+ All Categories
Home > Documents > L2 Vector Algebra

L2 Vector Algebra

Date post: 07-May-2017
Category:
Upload: jlp34876
View: 246 times
Download: 5 times
Share this document with a friend
28
MATH23 MULTIVARIABLE CALCULUS VECTOR ALGEBRA
Transcript
Page 1: L2 Vector Algebra

MATH23MULTIVARIABLE CALCULUS

VECTOR ALGEBRA

Page 2: L2 Vector Algebra

GENERAL OBJECTIVE

• Define Vectors and Differentiate it against scalar quantities• Find the norms of a vector• Perform Basic Algebraic with given vectors

At the end of the lesson the students are expected to:

Week 2 Day 1

Page 3: L2 Vector Algebra

Vectors

Definition: A vector is a quantity which has both a magnitude and a direction.

Examples:1.Velocity - The wind speed and wind direction together form a vector quantity called the wind velocity. Example of wind velocity is 20mi/hr northeast.2.Displacement- The displacement of 3=(+3) describes a position change of 3 units in the positive direction, and a displacement of -3 describes a position change of 3 units in the negative direction.

Page 4: L2 Vector Algebra

Vectors

Examples:3.Force - The arrow in figure below shows a force vector of 10lb acting in a specific direction in the block.

10lb

A force acting on a block

Page 5: L2 Vector Algebra

ScalarsDefinition: A quantity which can be described by a magnitude only is called a scalar.

Examples:1.area 3 mass2.Length 4. temperature

Page 6: L2 Vector Algebra

Vectors Viewed GeometricallyVectors can be viewed geometrically by

arrows in 2-space or 3-space; the direction of the arrow specifies the direction of the vector and the length of the arrow describes its magnitude.

The tail of the arrow is called the initial point of the vector, and the tip of the arrow the terminal point.

Notations:We will denote the vectors with lowercase type with an

arrow over it such as , and v w x

Terminal point

Initial point

v

Page 7: L2 Vector Algebra

Vectors in Rectangular Coordinate SystemA. Vector with Initial Point at the Origin A vector v is positioned with its initial point at the origin and terminal point (v1 , v2 ) or (v1 , v2 , v3 ). The coordinates of the terminal point of v are called the components of v. Thus, v = <v1 , v2 > or v = <v1 , v2 , v3 >

),( 21 vv

),( 00 x

y

v

Page 8: L2 Vector Algebra

Vectors in Rectangular Coordinate SystemB. Vector with Initial Point not at the Origin(2-space) Theorem: If P1 P2 is a vector in 2-space with initial point P1 (x1 , y1) and terminal point P2 (x2 , y2 ), then

P1 P2 = <x2 – x1 , y2 – y1 >

),( 222 yxP

x

y21PP

),( 111 yxP

Page 9: L2 Vector Algebra

Vectors in Rectangular Coordinate SystemB. Vector with Initial Point not at the Origin

Similarly, if P1 P2 is a vector in 3-space with initial point P1 (x1 , y1, z1 ) and terminal point P2 (x2 , y2 , z2 ), then

P1 P2 = < x2– x1 , y2 – y1 , z2 - z1>

),( 222 yxP

x

y

21PP

),( 111 yxP

z

),,( 000O

Page 10: L2 Vector Algebra

Vectors in Three Dimensional Space Examples:1.Find the components of the vector if P1(-1, 5) and P2(4, 1) and sketch an equivalent vector with its initial point with the origin.

2.Find the components of the vector if P1(2, 0, 4) and P2(0, 3, 4) and sketch an equivalent vector with its initial point with the origin.

21PP

21PP

Page 11: L2 Vector Algebra

Vectors in Three Dimensional Space Properties:1. Equal vectors

Two vectors, v and w, are equal (also called equivalent) if they have the same length and same direction.

Geometrically, two vectors are equal if they are translations of one another or they are in different positions.

2. Equivalent VectorsTheorem: Two vectors are equivalent if and only if their corresponding components are equal.

Page 12: L2 Vector Algebra

Vectors in Three Dimensional Space Examples:1. Two vectors <a+3, b-2, c+2> and <1, -4, 2> are equivalent if and only if a=-2, b = -2 and c=0.

Page 13: L2 Vector Algebra

Vectors in Three Dimensional Space Basic Operations on VectorsIf v = <v1 , v2> and w = <w1 , w2> are vectors in 2-space and k is any scalar, then the

a) Sum v + w = <v1 + w1 , v2 + w2 >b) Differencev – w = <v1 – w1 , v2 – w2 >c) Scalar Multiplicationkv = <kv1 , kv2>

Page 14: L2 Vector Algebra

Vectors in Three Dimensional Space Arithmetic Operations on VectorsSimilarly, if v = <v1 , v2 , v3 > and w = <w1 , w2 , w3 > are vectors in 3-space and k is any scalar, thena) Sum v + w = <v1 + w1 , v2 + w2 , v3 + w3 >b) Difference v – w = <v1 – w1, v2 – w2, v3 – w3>c) Scalar Multiplekv = <kv1 , kv2, kv3>

Page 15: L2 Vector Algebra

Scalar MultiplicationNote:

kv is defined to be the vector whose length is

times the length of and whose direction is

the same as that of , if k > 0 and opposite to that

of if k<0.

Illustration:

k

v

v

v

v v2 v21

vv

23

Page 16: L2 Vector Algebra

Vectors in Rectangular Coordinate SystemExamples

vwwc

vwv

wv

2

453102

d) - )3 b) a)

find ,,, and ,, If 1)

Page 17: L2 Vector Algebra

Vectors Norm of a Vector

The distance between the initial and terminal points of a vector v is called the length, the norm, or the magnitude of v and is denoted by ǁvǁ.

Thus, if is a vector in 2-space, then the norm of is given by

If is a vector in 3-space, then the norm of is given by

21 vvv ,

v

22

21 vvv

321 vvvv ,,

v

32

22

21 vvvv

Page 18: L2 Vector Algebra

VectorsExample:1. Find the norm of if v

),,(PPPPvc

vb

va

4 1 0 and )3,0,2( where )

2 ,5 )

3 ,4,1 )

221

Page 19: L2 Vector Algebra

Vectors Unit VectorA vector of length 1 is called a unit vector. In xy coordinate system, the unit vectors along the x and y axes are denoted by i and j respectively; and in xyz coordinate system the unit vectors along the x, y and z axes are denoted by i, j and k respectively. Thus, 2 space: i = <1, 0>, j = <0, 1>

3-space: i = <1, 0, 0>, j = <0, 1, 0>, k = <0, 0, 1>

Page 20: L2 Vector Algebra

Unit Vectors

ijx

y

O i

jk x

y

O

z

Page 21: L2 Vector Algebra

Vectors Every vector in 2-space is expressible in terms of i and j, and every vector in 3-space is expressible in terms of i, j, and k as follows:

jvivvv

vvvvv

21

21

21

21

100100

,,

,, ,

kvjvivvvv

vvvvvvv

321

321

321

321

100010001000000

,,,,,,

,,,,,, ,,

Page 22: L2 Vector Algebra

Vectors in Three Dimensional Space

Unit Vector in the Direction of If , then the unit vector in the

direction of can be found by

The process of multiplying a vector by the reciprocal of its length to obtain a unit vector with the same direction is called normalizing .

vvuv

v 21 vvv ,

v

v

Page 23: L2 Vector Algebra

Vectors in Three Dimensional Space

Examples 1. Find a unit vector that has the same direction as 2. Find vector that is same direction as the vector from the point A(-1, 2, 0) to the point B(3, 1, 1).

kjiv 22

Page 24: L2 Vector Algebra

Vectors in Three Dimensional Space

Vector Determined by Length and Angle

If v is nonzero vector with its initial point at the origin of an xy coordinate system, and if θ is the angle from the positive x-axis to the radial line through v , then the x-components of can be written as ǁvǁ cos θ and the y-components as ǁvǁ sin θ; and hence can be expressed in trigonometric form as

v = ǁvǁ <cos θ , sin θ > or = ǁvǁ cos θ i + ǁvǁ sin θ j

Page 25: L2 Vector Algebra

Exercise Set 11.2Sketch the vectors with their initial points at the origin.1. a) <-5, 4> b) 3i – 2j c) <2, 2, -1> d) 2i + 3j – 2k2. Find the components of the vector AB and sketch an equivalent vector with its initial point at the origin. a) A (2, 3), B (-3, 3) b) A (3, 0, 4), B (0, 4, 4)3. a) Find the terminal point of v = <7, 6> if the initial point is (2, -1).b) Find the terminal point of v = i + 2j – 3k if the initial point is (-2, 1, 4).4. Perform the stated operations on the given vectors u = <2, -1, 3>, v = <4, 0, -2>, and w = <1, 1, 3>.a) 2v – (u + w)

Page 26: L2 Vector Algebra

Exercise Set 11.24. Find the norm of v.a) v = <3, 4> b) v = i + j + k22. Find unit vectors that satisfy the stated conditions.a) Oppositely directed to 3i – 4j.b) Same direction as 2i – j – 2k.c) Same direction as the vector from the point A (-3, 2) to the point B (1, -1).24. Find the vectors that satisfy the stated conditions.a) Same direction as v = -2i + 3j and three times the length of v.b) Length 2 and oppositely directed to v = -3i + 4j + k.

Page 27: L2 Vector Algebra

Exercise Set 11.226. Find the component forms of v + w and v – w in 2-

space, given that ǁvǁ = 1, ǁwǁ = 1, v makes an angle

of π/6 with the positive x-axis, and w makes an angle

of 3 π/4 with the positive x-axis.

32. Let u =<-1, 1>, v =<0,1>, and w = <3, 4>. Find the

vector x that satisfies u – 2x = x – w + 3v.

34. Find u and v if u+ v = <2, -3> and 3u + 2v = <-1, 2>.

Page 28: L2 Vector Algebra

TEXTBOOKSAnton, Howard; Bivens Irl and Davis Stephen Calculus,

Early Transcendentals, Chapter 7 pages 547 to 555Peterson, Thurman S Calculus With Analytic Geometry,

Chapter 14 pages 289 to 292

SUGGESTED READINGS


Recommended