+ All Categories

L8s

Date post: 08-Jul-2018
Category:
Upload: samadazad
View: 212 times
Download: 0 times
Share this document with a friend
38
8/19/2019 L8s http://slidepdf.com/reader/full/l8s 1/38 1 Discrete-time System Analysis via the DTFT and DFT 
Transcript
Page 1: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 1/38

1

Discrete-time System Analysisvia the DTFT and DFT 

Page 2: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 2/38

2

ObjectivesUnderstand the systems

 

representations

Model linear discrete-time systems usingfrequency

 

domain approaches

Analyze systems using frequency domain

 

techniquesDiscrete-time Fourier series for continuous-timeperiodic signal

Discrete-time Fourier transform for continuous-

 

time aperiodic

 

signal

Discrete Fourier transform

Page 3: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 3/38

3

Recall

linear time-invariant discrete-time systemsConvolution representationTime domain system analysis

Output = input convolve with unit-pulse response

Frequency domain system analysis?

[ ]∑−

=

−=1

0

][][ M 

i

in xihn y

Page 4: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 4/38

4

Simple input: exponentialinput

h[n] Output?n j je Aen x

  ω φ    ˆ][   =

Page 5: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 5/38

5

Response to ComplexExponentials

[ ] [ ]   n j j M 

i

i j M 

i

in j j e Aeeihe Aeihn y   ω φ ω ω φ    ˆ1

0

ˆ1

0

)(ˆ][⎟⎟

 ⎠

 ⎞

⎜⎜⎝ 

⎛ ==   ∑∑

  −

=

=

n j j e Aen x   ω φ    ˆ][   =

( ) ( )   [ ]n x H e Ae H n y  n j j ω ω    ω φ  ˆˆ][  ˆ ==

Frequency response function for the LTI system

=

Ω−=Ω1

0 ][)(

 M 

i

i j

eih H 

[ ]∑

=−=

1

0][][

 M 

iin xihn y

Page 6: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 6/386

Simple input: exponentialinput

h[n]n j j

e Aen x   ω φ    ˆ][   =   ( )   n j j

e Ae H n y  ω φ ω 

  ˆˆ][   =

∑−

=

Ω−=Ω1

0

][)( M 

i

i jeih H 

Frequency response function for the LTI system

Page 7: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 7/387

System: unit-pulse + frequencyresponse

=Ω)( H 

[ ]

=

−=1

0

][][ M 

i

inihnh   δ 

Unit pulse response: h[n] = {1, 2, 1}

=][nh

=Ω−=Ω

1

0][)(

 M 

i

i jeih H 

Page 8: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 8/388

System: unit-pulse + frequencyresponse

Unit impulse response:h[n] = {1, 2, 1}

Frequency response)(2 )(21)(   Ω∠Ω−Ω− Ω=++=Ω   H  j j j e H ee H 

=++=Ω   Ω−ΩΩ−   j j jeee H    2)(

=Ω∠

)(

)(

 H 

 H 

Page 9: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 9/389

Exampleh[n] = {1, 2, 1}

Input

Output ( )   n j je Ae H n y

  ω φ ω   ˆˆ][   =

3/ˆ4/

2][   3/4/ˆ

π ω π φ 

π π ω φ 

====   n j jn j j eee Aen x

=)3/(π  H 

=][n y

Output = 3*input and phase shift by /3

[ ]Ω+=Ω   Ω− cos22)(   je H 

Page 10: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 10/3810

Simple input: Periodic input(Discrete-time Fourier Series)

h[n]   ?][   =n y

∑−

=

Ω−=Ω1

0

][)( M 

i

i jeih H 

Frequency response function for the LTI system

( )

( )[ ]∑

=

+−+

=

++=

++=

 N 

i

n jn ji

 N 

i

iii

iiii ee A

 A

n A A

n x

1

)ˆ(ˆ

0

1

0

2

ˆcos

][

φ ω φ ω 

φ ω 

Page 11: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 11/3811

Response to Periodic Inputs

( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪⎪⎪

−−

=

−−

=

+−+−

++

+−+−

++

M

2ˆ22ˆ2

2ˆ2

2ˆ2

1

ˆ1

1

ˆ1

1ˆ1

1ˆ1

00

ˆ2

ˆ2

ˆ2

ˆ2

2

ˆ2ˆ2

ˆ2

ˆ2

100

2222

2222

1111

1111

ω ω 

ω ω 

ω ω 

ω ω 

φ ω φ ω 

φ ω φ ω 

φ ω φ ω 

φ ω φ ω 

 H e Ae A

 H e A

e A

 H e

 A

e

 A

 H e A

e A

 H  A A

output Freqinput 

n jn j

n jn j

n jn j

n jn j

n j j e Aen x  ω φ    ˆ

][   =   ( )   n j j e Ae H n y   ω φ ω   ˆˆ][   =

( )

[ ]∑=+−+

++=

 N 

i

n jn ji   iiii

ee

 A

 An x1

)ˆ(ˆ

0 2][  φ ω φ ω 

Page 12: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 12/3812

Response to Periodic Inputs

( )   ( ) ( ) ( )[ ]∑=

+−+ −++= N 

i

in j

in ji  H e H e

 A H  An y   iiii

1

)ˆ(ˆ0   ˆˆ

2

0][   ω ω   φ ω φ ω 

( )   ( ) ( )   ( ) ( )

( ) ( )   ( ) ( )   ...ˆ2

ˆ2

ˆ2

ˆ2

0][

2ˆ2

2ˆ2

1ˆ11ˆ10

2222

1111

+−+

+−++=

+−+

+−+

ω ω 

ω ω 

φ ω φ ω 

φ ω φ ω 

 H e A

 H e A

 H e A H e A H  An y

n jn j

n jn j

( )Ω==Ω−=Ω   ∑∑  −

=

Ω−

=

Ω−   *1

0

1

0

][)(][)(   H eih H eih H  M 

i

i j M 

i

i j

( )   ( ) ( ) ( )[ ]∑=

+−+ ++= N 

i

in j

in ji  H e H e

 A H  An y   iiii

1

*)ˆ(ˆ0   ˆˆ

2

0][   ω ω   φ ω φ ω 

Page 13: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 13/3813

Response to Periodic Inputs

( ) ( )   ( ) ( ) ( )   ( )

( )  ( )   ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]∑

=

=

∠−+−∠+

∠−∠

∠+++=

++=

==

 N 

i

iiiii

 N 

i

 H  jn j H  jn jii

 H  jii

 H  jii

 H n H  A H  A

eeee H  A

 H  A

n y

e H  H e H  H 

iiiiii

ii

1

0

1

ˆ)ˆ(ˆˆ0

ˆ*ˆ

ˆˆcosˆ0

2

ˆ0

][

ˆˆˆˆ

ω φ ω ω 

ω 

ω ω ω ω 

ω φ ω ω φ ω 

ω ω 

( )   ( ) ( ) ( )[ ]∑=

+−+ ++= N 

i

in j

in ji  H e H e

 A H  An y   iiii

1

*)ˆ(ˆ0   ˆˆ

2

0][   ω ω   φ ω φ ω 

Page 14: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 14/3814

Simple input: Periodic input

(Discrete-time Fourier Series)

h[n]

=

Ω−=Ω1

0

][)( M 

i

i jeih H 

Frequency response function for the LTI system

( )

( )[ ]∑

=

+−+

=

++=

++=

 N 

i

n jn ji

 N 

i

iii

iiii ee A

 A

n A A

n x

1

)ˆ(ˆ

0

1

0

2

ˆcos

][

φ ω φ ω 

φ ω    ( )

( )   ( )[ ]∑=

∠+++

= N 

i

iiiii   H n H  A

 H  An y

1

0

ˆˆcosˆ

0][

ω φ ω ω 

Page 15: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 15/3815

Example: Periodic Inputh[n] = {1, 2, 1}

Input: x[n] = 1 + 2 cos 

(πn/3 - 

π/2)Output?

Solution:[ ]

Ω−=∠Ω+=Ω

Ω+=Ω   Ω−

)ˆ(cos22)(

cos22)(

w H  H 

e H    j

( )∑=++=

 N 

i

iii   n A An x

10   ˆcos][   φ ω 

Page 16: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 16/3816

Example: Periodic Input

=][n y

Page 17: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 17/3817

Exercise 1

Solution

[ ]   ⎟ ⎠

 ⎞⎜⎝ 

⎛ +⎟

 ⎠

 ⎞⎜⎝ 

⎛ −+=

21

20cos3

23cos34

  π π π    nnn x

[ ]   ?=n y

h[n] = {1, 2, 1}

Page 18: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 18/38

18

Simple input: Aperiodic 

input

(Discrete Fourier Transform)

h[n]

=

Ω−=Ω1

0

][)( M 

i

i jeih H 

Frequency response function for the LTI system

?][   =n y

∑−

=

=

=

=

1

0

2

1

0

2

][1

][

][][

 N 

n N 

k  j

 N 

n

n N 

k  j

ek  X  N 

n x

en xk  X 

π 

π 

Page 19: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 19/38

19

Responses to Aperiodic 

Inputs

Discrete Fourier Transform:

Output

∑∑  −

=

=

−==

1

0

21

0

2

][1

][][][ N 

n N 

k  j N 

n

n N 

k  j

ek  X  N 

n xen xk  X π π 

[ ]

∑ ∑

∑ ∑

∑ ∑∑

=

−−

=

=

−−

=

=

=

−−

=

=

=

=−=

1

0

21

0

)(2

1

0

)(21

0

1

0

1

0

)(21

0

][][1][

][][1

][

][1

][][][

 N 

m

 N 

k  j M 

m

n

 N 

k  j

 N 

mn N 

k  j M 

m

 M 

m

 N 

mn N 

k  j M 

m

emhek  X  N 

n y

emhk  X  N 

n y

ek  X  N 

mhmn xmhn y

π π 

π 

π 

Page 20: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 20/38

20

Responses to Aperiodic 

Inputs

Discrete Fourier Transform:

Output

∑∑  −

=

=

−==

1

0

21

0

2

][1

][][][ N 

n N 

k  j N 

n

n N 

k  j

ek  X  N 

n xen xk  X π π 

{ }∑

∑ ∑

=

=

=

−−

=

=

=

=

1

0

)(2

1

0

)(2

1

0

21

0

)(2

][][1

][

][][1

][

][][1

][

 N 

n

 N 

k  j

 N 

n N 

k  j

 N 

m N 

k  j M 

m

n N 

k  j

ek  H k  X  N 

n y

k  H ek  X  N 

n y

emhek  X  N 

n y

π 

π 

π π 

Page 21: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 21/38

21

Responses to Aperiodic 

Inputs

For aperiodic 

inputs, output can be obtainedby:DFT the input X [k ]

DFT the impulse response H [k ]Called the frequency response

Multiply X [k ] and H [k ]

Inverse DFT { }∑

=

=1

0

)(2

][][1

][ N 

n N 

k  j

ek  H k  X  N 

n yπ 

Page 22: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 22/38

22

Recall

LTI System

[ ] [ ] [ ] [ ]

[ ] [ ]∑

=

=

−=

⊗=−=

 M 

 M 

k nnhnh

n xnhk n xnhn y

0

0

][

][

δ 

LTI h[n] x[n]   y[n]

Length of convolution output:

Length of h + Length of x - 1

Page 23: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 23/38

23

Example: Time domain

x [n ] = {2, 4, 6, 4, 2}h [n ] = {3, -1, 2, 1}

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]3322110][   −+−+−+=   n xhn xhn xhn xhn y

Length of h = 4

Length of x = 5

Length of y = 8

Page 24: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 24/38

24

Example: DFT of input

DFT of input: x [n ] = {2, 4, 6, 4, 2}8 point DFT x [n ] = {2, 4, 6, 4, 2, 0, 0, 0}

π 

π π π 

π π π π π 

 jk 

k  j

k  j

k  j

k  j

k  j

k  j

k  j

n

nk 

 j

eeeek  X 

eeeeen xk  X 

−−−−

−−−−

=

++++=

++++== ∑

24642][

24642][][

4

3

24

48

23

8

22

8

2

8

27

0

82

Page 25: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 25/38

25

Example: DFT of h 

DFT of filter: h [n ] = {3, -1, 2, 1}8 point DFT h [n ] = {3, -1, 2, 1, 0, 0, 0, 0}

4

3

24

38

22

8

2

8

27

0

82

23][

23][][

k  j

k  j

k  j

k  j

k  j

k  j

n

nk 

 j

eeek  H 

eeeenhk  H 

π π π 

π π π π 

−−−

−−−

=

++−=

++−== ∑

Page 26: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 26/38

26

Example: DFT of output

DFT of output:y [n ] = {6, 10, 18, 16, 18, 12, 8, 2}

8 point DFT 

78

2

2

3

4

5

4

3

24

78

26

8

25

8

24

8

23

8

22

8

2

8

2

7

0

82

2812181618106][

2812181618106][

][][

k  j

k  j

k  j

 jk 

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

n

nk 

 j

eeeeeeek Y 

eeeeeeek Y 

en xk Y 

π π π 

π 

π π π 

π π π π π π π 

π 

−−−−

−−−

−−−−−−−

=

+++++++=

+++++++=

= ∑

Page 27: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 27/38

27

78

2

2

3

4

5

4

3

24 2812181618106][

k  j

k  j

k  j

 jk 

k  j

k  j

k  j

eeeeeeek Y 

π π π 

π 

π π π −−−

−−−−

+++++++=

4

7

2

3

4

5

2

3

4

5

4

3

4

5

4

3

2

4

3

24

4

3

24

4

3

244

3

24

2426

48412

612618

48412

2426

2324642][][

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

 j

 j

 j

k  j

k  j

k  j

k  j

k  j

k  j

 jk 

k  j

k  j

k  j

eeee

eeee

eeee

eeee

eee

eeeeeeek  H k  X 

π π π 

π 

π π 

π 

π 

π 

π 

π π 

π 

π π π 

π π π 

π π π 

π 

π π π 

−−−−

−−−

−−

−−

−−−−

−−−

−−−−

−−−

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

++−⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

++++=

4

7

2

3

4

5

4

3

24

2812181618106][][

k  j

k  j

k  j

k  j

k  j

k  j

k  j

eeeeeeek  H k  X 

π π π 

π 

π π π −−−

−−−−

+++++++=

Page 28: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 28/38

28

Example][][][   k Y k  H k  X    =[ ] [ ] [ ] [ ]n xnhk n xnhn y

 M 

⊗=−= ∑=0

][

Y [k ]

 X [k ]

 H [k ]

Page 29: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 29/38

29

Example

][][][   k Y k  H k  X    =[ ] [ ] [ ] [ ]n xnhk n xnhn y

 M 

k ⊗=−= ∑=0

][

What happens if N is not 8?

5 point DFT

5

14

5

12

5

10

5

8

5

6

5

4

5

2

5

6

5

4

5

2

4

5

23

5

22

5

2

5

2

812181618106][][

23][

24642][

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

eeeeeeek  H k  X 

eeek  H 

eeeek  X 

π π π π π π π 

π π π 

π π π π 

−−−−−−−

−−−

−−−−

+++++++=

++−=

++++=

12

Page 30: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 30/38

30

Example5 point DFT

5

8

5

6

5

4

5

2

5

4

5

2

5

8

5

6

5

4

5

2

1816201818][][

2812181618106][][

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

k  j

eeeek  H k  X 

eeeeeek  H k  X 

π π π π 

π π π π π π 

−−−−

−−−−−−

++++=

+++++++=

 y[n] = {6, 10, 18, 16, 18, 12, 8, 2}

 y[n] = {6, 10, 18, 16, 18,

12, 8, 2}

Circular convolution!

Page 31: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 31/38

31

Linear and Circular Convolution

Page 32: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 32/38

32

Convolution

Linear/Circular convolutionRelates three signals of interest

The input signal, the output signal, and the

impulse responseProvides a mathematical framework for DSP

Page 33: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 33/38

33

DFT and Convolution

Page 34: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 34/38

34

Exercise 1

By using DFT, determine the responseof the FIR filter with impulseresponse h [n ] = {2, 1, 3} to the input

sequence x [n ] = {3, 2, 2, 1}. (Considerlinear convolution)

If one uses 4 point DFT, what will bethe output?

Page 35: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 35/38

35

Solution: Exercise 1

Input sequence: length =Impulse response: length =

Output sequence: length =

The size of DFT: at leasth [n ] =

x [n ] =Choose _______-point DFT 

Page 36: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 36/38

36

Solution: Exercise 1

=][k Y 

=

=

=

][][

][][

k  H k  X 

k  H k  X 

 y[n] =

Page 37: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 37/38

37

Solution: Exercise 14-pt DFT

=][k Y 

=

=

=

][][

][][

k  H k  X 

k  H k  X 

 y[n] =

Page 38: L8s

8/19/2019 L8s

http://slidepdf.com/reader/full/l8s 38/38

References

Fundamentals of Signals &SystemsM.J. Roberts, McGraw Hill, 2008

Chapter 13: Discrete-time FourierTransform Analysis of Signals and

Systems


Recommended