+ All Categories
Home > Documents > Lab Manual CAMA

Lab Manual CAMA

Date post: 06-Jul-2018
Category:
Upload: satish-hs
View: 233 times
Download: 2 times
Share this document with a friend

of 75

Transcript
  • 8/17/2019 Lab Manual CAMA

    1/75

    Course outcomes

    After the successful completion of this course, the student will be able to:

    1. Model and solve simple problems in structural mechanics, thermal analysis and fluid

    flow using a standard FEM software package

    Part – A

    Study of FEA Package and odeling Stress Analysis:

    1. Bars of constant, tapered and stepped cross sections – one eercise each

    !. "russes – two eercises

    #. Beams – simply supported, cantilever, beams with $%&, beams with varying

    loads, etc – si eercises

    Part ! "

    1. 'ectangular plate with a hole – one eercise

    !. "hermal analysis – !% problem with conduction and convection boundary conditions

     – two eercises

    #. Fluid flow analysis – potential distribution in !% bodies – two eercises

    (. %ynamic analysis – one eercise each in)

    a. Fied*fied beam for natural fre+uency determination

     b. Bar subected to forcing function

    c# Fied*fied beam subected to forcing function

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    2/75

    Contents

    Sl#

    $o#$ame of the e%periment

    Page

    no#

    1 Chapter &:-ntroduction – getting started with /00 #*2

    ! Chapter ':Bars of constant, tapered and stepped cross sections 3*14

    #Chapter (:Beams – simply supported, cantilever, with $%& and

    5arying &oads12*!3

    ( Chapter ):"russes !6*#7

    7 Chapter *:'ectangular plate with a hole #4*#6

    4

    Chapter +:"hermal analysis –1% 8 !% problem with conduction and

    convection boundary conditions (9*(6

    2 Chapter : %ynamic nalysis 71*47

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    3/75

    Chapter &

    -E../$- S.A0.E1 2/.3 A$S4S

    (#& Performing a typical A$S4S analysis

    "he /00 program has finite element analysis capabilities, ranging from asimple, linear, static analysis to a comple, non*linear, transient dynamic analysis. "he

    analysis guide manual in the /00 documentation describes specific procedures for 

     performing analysis of different engineering disciplines.

     n /00 analysis has maorly three distinct steps)

    1. Build the model

    !. pply loads and obtain the solution

    #. 'eview the results.

    "uilding a model:

    Building a finite element model re+uires more of an /00 users time than anyother part of the analysis. First, specify a :obname; and :nalysis; title. "hen, use the

  • 8/17/2019 Lab Manual CAMA

    4/75

    "he element type determines, among other things)

    • "he degree*of*freedom ?%CF@ set ?which in turn implies the discipline – 

    structural, thermal, magnetic, electric, +uadrilateral, brick etc>

    • =hether the element lies in two*dimensional ?!%@ or three dimensional ?#%@ space

    Eample)* BEAM4 – has si structural %CF ?$D, $, $, 'C"D, 'C", 'C"@ and is a line

    element, and can be modeled in #% space.

     Plane77  – has a thermal %CF ?"EM

  • 8/17/2019 Lab Manual CAMA

    5/75

    Creating the odel -eometry:

    fter defining material properties, the net step in an analysis is generating a finite

    element model*nodes and elements* that ade+uately describe the model geometry.

    "here are two methods to create the finite element model)0olid modeling and

    %irecteneration.

    Solid modeling:%escribe the geometric shape of the model, and then instruct the /00

     program to automatically mesh the geometry with nodes and elements. -t is possible to

    control the siGe and shape of the elements that the program creates.

    1irect generation:%efine the location of each node and the connectivity of each element.

    0everal convenience operations, such as copying patterns of eisting nodes and elements,

    symmetry reflection, etc.., are available.

    '# Apply loads and obtain the solution

    -n this step, the 0C&$"-C/ processor is used to define the analysis type and

    analysis options, apply loads, specify load step options, and initiate the finite element

    solution. &oads can also be applied using the

  • 8/17/2019 Lab Manual CAMA

    6/75

    /nitiating the solution:!

    "o initiate solution calculations, use either of the following)

    Aommand?s@) 0C&5E

    -8/: ain enu Solution Current S

    =hen this command is used, the /00 program takes model and loading information

    from the database and calculates the results. 'esults are written to the results file

    ?Hobname."0", Hobname.'", Hobname.'M or Hobname.'F&@ and also to the database.

    "he only difference is that only one set of results can reside in the database at one time,

    while one can write all sets of results ?for all substeps@ to the results file.

    (# 0e;iew the 0esults:

    Cnce the solution has been calculated, use the /00 postprocessors to review

    the results.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    7/75

    (#' -eneral steps for sol;ing problems using A$S4S!&)#*

    Step &* Ansys 8tility enu

    File *Alear and start new *%o not read file –ok 

    File *Ahange ob name *Enter new ob name * – Ck 

    File *Ahange title *Enter new title *yyy –ok 

    Step ' *Ansys ain enu – Preferences

    Select !S.08C.80A –ok 

    Step (* Preprocessor

     Element Type * 0elect type of element from the 5"able; and the re+uired options

     Real constants * %etails such as "hickness, reas, Moment of -nertia etc>

     Mate!al popet!es ! 'e+uired depending on the nature of the problem

     Select "n!ts* Ahoose one of the following types of unit

    $0E' * $ser*defined system ?default@

    0- * -nternational system ?0- or MI0J m, kg, s, I@

    A0 * A0 system ?cm, g, s, KA@

    M follow these steps

    nsys tool bar 0ave * %B * File * 0ave as GGG.db * ok 

    Step && *"o :@pen7 the solution geometry etc)

    nsys tool bar – 'esume – %B*File *'esume from *GGG.db

    ok 

  • 8/17/2019 Lab Manual CAMA

    8/75

    1 50 mm

    300 mm

    1500 N

    E = 2.1*105 N/mm2

    2

    Chapter )

    "A0S: C@$S.A$., .APE0E1 A$1 S.EPPE1 C0@SS SEC./@$S

    Problem&: "ar of Constant Circular Cross!Section

    %etermine) * 1@ "he nodal displacement !@ 0tress in each element #@ 'eaction forces.

    Fig (.1

     Sol"t!on#

    Step & ! Ansys 8tility enu

    File * Alear and start new * %o not read file * ok 

    File * Ahange ob name * Enter new ob name * * ok 

    File * Ahange title * Enter new title – yyy * ok Step ' *Ansys ain enu ! Preferences

    0elect * 0"'$A"$'& * ok.

    Step ( * Preprocessor

    Element "ype ! ddEdit%elete – dd * &ink  !#% finit stn139– ok * close

    'eal constants – dd – ok * real constant set no * 1 – rea * 17999 * ok.

    Material properties* Material Model * Material Model /umber 1 – 0tructural – 

    &inear – Elastic – -sotropic – ED * !.1E7 *

  • 8/17/2019 Lab Manual CAMA

    9/75

    &oads *%efine&oads – pply – ForceMoment – Cn nodes – pply * pick node ! *

    %irection of ForceMoment – FD * ForceMoment value * 1799?Ove value@ *

    Aonstant 5alue * pply – ok.

    Step + * Ansys ain enu Solution

    0olve – 0olve current &0 –ok ?-f everything is ok – solution is done and displayed@* Alose.

    Step ! Ansys ain enu-eneral Post processor

    Element table – define table – add – "ype N0tressN in the user label item block*

    results data item * By se+uence number – select &0, * change to &0, 1 * ok.

    Element table – define table – add – "ype N0trainN in the user label item block*

    results data item * By se+uence number – select &E

  • 8/17/2019 Lab Manual CAMA

    10/75

    500 N

    2

    600mm 500mm

    1

    3

    E2 0.!"#05 N$mm2,%2 600 mm2

    Problem ':SteppedCircular Cross!Section "ar

    %etermine) * 1@ "he nodal displacement !@ 0tress in each element #@ 'eaction forces.

    Fig (.!

     Sol"t!on#

    Step& – Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title – Enter new title – yyy * ok.

    Step ' – Ansys ain enu –Preferences

    0elect – 0"'$A"$'&–ok.

    Step ( – Preprocessor

    Element "ype – ddEdit%elete – dd – &ink  !#% finit stn139* ok – Alose

    'eal constants –dd –ok – real constant) set no *1 rea – 699* apply, set no – ! – 

    cs area – 499 – ok* Alose

    Material properties* Material Model – Material Model /umber 1)0tructural – 

    &inear –Elastic–-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    11/75

     pick 18! – ok – Element attributes – Element type number) *1 &ink139 *Materiel

    no – !*'eal const set no*! – ok* uto numbered – "hru node –pick !8#– ok.

    Step * – Preprocessor

    &oads –%efine &oads –pply – 0tructural %isplacement – Cn nodes –pick nodes

    1* pply –ll %CF –ok.&oads * %efine &oads –pply –ForceMoment – Cn nodes –pick node # – pply*

    %irection of ForceMoment –FD* ForceMoment value * 799?Ove value@ – ok.

    Step + – Ansys ain enu –Solution

    0olve – 0olve current &0 –ok ?-f everything is ok – 0olution is done is displayed@

    *Alose.

    Step –Ansys ain enu –-eneral post processor

    Element table – define table – add – "ype N0tressN in the user label item block*

    results data item * By se+uence number – select &0, * change to &0, 1 * ok 

    Element table – define table – add – "ype N0trainN in the user label item block*

    results data item * By se+uence number – select &E

  • 8/17/2019 Lab Manual CAMA

    12/75

    0ES8.S

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    13/75

    1000 N

    500 mm2

    750 mm

    1000 mm2

    Problem (: .apered "ar

    For the following tapered bar, find the nodal displacements:

    "he cross sectional area decreases linearly from 1999 mm! to 799 mm!. $se two elements.

    "ake E P ! L 197

    M

  • 8/17/2019 Lab Manual CAMA

    14/75

    Step ) –Preprocessor

    0ection – Beams – Aommon 0ections – 0ub type – 0elect 0olid Aircle.

    -% – 1 – /ame – Big – ' – 49 – pply.

    -% – 1 – /ame – Big – ' – #9 – Ck,

    0ections – Beams – "aper 0ection – By D location – /ew "aper 0ection -% – # /ew 0ection name – "aper – Beginning 0ection -% – 1 – 9, 9, 9 – End 0ection -%

     – ! 0mall – 1999, 9, 9.

    Modeling –Areate –/odes – -n active A0 – /ode number – 1) D, , – ?9, 9, 9@ – 

    apply – /ode number – !) D, , – ?1999, 9, 9@ – ok.

    Areate – &ines – &ines – 0traight line –

  • 8/17/2019 Lab Manual CAMA

    15/75

  • 8/17/2019 Lab Manual CAMA

    16/75

    1

    2

    600mm 500mm

    3

    E2 0.!"#05 N$mm2,%2 600 mm2

    600mm

    E# E& 2.0"#05 N$mm2, %# %& '00mm2

    3

    Assignment &:Stepped Cross!Section "ar

    "he below stepped bar is subected to an aial force of 1999 / along positive *

    ais. nd assume E1 P E#.

    Fig (.(

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    1000 N

  • 8/17/2019 Lab Manual CAMA

    17/75

    5000 mm

    #0 (N

    # 2

    Chapter (

    "EAS: Cantile;er, Simply Supported, 2ith 81, 2ith Darying oads

     Note#ssume rectangular cs area of !99mm #99mm, oung;s Modulus of!.1197

     /mm! for all the problems on beams.

    T!p#For solving the problems, all the values should be in the same units.

    Problem &:–  Aantilever beam subected to a concentrated load at free end.

    Fig 7.1

    Solution)

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok File – Ahange ob name –Enter new ob name –probl –ok 

    File –Ahange title –Enter new title –yyy– ok 

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok 

    Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133– ok – Alose

    Material properties* Material Model – Material Model /umber 1) 0tructural – 

    &inear – Elastic –-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    18/75

    Step * –Preprocessor

    &oads–%efine &oads –pply – 0tructural %isplacement – Cn Ieypoints –pick 

    Ieypoint– 1– pply –%CF to be constrained – ll %CF–ok.

    &oads * %efine &oads –pply –ForceMoment – Cn Ieypoints –pick node ! – pply* %irection of ForceMoment –F ForceMoment value – *19999 ?*ve

    value@*–ok.

    Step + –Ansys ain enu –Solution

    0olve – 0olve current &0 –ok ?-f everything is ok –solution is done is displayed@*

    Alose.

    ? Note#  Cnce 0olution is done is displayed, then only &ist of results will be

    generates.@

    Step –Ansys ain enu –-eneral post processor

    For "ending oment:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, # – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 14 * ok.

    For Shear!Force:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, 4 – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 16 – ok.

    Step = – -eneral post processor

  • 8/17/2019 Lab Manual CAMA

    19/75

    &00 mm

    )00 mm

    #50 mm

    #

    2 &

    )

    )0 (N20 (N

    Fig 7.!

    Problem ':  simply supported beam is subected to concentrated loads. Aompute the

    shear force and bending moment for the beam shown and find the reactions at the

    supports.

    Fig 7.#

    Solution:Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok.

    File – Ahange ob name –Enter new ob name –probl –ok.

    File –Ahange title –Enter new title –yyy– ok.

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok.

    Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133* ok – Alose.

    Material properties* Material Model – Material Model /umber 1) 0tructural – 

    &inear – Elastic –-sotropic– !.9E7 –

  • 8/17/2019 Lab Manual CAMA

    20/75

    Meshing – 0iGe cnrls– Manual siGe – lobal – 0iGe – /o of element divisions – 79

     – Ck.

    Mesh – &ines – 0elect Iey

  • 8/17/2019 Lab Manual CAMA

    21/75

    Assignment '# simply supported beam is subected to concentrated loads. Aompute the

    shear force and bending moment for the beam shown and find the reactions at the

    supports.

    Fig 7.(

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    22/75

    2000mmM

    )000 mm

    #2 (N$m *UDL+

    6000 mm

    &000mmM

    Problem ':0imply supported beam with uniformly distributed load.

    Fig 7.7

    Solution:

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy *ok 

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133* ok – Alose

    Material properties* Material Model – Material Model /umber 1) 0tructural – 

    &inear – Elastic –-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    23/75

    &oads * %efine &oads –pply –

  • 8/17/2019 Lab Manual CAMA

    24/75

    Fig 7.4

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    25/75

    Problem ( – Beam with angular loads, one end hinged and at the other end roller support.

    ?ll dimensions in mm@.

    Fig 7.2

    Solution:

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy *ok 

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok 

    Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133* ok – AloseMaterial properties* Material Model – Material Model /umber 1) 0tructural – 

    &inear – Elastic –-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    26/75

    &oads * %efine &oads –pply –ForceMoment – Cn nodes –pick node ! – pply*

    %irection of ForceMoment –F– ForceMoment value * *199 ?*ve value@ – pply

    * pick node # * pply – %irection of ForceMoment* FD * ForceMoment value *

    *!99 ?*ve value@ * pick node ( * pply – %irection of ForceMoment* FD *

    ForceMoment value* *!79 ?*ve value@ *ok Step + –Ansys ain enu –Solution

    0olve – 0olve current &0 –ok ?-f everything is ok –solution is done is displayed@*

    Alose.

    ? Note#  Cnce 0olution is done is displayed, then only &ist of results will be

    generates.@

    Step –Ansys ain enu –-eneral post processor

    For "ending oment:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, # – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 14 * ok 

    For Shear Force:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, 4 – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 16 – ok 

    Step = – -eneral post processor

  • 8/17/2019 Lab Manual CAMA

    27/75

    Fig 7.3

    Problem ): Beam with applied moment and over*hanging.

    Fig 7.6

    Solution:

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name –probl –ok 

    File –Ahange title –Enter new title –yyy– ok 

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok 

    Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133* ok – Alose

    Material properties* Material Model – Material Model /umber 1) 0tructural – &inear – Elastic –-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    28/75

    &oads * %efine &oads –pply –ForceMoment – Cn Ieypoints –pick node ! – 

    pply* %irection of ForceMoment – M –ForceMoment value – 4999 ?Ove

    value@– pply–pick node #– pply – %irection of ForceMoment * F *

    ForceMoment value – *4999 ?*ve value@– pply–pick node 7– pply – %irection

    of ForceMoment * F * ForceMoment value – *3999 ?*ve value@–ok Step + –Ansys ain enu –Solution

    0olve – 0olve current &0 –ok ?-f everything is ok –solution is done is displayed@*

    Alose.

    Step –Ansys ain enu –-eneral post processor

    For "ending oment:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, # – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 14 * ok.

    For Shear Force:

    Element table – define table – add – By se+uence number – select –0M-0A, *

    change to 0M-0A, 4 – pply, By se+uence number – select –0M-0A, * change to

    0M-0A, 16 – ok 

    Step = – -eneral post processor

  • 8/17/2019 Lab Manual CAMA

    29/75

    &000 mm #500 mm #500 mm

    0 (N

    )0 (N$m

    2 & )

    Problem *:Beam subected to uniformly varying load.

    Fig 7.19

    Solution:

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy *ok 

    Step ' –Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok 

    Step ( –Preprocessor

    Element "ype–ddEdit%elete –dd –Beam * ! node 133–ok – AloseMaterial properties* Material Model – Material Model /umber 1) 0tructural – 

    &inear – Elastic –-sotropic– !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    30/75

    &oads * %efine &oads –pply –

  • 8/17/2019 Lab Manual CAMA

    31/75

    1500 mm2

    2000 mm22000 mm2

    400 mm

    400 mm400 mm

    15 kN

    Chapter )

    A$A4S/S @F .08SSES

    Problem &: For the three*bar truss, determine the nodal displacements, reactions at thesupports and the stress in each member. "ake modulus of elasticity as !99

  • 8/17/2019 Lab Manual CAMA

    32/75

    Step ' – Ansys ain enu –Preferences

    0elect –0"'$A"$'& –ok 

    Step ( – .o define element:Preprocessor

    Element "ype–ddEdit%elete –dd – ink – (1!finit!stn!&=? * ok – Alose.

    Step ) –.o define element 0eal constants:Preprocessor

    'eal constants –dd – ok – 'eal constant set no – 1*cs area – 1799*ok.

    'eal constants –dd – ok – 'eal constant set no – !*cs area – !999*ok.

    Step* – .o define element aterial properties:Preprocessor

    Material properties* Material Model – Material Model /umber 1 – 0tructural – 

    Alick – &inear – Alick – Elastic –-sotropic – Alick – !.1E7 – – .o apply oads:Preprocessor

    &oads * %efine &oads –pply –ForceMoment – Cn nodes –pick node # – pply *

    %irection of ForceMoment –F – ForceMoment value – 17,999?*ve value@ –ok.

    Step &? – .o sol;e the problem

    nsys Main Menu – 0olution*0olve – 0olve current &0 –ok ?-f everything is ok – 

    solution is done is displayed@ – Alose.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    33/75

    Step && – .o interpret the results: -eneral post processor

      .o plot the element stresses:

    nsys Main Menu – eneral post processor * Element table – %efine table – dd – 'esults data item* By se+uence num * 0elect &0 – Enter*&0, 1 – ok BElement

    diagram will be displayed

    eneral post processor* Element table*

  • 8/17/2019 Lab Manual CAMA

    34/75

    Problem ': Aonsider the following (*bar truss and determine i@ Element stiffness matri

    for each element ii@ $sing elimination approach, solve for the nodal displacements iii@

    Aalculate stresses in each element.

    For the given data, find 1@ 0tress in each element !@ 'eaction forces and #@ /odal

    displacement. EP!6.7 194

    units, P1 units for all elements.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    35/75

    Q1

    Q2

    Q7

    Q8 20,00

    25,000 units

    30 units

    40 units

    4 3

    1 2

    Q4

    Q5

    Q6

    Fig 4.#

    Assignment – "heoretical – Finite Element method calculations ?to be entered in record@

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    36/75

    { }   [ ]   units9.99.9!!.!7197.47199.9!2.1!199.99.9T

    )nswers

    ###   T −−− −=

    unitsunits

    unitsunits

    (142,!93,7

    ,339,!1,999,!9

    (#

    !1

    ==

    −==

    σ σ 

    σ σ 

    Step&! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy– ok 

    Step ' – Ansys ain enu –Preferences

    0elect – 0"'$A"$'& –ok 

    Step ( – .o define element –Preprocessor

    Element "ype–ddEdit%elete –dd – ink !(1 finit!stn &=?* ok – Alose

    Step )!.o define element 0eal constants – Preprocessor'eal constants –dd – ok – 'eal constant set no – 1*cs*1*ok 

    Step* – .o define element aterial properties ! Preprocessor

    Material properties* Material Model – Material Model /umber 1 – 0tructural – 

    Alick – &inear – Alick – Elastic –-sotropic – Alick – !.1E7 –

  • 8/17/2019 Lab Manual CAMA

    37/75

    &oads –%efine &oads –pply – 0tructural %isplacement – Cn nodes –pick nodes 1

    8 ( * pply – %CF to be constrained * ll %CF –ok 

    &oads –%efine &oads –pply – 0tructural %isplacement – Cn nodes ! – pply – 

    %CF to be constrained –$ –ok 

    Step > – .o apply oads ! Preprocessor&oads * %efine &oads –pply – ForceMoment – Cn nodes –pick node ! – pply*

    %irection of ForceMoment –FD * ForceMoment value * O !9,999?Ove value@ *

    pply

    &oads * %efine &oads –pply – ForceMoment – Cn nodes – pick node # – pply*

    %irection of ForceMoment –F* ForceMoment value –*!7,999?*ve value@ *ok 

    Step &? – .o sol;e the problem:

    nsys Main Menu – 0olution*0olve – 0olve current &0 –ok ?-f everything is ok – 

    0olution is done is displayed@* Alose

    Step && – .o interpret the results ! -eneral post processor

    1. "o plot the element stress

    nsys Main Menu –eneral post processor * Element table – %efine table – dd – 

    'esults data item* By se+uence num * 0elect &0 – Enter*&0, 1 – ok BElement

    stress diagram will be displayed

    nsys Main Menu –eneral post processor* Element table*

  • 8/17/2019 Lab Manual CAMA

    38/75

    P0/$. 8 $@1A S@8./@$ PE0 $@1E

      P@S.& $@1A 1E-0EE @F F0EE1@ /S./$-

    @A1 S.EP G & S8"S.EP G & ./E G ???? @A1 CASE G ?

    .3E FA@2/$- 1E-0EE @F F0EE1@ 0ES8.S A0E /$ .3E -@"A C@@01/$A.E S4S.E

      $@1E 8

      & ?#????

      ' ?#'&&>'E!?&

      ( ! ?#*+)>E!?'

      ) ?#????

      A/8 A"[email protected] DA8ES

      $@1E '

      DA8E ?#'&&>*E!?&

    Problem (: Aonsider the (*bar truss shown in figure. For the given data, find 1@ 0tress in

    each element !@ 'eaction forces and #@ /odal displacement. iven EP !194 k/mm!,

    P19 mm!.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    P0/$. 8 $@1A S@8./@$ PE0 $@1E

      P@S.& $@1A 1E-0EE @F F0EE1@ /S./$-

    @A1 S.EPG& S8"S.EPG& ./EG???? @A1 CASEG ?

    .3E F@@2/$- ,4,H S@8./@$S A0E /$ .3E -@"A C@@01/$A.E S4S.E

      $@1E F F4

      & !')&+ !(&'*#?

      ' !'&=*#

    ) )&++# ?#????

    A/8 DA8ES

    DA8E !'???? !'*???

  • 8/17/2019 Lab Manual CAMA

    39/75

    2500 N4000 N

    1000 mm

    4 3

    1 2

    800 mm

    50000 N

    Fig 4.(

    ssignment – "heoretical – Finite element method calculations ?to be entered in record@

    Alass work – Aarry out the /00 software steps to solve and enter the same in the

    record

    Problem number ): Aonsider the (*bar truss shown in figure. For the given data, find 1@

    0tress in each element !@ 'eaction forces and #@ /odal displacement. iven EP !19 4

    k/mm!, P19 mm!.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    40/75

    200

    #000000

    Fig 4.7

    Assignment – "heoretical – Finite element method calculations.

    Chapter *

    0EC.A$-8A0 PA.E 2/.3 A 3@E BS.0ESS A$A4S/S

    Problem &:  plate of !99mm 199mm siGe and 19mm thick has a centrally drilled hole

    of (9mm diameter subected to a pressure of !999/mm ! under plane stress condition,

    find deformed shape of the hole and plot maimum stress distribution. "ake EP !E7,UP9.#

    Fig 2.1

    Solution#

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    !999

     /mm!

    V (9 mm

  • 8/17/2019 Lab Manual CAMA

    41/75

    Step & ! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok 

    File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy *ok 

    Step ' – Ansys ain enu – Preferences0elect – 0"'$A"$'& –ok 

    Step ( – Preprocessor

    Element "ype–ddEdit%elete – dd – 0olid*+uad (node*13!* ok – Cptions – 

    Element

     behavior I# – 0elect –

  • 8/17/2019 Lab Manual CAMA

    42/75

    ist results

    1. /odal solution –%CF solution*&& %CFs –ok* 5alue displayed – /odal solution

     – 0tresses* 5on*mises stress*ok*values displayed

     Note# T$e es"lts o%ta!ne& t$o"'$ Ansys s$o"l& %e (al!&ate& )!t$ t$e analyt!cal  Met$o&*

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    43/75

    Problem ':"he corner angle bracket is shown below. "he upper left hand pin*hole is

    constrained around its entire circumference and a tapered pressure load is applied to the

     bottom of lower right hand pin*hole. Aompute Maimum displacement, 5on*Mises stress.

    Fig 2.!

    Step & ! Ansys 8tility enu

    File –Alear and start new –%o not read file –ok File – Ahange ob name –Enter new ob name – –ok 

    File –Ahange title –Enter new title –yyy *ok 

    Step ' ! Ansys ain enu – Preferences

    0elect – 0"'$A"$'& – ok 

    Step ( ! Preprocessor

    Element type – ddEdit%elete – dd – 0olid – Tuad 3 node – 13! – ok – Cption

     – Element behavior I# –

  • 8/17/2019 Lab Manual CAMA

    44/75

    Areate – rea – Aircle – 0olid circle – D, radius – 9, 1!.7, 7 – pply – D,,

    radius, *32.7 *27, 7 – ok.

    Cperate – Booleans – 0ubtract– reas – pick area which is not to be deleted

    ?bracket@ – pply – pick areas which is to be deleted ?pick two circles@ – ok 

    Meshing – Mesh tools – Mesh areas – +uad – free – mesh – pick all – ok. Meshtools – 'efine – pick all – level of refinement – # – ok 

    Step * ! Preprocessor

    &oads– %efine loads – pply – 0tructural – %isplacement – Cn lines – 0elect the

    inner lines of the upper circle – pply – %CFs to be constrained – && %CF – ok 

    &oads– %efine loads – pply – 0tructural –

  • 8/17/2019 Lab Manual CAMA

    45/75

    # 2 & )

    0.# m 0.# m 0.# m

    t# t2 t& t)

    Chapter +

    .3E0A A$A4S/S

    '1 Problem 2ith Conduction and Con;ection "oundary Conditions

    eneal Steps to %e +ollo)e& )$!le sol(!n' a $eat tans+e po%lem - "s!n' .EM#

    1. %iscretiGe and select the element type

    !. Ahoose a temperature function.

    #. %efine the temperature gradienttemperature and heat flutemperature gradient

    relationships.

    (. %erive the element conduction matri and e+uations by using either variation

    approach or by usingalerkin;s approach

    7. ssemble the element e+uations to obtain the global e+uations and introduce

     boundary conditions.4. 0olve for the nodal temperatures

    2. 0olve for the element temperature gradients and heat flues

    Problem  For the composite wall idealiGed by the 1*% model shown in figure below,

    determine the interface temperatures. For element 1, let I 1 P 7 =m9A, for element !, I !

    P 19 =m 9A and for element #, I # P 17 =m9A. "he left end has a constant temperature

    of !99 9A and the right end has a constant temperature of 499 9A.

    Fig 3.1

    Solution:

    .  "heoretical approach * Finite element method

    iven)

    Finite Element model)?For "heoretical Method refer any FEM tet book@

    Department of Mechanical Engineering, NIEIT, Mysuru. Page"heoretical results

    t1 P !99 9A t( P 499 9A P 9.1 m!

    I 1P 7 =m9A I !P 19 =m

    9A I #P 17 =m9A

  • 8/17/2019 Lab Manual CAMA

    46/75

    { }   [ ]A499A7!2.#A(13.!A!99t 9999" =

    Analysis using A$S4S &)#*Step &! Ansys8tility enu

    File *Alear and start new *%o not read file *ok 

    File *Ahange ob name *Enter new ob name *probl –ok 

    File *Ahange title *Enter new title *yyy –ok 

    Step ' !Ansysain enu !Preferences

    0elect *"E'M& *ok 

    Step (!Preprocessor

    Element "ype*ddEdit%elete *dd* &-/I *#% AC/%$A"-C/##

    * ok * Alose'eal constants* ddEdit%elete*dd* "ype 1* &-/I * 'eal constant set no 1 –

    A0 area – Enter *9.1*ok* Alose

    Material properties– Material models – Material model number 1* "hermal –

    conductivity – -sotropic * Aonductivity for material * "hermal conductivity ?I @ – 

    7 *ok * Material – /ew model – %efine material -%*!*ok * "hermal – conductivity – 

    -sotropic * Aonductivity for material * "hermal conductivity ?I @ –19 –ok *

    Material – /ew model – %efine material -%*#*ok * "hermal – conductivity – 

    -sotropic * Aonductivity for material * "hermal conductivity ?I @ –17 –ok* Alose

    Step ) ! Preprocessor

    Modeling *Areate */odes * -n active A0 * ?9, 9, 9@ ?,y,G@ ?,y value w.r.t first

    node@ * pply ?First node is created@* 9.1,9,9 * pply ?0econd node is created@ *

    ?9.!,9,9@ – pply ?"hird node is created@*?9.#,9,9@ * pply ?Fourth node is

    created@ *ok 

    Areate – Elements* Element attributes* 0elect material number*1* 'eal constant

    set number*1* uto numbered – "hru nodes – pick 1, ! ?Element 1 is created@*ok 

    * Element attributes* 0elect material number*!* 'eal constant set number *1*

    uto numbered – "hru nodes – pick !, # ?Element ! is created@*ok * Element

    attributes* 0elect material number*#* 'eal constant set number*1* uto numbered – 

    "hru nodes – pick #, ( ?Element # is created@*ok Step * –Preprocessor

    &oads * %efine &oads * pply – "hermal – 0elect temperature – Cn nodes*pick 

    node 1* pply* 0elect–"EM

  • 8/17/2019 Lab Manual CAMA

    47/75

    ist of results

    1. /odal solution * %CF solution * "emp *ok B.emperature at all the nodes will

    be displayed

    !.

  • 8/17/2019 Lab Manual CAMA

    48/75

    (# (&

    0.& m 0.#5 m 0.#5 m

    h,

     T0 20 0-

    K1 = 20 W/m 0C , K2 = 30 W/m 0C, K3 = 50 W/m 0C,

    = 25 W/m20C , = 800 0C

    h ,

    # 2 & )

    0.& m 0.#5 m 0.#5 m

    t#t2 t& t)

    Element # Element 2 Element &

    Problem '. composite wall consists of three materials as shown. "he outer temperature

    is "9 P !99A. Aonvection heat transfer takes place on the inner surface of the wall with

    A399"   9=∞

     and h P !7 = m!9A. %etermine the temperature distribution in the wall.

    Fig 3.!

    Solution:

    . "heoretical approach * Finite Element model

    "aking P 1 m!, the element conduction matrices are,

    For element 1, we must consider the convection from the free end ?left end@

    { }   [ ]A!9 A1(.27A116.97A#9(.24t 9999" =

    Alass work) Aarry out the /00 software steps to solve and enter the same in the record

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    .heoretical results

  • 8/17/2019 Lab Manual CAMA

    49/75

    t

    W

    L

    235 0C

    h ' $m20-, 20 0-

    / #0 cm 0.# m

    t 0.# cm # #01& m

    # m

    t)t&t2t#

    h ' $m20-, 20 0-

    2&5 0-

    # 2 & )

    0

    Problem (: ?@ne dimensional finite element formulation of fin@

    metallic fin, with thermal conductivity k  P #49 =m9A, 9.1 cm thick, and 19 cm long,

    etends from a plane wall whose temperature is !#7 9A. %etermine the temperature

    distribution and amount of heat transferred from the fin to the air at !9 9A with h P 6

    =m!9

    A "ake the width of fin to be 1 m.

    Fig 3.#

    Solution:

    . "heoretical calculations and Finite element model)?For detailed steps refer any FEM

    tet book@

    Fig 3.(

    "heoretical results

    A169.#6tA,167.12tA,!96.22tA?given@,!#7t   9(9

    #

    9

    !

    9

    1   ====

    "he total heat loss in the fin can be calculated as,

    ∑=

    =  #

    1eelementtotal

      TT

    nd

    ∞−=   t t  AhQ

    avg  selement 

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

     L

  • 8/17/2019 Lab Manual CAMA

    50/75

    "herefore,

    [ ]   [ ]

    =1!1.(#1!9!

    !96.22!#71

    #9

    1!6

    t!

    tt=!&htthT   !11avgs1element

    =

    −+

    =

    −+

    =−=   ∞∞

    =(3!.961!9!

    167.12!96.221

    #9

    1!6T

    !element  =

    +

    =

    =443.19#!9!

    169.#6167.121

    #9

    1!6T

    #element  =

    +

    =

    =##(.73119#.443196.(3!1!1.(#1TT#

    1eelementtotal

      =++==∑=

    Alass work) Aarry out the /00 software steps to solve and enter the same in the record

     Note# T$e es"lts o%ta!ne& t$o"'$ Ansys s$o"l& %e (al!&ate& )!t$ t$e analyt!cal 

     Met$o&*

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    51/75

     T #00 0-

    L = 0.4 m 5000 $m2

     T #00 0-

    / 0.# m

    5000 $ m2

    / 0.# m / 0.# m / 0.# m

    t# t2 t& t) t5

    Problem )# "he fin shown in figure is insulated on the perimeter. "he left end has a

    constant temperature of 199 9A. positive heat flu +LP 7999 =m! acts on the right end.

    &et I  P 4 =m9A and A0 area P9.1 m!. %etermine the temperatures at

     L

    4

     L

    2

    3  L

    4  and

    &, where & P 9.( m.

    Fig 3.7

    Solution:

    . "heoretical calculations or Finite Element model

    Fig 3.4

    .heoretical results) "he temperatures are,

    { }   [ ]A(##.!62A#(6.64A!44.4#A13#.#A199t   99999" =

    Alass work) Aarry out the /00 software steps to solve and enter the same in the record

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    -i;en: t& G &??? C, J %% G + 2 < m

    ? C, A G ?#& m'

    & G ' G ( G ) G ?#& m

  • 8/17/2019 Lab Manual CAMA

    52/75

    Problem *:%etermine the temperature distribution and the rate of heat flow N+N per meter 

    of the height for a tall chimney whose cross section is shown below, #*% view a P ( m and

     b P ! m. ssume that the inside gas temp is "g P #11 I, the inside convection co*efficient

    is hi, the surrounding air temp is "a P !77 I and the outside convection coefficient is ho.

    iven * Element type *"hermal solid element *

  • 8/17/2019 Lab Manual CAMA

    53/75

    Step & ! Ansys8tility enu

    File *Alear and start new *%o not read file *ok 

    File *Ahange ob name *Enter new ob name *probl –ok File *Ahange title *Enter new title *yyy –ok 

    Step ' !Ansysain enu !Preferences

    0elect *"E'M& *ok 

    Step ( !Preprocessor

    Element "ype*ddEdit%elete *dd* 0C&-% *T$% ( /C%E *77* ok * Alose

    'eal constants*/o real constants

    Material properties– Material models – "hermal – Aonductivity – -sotropic *

    Aonductivity for material * "hermal conductivity ?I @ –1.2#92 *ok* Alose

    Step ) ! Preprocessor

    Modeling *Areate */odes * -n active A0 *,y,G location in A0*1,9 ?,y value

    w.r.t first node@ * pply ?First node is created@* 1.7,9 * pply ?0econd node is

    created@ *!,9 * pply ?"hird node is created@ *1,9.7 * pply ?Fourth node is

    created@*1.7,9.7 * pply ?Fifth node is created@*!, 9.7 * pply?0ith node is

    created@* 1,1 * pply ?0eventh node is created@ *1.7, 1 * pply ?Eighth node is

    created@ *! , 1 * pply ?/inth node is created@* 1.7,1.7 * pply ?"enth node is

    created@ * !, 1.7 * pply ?Eleventh node is created@*!, ! * pply ?"welfth node is

    created@ –ok 

    Areate – Elements*uto numbered – "hru nodes – pick 1, !,7 8 ( ?nticlockwise,

    element 1@* pply* pick !, #, 4 8 7 ?Element !@ * pply* pick (, 7, 3 8 2 ?Element

    #@* pply*pick 7, 4, 6 8 3 ?Element (@ * pply * pick 2, 3 8 19 ?Element 7@*

    pply*pick 3, 6, 11 819 ?Element 4@* pply *pick 19, 11 8 1! ?Element 2@*ok

    ?total seven elements ate created through nodes@

    Step * –Preprocessor

    &oads * %efine &oads * pply – "hermal *Aonvection * Cn nodes *pick inner 

    surface by bo option * pply* Film co*efficient ?-nner@ *43.1( * "emperature ?t

    inner surface@* #11 ?value@*ok 

    Aonvection * Cn nodes *pick outer surface by bo option * pply* Film coefficient

    ?outer@ *12.9(* "emperature ?t inner surface@ – !77 ?value@ * Ck Step + !Ansys ain enu –Solution

    0olve * 0olve current &0 *ok ?-f everything is ok, *solution is done and displayed@

     – Alose

    Step !Ansys ain enu ! -eneral Post Processor

  • 8/17/2019 Lab Manual CAMA

    54/75

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    55/75

    0esults:

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    56/75

    ).0 cm ).0 cm

    5 cm40 0C !20 0C

    1 2 3 4 5

    6 7 8 " 10

    11 12 13 14 15

    0.& m 0.2 m 0.& m

    0.) m&00 o-

    &00 o-&00 o-0.2 m

    Problem +# For the body shown in figure, determine the temperature distribution. "he

     body is insulated along the top and bottom edges, I  P I yy P 1.2#92 =m9A. /o internal

    heat generation is present.

    Fig 3.3

    ssignment – "heoretical – Finite element method calculations ?to be entered in record@

    Problem # For the two*dimensional stainless*steel body shown below, determine the

    temperature distribution. the left and right sides are insulated. the top surface is subected

    to heat transfer by convection. the bottom and internal portion surfaces are maintained at

    #99 oA. "he thermal conductivity of stainless steel P 14 =moA.

    Fig 3.6

    ssignment – "heoretical – Finite element method calculations ?to be entered in record@

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

    T ∞=40 oA

     P !o

  • 8/17/2019 Lab Manual CAMA

    57/75

    0.5 m 0.5 m

    100 mm250 mm2

    #$t%

    Chapter

    1ynamic Analysis:

  • 8/17/2019 Lab Manual CAMA

    58/75

    11 1

    ! !

    !1 !

    ! #

     /ow writing the global %CF numbers for the row and column for both the elemental

    stiffness and mass matrices ?E+s ?1@ and ?!@@ and assembling, we get global stiffness and

    mass matri as

      1 ! # 1 ! #

    #

    !

    1

    19!19!9

    19!19419(

    919(19(

    22

    222

    22

    −−

    =

     x x

     x x x

     x x

     K 

    and

    #

    !

    1

    947!7.99#!4#.99

    9#!4#.916727.9947!7.9

    9947!7.91#97.9

    = M 

    But we have the characteristic e+uation as

    9=−   M  K    λ 

    , where

    !ω λ  =

    0ubstitution for K and M yields,

    9

    947!7.99#!4#.99

    9#!4#.916727.9947!7.9

    9947!7.91#97.9

    19!19!9

    19!19419(

    919(19(

    22

    222

    22

    =

    −−

    λ 

     x x

     x x x

     x x

    9

    947!7.919!9#!4#.919!9

    9#!4#.919!16727.9194947!7.919(

    9947!7.919(1#97.919(

    22

    222

    22

    =

    −−−

    −−−−−

    −−−

    λ λ 

    λ λ λ 

    λ λ 

     x x

     x x x

     x x

    pplication of Boundary condition?s@) 0ince node 1 is fied, we have X 1 P 9. "herefore,

    modifying the above e+uation using elimination method i.e. eliminate 1st

      row and 1st

    column of the above e+uation we get,

    9947!7.919!9#!4#.919!

    9#!4#.919!16727.919422

    22

    =−−−

    −−−

    λ λ 

    λ λ 

     x x

     x x

     ***** ?@

    "herefore,

    9@9#!4#.919!?@947!7.919!@?16727.9194?  !222 =−−−−−   λ λ λ    x x x

    Cn solving,

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    59/75

    91967.41927.4143!

    =+−   x xλ is the characteristic e+uation.

    "he roots of the above characteristic e+uation give the Eigenvalues. "herefore,

    Eigenvalues are

    31   19997.1   ×=λ 

    and

    3!   193.4   ×=λ 

    "herefore, the first natural fre+uency is

    199!(19997.1   31   =×=ω radsec or

    7.1767!1

    1   ==π  

    ω    

     G.

    0econd natural fre+uency is

    3.4924.!193.4   3!   =×=ω radsec or

    #.(179!

    !!   ==

    π  

    ω     

     G.

    Eigen vectors or mode shapes)

    fter modification for the boundary condition, E+. ?@ can be written as

    9947!7.919!9#!4#.919!

    9#!4#.919!16727.9194

    #

    !22

    22

    =

    −−−

    −−−i

    i

    ii

    ii

     X 

     X 

     x x

     x x

    λ λ 

    λ λ 

    *** ?#@First Mode 0hape)

    "ake any one e+uation in the above matri and substitute for

    31   19997.1   ×== λ λ i

    =e get first mode shape ?i!1".

    [email protected]#!4#[email protected]?4   1#321

    !32 =+−××−×   X  x x x X 

    1

    #

    1

    !   ##.!9##.(  X  X 

      = or 

    722.91

    #

    1! =

     X 

     X 

     /ormaliGation of the above mode is obtained by fiing the value of

    1! X 

     P 1 ?a unity@

    "hen, first mode shape will be,

    { }   { }1722.91#1!   =T 

     X  X 

    0econd Mode 0hape)

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    60/75

     X  

     x

    # 2 &

    0.5!!#

     X  

     x#

    2

    &0.5!!

    #

    #000mm

    0.0# m

    0.0# m

    0ubstitution of

    3!   193.4   ×== λ λ i

     into any one e+uation of E+. ?@ yields second

    mode shape.

    [email protected]#!4#[email protected]?4   !

    #

    32!

    !

    32 =+−××−×   X  x x x X 

    "he above e+uation gives second mode shape as

    { }   { }1722.9!#!!   −=T 

     X  X 

    First Mode

    0econd Mode

    Problem '#Fied*fied beam for natural fre+uency determination

    Fig 3.1!

    iven) Modulus of elasticity, E P !.9431911 /m!

  • 8/17/2019 Lab Manual CAMA

    61/75

    Step ' ! 1efine Element .ypes

  • 8/17/2019 Lab Manual CAMA

    62/75

    Fig 3.1#

    0elect the Subspace method.

    Enter 7 in the :/o. of modes to etract;

    Aheck the bo beside :Epand modes shapes;

    Enter 7 in the :/o. of modes to epand;

    Alick :CI;. "he following window will then appear

    Fig 3.1(

    Ieep default options in the above window and click on :CI;.

    Step ' ! 0olution * %efine &oads * pply * 0tructural * %isplacement * Cn Iey points –

     pick 18! – %CF to be constrained – ll %CFStep ( ! 0olution * 0olve * Aurrent &0

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    63/75

    Post processing

    Step &! eneral

  • 8/17/2019 Lab Manual CAMA

    64/75

    The irst mode shape is no$ appear in the graphic $indo$#

    Fig 3.12

    "o view the net mode shapes, select

    eneral

  • 8/17/2019 Lab Manual CAMA

    65/75

    #.0 m

    0.0# m

    0.0# m

    0.5 m3*t+

    Problem (# armonic nalysis of a Fied*Fied Beam

    Fig 3.16

    iven) Modulus of elasticity, E P !.9431911 /m!

    .

     %or this problem& the 'EAM( )'eam *+ elastic" element is used#

    Step ( ! 1efine Element .ypes

  • 8/17/2019 Lab Manual CAMA

    66/75

    -n the window that appears, enter the following material properties

    oung;sModulus, ED * !.943e11

  • 8/17/2019 Lab Manual CAMA

    67/75

    Fig 3.!9

    4 0elect the Full solution method, the 'eal O imaginary %CF printout format

    4 %o not use lumped mass approimation.

    4 Alick :CI;

    "he following window will then appear

    Fig 3.!1

     Ieep default options in the above window and click on :CI;.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    68/75

    !. pply Aonstraints

    0olution * %efine &oads * pply – 0tructural – %isplacement * Cn /odes

    4 Fi all %CFs constraints on Iey point 1 and Iey point !

    pply &oad

    0olution * %efine &oads * pply* 0tructural * ForceMoment * Cn /odes4 0elect the node at mid*point of the beam ?i.e. at P9.7@

    4 "hen the following window will appear.

    4 Fill it as shown to apply a load with real value of 199 and an imaginary

    value of 9 in the positive :y; direction.

    Fig 3.!

    (. 0et the Fre+uency 'ange

    0olution * &oad 0tep Cpts * "imeFre+uency *Fre+ and *0ubstps . . .

    s shown in the window below, specify a fre+uency range of 9 – #99 G, #99 sub

    steps and stepped b.c.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    69/75

    Fig 3.!#

    7. 0olve the 0ystem

    0olution * 0olve * Aurrent &0

    Post processing

    @pen the .ime3ist Processing BP@S.'+ enu:'# 1efine Dariables:

    "imeist

  • 8/17/2019 Lab Manual CAMA

    70/75

    Fig 3.!(

    0elect dd ?the green :O; sign in the upper left corner@ from this window and thefollowing window will appear.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    71/75

    Fig 3.!7

    4 =e are interested in the /odal solution * %CF 0olution – *Aomponent.

    4 Alick CI.

    4 raphically select node ! when prompted and click CI.

    Fig 3.!4

    (# ist Stored Dariables:

    -n the :"ime istory 5ariable; window, click the :&ist; button ?#rd buttons to the left

    of :dd; button@.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    72/75

    Fig 3.!2

    )# Plot 84 ;s# FreLuency

    -n the :"ime 5ariable; window click the :

  • 8/17/2019 Lab Manual CAMA

    73/75

    "o get a better view of the response, view the log scale of $.

    0elect $tility Menu –

  • 8/17/2019 Lab Manual CAMA

    74/75

    Fig 3.!6

    Fig 3.#9.

    Department of Mechanical Engineering, NIEIT, Mysuru. Page

  • 8/17/2019 Lab Manual CAMA

    75/75


Recommended