters: Theory, Design, and Simulation, 1992, pp. 1-25.

S. R. Norsworthy, R. Schreier, and G. C. Temes, “Delta-Sigma Data Converters, Theory, Design, andSimulation,” IEEE Press, 1997.

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 44A/DDSP

Estimating Quantization Noise

+

 _ vIN Y∫  +

q

H(z)

G

( ))(1 zGH 

G z NTF 

+=

( )

( ) ( )∫ −

==

∆=

 B

 B

e zQY 

s

Q

df  z NTF  f SS

 f  f S

 jfT 

2

2

2

12

1

π

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 23/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 45A/DDSP

Example: 1st Order Modulator

( )

( )

( ) ( ) ( )

( )( )

 fT T 

 z z

 z z

 z NTF  z NTF  z NTF 

 z z NTF 

G

 z

 z z H 

π

ω

sin2cos22

11

11

1

1

1

1

1

12

1

1

1

= −=

+−−=

−−=

=

−=

=−

=

( ) ( )

( )

12

1

3

sin212

1

2

3

2

22

2

2

∆≈

∆≅

=

∫ 

∫ 

−=

 M 

df  fT  f 

df  z NTF  f SS

 M s f 

 M s f 

 jfT 

s

 B

 B

e zQY 

π

π

π

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 46A/DDSP

Example: Dynamic Range

3

2

2

3

2

2

2

912

1

3

1 input,sinusoidal 22

1

powernoisepeak 

powersignalpeak 

 M  DR

 M 

S

STF S

S

S DR

 X 

 X 

π

π

=

∆=

=   

  ∆=

==

M DR16 33 dB32 42 dB

1024 87 dB

8/4/2019 L19 Lecture

http://slidepdf.com/reader/full/l19-lecture 24/24

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 47A/DDSP

Dynamic Range

• DR increases 9dB for each doubling of M

• 1st order modulators require very high M for >10-Bit resolutionà higher order filters improve this tradeoff substantially

• Analysis is based on assumption that the quantization noise is“white”à not true in practice, especially for low-order modulatorsà practical modulators suffer from other noise sources also

(e.g. thermal noise)

• Next time we’ll design an oversampled audio ADC with betterthan 16-Bit resolution


Recommended