+ All Categories

labb

Date post: 21-Dec-2015
Category:
Upload: gowtham-sp
View: 214 times
Download: 0 times
Share this document with a friend
Description:
568
Popular Tags:
40
1. Pspice simulation of transient response of RLC circuits. a) Response to Pulse input b) Response to step input c) Response to sinusoidal input A) AIM: PSPICE simulation of RLC response of step input. Problem: - The R-L-C circuit R=10.2OHM L=30UH and C=20UF use PSPICE to calculate and plot the transient response from 1 to 400us. Apparatus: - PSPICE Software Package. Components I. Description The following components are presented in this experiment Voltage Source, Resistor, Capacitor, and Inductor. Voltage Source: The voltage source can be any type i.e., ac, dc, pulse, etc. The initialization of voltage sources is explained. Procedure: 1. Represent the nodes for a given circuit. 2. Write PSPICE Program by initializing all the circuit parameters. 3. Execute the program in Psice AD student and run the program. 4. Make the corrections if required. 5. Observe the out put and take printouts of that. CIRCUIT DIAGRAM:
Transcript

1. Pspice simulation of transient response of RLC circuits.a) Response to Pulse inputb) Response to step inputc) Response to sinusoidal input

A) AIM: PSPICE simulation of RLC response of step input.

Problem: - The R-L-C circuit R=10.2OHM L=30UH and C=20UF use PSPICE to calculate andplot the transient response from 1 to 400us.

Apparatus: - PSPICE Software Package.

ComponentsI. DescriptionThe following components are presented in this experiment Voltage Source, Resistor,Capacitor, and Inductor.Voltage Source: The voltage source can be any type i.e., ac, dc, pulse, etc. The initialization ofvoltage sources is explained.

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

CIRCUIT DIAGRAM:

PROGRAM:*RLC STEP*R 1 2 10.2L 2 3 30UHC 3 0 20UFVS 1 0 PWL(0 0 1NS 220V 1NS 220V).TRAN 1US 400US.PROBE.END

OUTPUT WAVEFORMS:

RESULT:The response of RLC circuit for step input is simulated using PSPICE and wave forms

have been plotted.

B) AIM: PSPICE simulation of RLC response of sinusoidal input.

Problem: - The R-L-C circuit R=10.2OHM L=30UH and C=20UF use PSPICE to calculate andplot the transient response from 1 to 400us.

Apparatus: - PSPICE Software Package.

ComponentsI. DescriptionThe following components are presented in this experiment Voltage Source, Resistor,Capacitor, and Inductor.Voltage Source: The voltage source can be any type i.e., ac, dc, pulse, etc. The initialization ofvoltage sources is explained.

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

CIRCUIT DIAGRAM:

PROGRAM:*RLC SINUSOIDAL*R 1 2 9L 2 3 42UHC 3 0 28UFVS 1 0 SIN(0 169.7 5000HZ).TRAN 1US 400US.PROBE.END

OUTPUT WAVEFORMS:

RESULT: The response of RLC circuit for sinusoidal input is simulated using PSPICE and waveforms have been plotted.C) AIM: PSPICE simulation of RLC response of pulse input.

Problem: - The R-L-C circuit R=10.2OHM L=30UH and C=20UF use PSPICE to calculate andplot the transient response from 1 to 400us.

Apparatus: - PSPICE Software Package.

Components

I. DescriptionThe following components are presented in this experiment Voltage Source, Resistor,Capacitor, and Inductor.Voltage Source: The voltage source can be any type i.e., ac, dc, pulse, etc. The initialization ofvoltage sources is explained.

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

CIRCUIT DIAGRAM:

PROGRAM:

*RLC PULSE*R 1 2 10L 2 3 8UHC 3 0 9UFVS 1 0 PULSE(-220V 220V 0 1NS 1NS 100US 200US).TRAN 1US 400US.PROBE

.ENDOUTPUT WAVEFORMS:

RESULT:The response of RLC circuit for pulse input is simulated using PSPICE and wave forms have been plotted.2. Analysis of three-phase circuit representing the generator transmission line and load.Plot three phase currents & neutral current using PSPICE.

Problem: 220v, 50hz supply is applied toa) balanced 3-phase star connected load contains 25 ohms of resistance and 6mH of inductance in each phase.

b)Un-balanced 3-phase star connected load of 10 ohms, 3mH inductance, 20ohms, 4mh & 30 ohms , 5mh inductance for 3-phase respectively. Plot 3 phase currents and neutral laod. If source L is 6mH and value of neutral inductance is 7Mh.

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

PROGRAM ( for balanced 3-phase analysis ) 

*balanced 3-phase analysis*source descriptionVS1 1 2 SIN(0 220 50HZ 0 0 0DEG)VS2 1 4 SIN(0 220 50HZ 0 0 120DEG)VS3 1 6 SIN(0 220 50HZ 0 0 240DEG)VS4 10 9 DC 0VVS5 10 11 DC 0VVS6 10 13 DC 0VVS7 0 10 DC 0V*COMPONENT DESCRIPTIONL1 2 3 6ML2 4 5 6ML3 6 7 6ML4 1 0 6ML5 8 3 6ML6 14 5 6ML7 12 7 6MR1 8 9 25R2 12 11 25R3 14 13 25* ANALYSIS DESCRIPTION.TRAN 20ms 160ms*OUTPUT DESCRIPTION.PROBE.END

PROGRAM ( for un-balanced 3-phase analysis ) 

*unbalanced 3-phase analysis*source descriptionVS1 1 2 SIN(0 220 50HZ 0 0 0DEG)VS2 1 4 SIN(0 220 50HZ 0 0 120DEG)VS3 1 6 SIN(0 220 50HZ 0 0 240DEG)VS4 10 9 DC 0VVS5 10 11 DC 0VVS6 10 13 DC 0VVS7 0 10 DC 0V*COMPONENT DESCRIPTIONL1 2 3 6ML2 4 5 6ML3 6 7 6ML4 1 0 6ML5 8 3 3ML6 14 5 4ML7 12 7 5MR1 8 9 10R2 12 11 30R3 14 13 20* ANALYSIS DESCRIPTION.TRAN 20ms 160ms*OUTPUT DESCRIPTION.PROBE.END

OUTPUT

-20 to 20A 0s to 160ms I(vs4,vs5,vs6,vs7)

RESULT:

Three-phase circuit representing the generator transmission line and load. three phase currents & neutral current are plotted using PSPICE.

3. Pspice simulation of single-phase full converter using RL & E loads and single-phaseAC voltage controller using RL & E loads.

AIM:- simulation of single-phase full converter using RL & E loads

PROBLEM:-

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

PROGRAM:- SINGLE PHASE FULL CONVERTER CKT WITH RLE LOAD

VS1 1 2 SIN(0 169.7V 50HZ)

R1 7 8 10OHM

L1 8 9 100MH

VDC 9 0 DC 100V

VG1 3 7 PULSE(0 100V 3333.34US 1NS 1NS 100US 20000US)

VG3 4 7 PULSE(0 100V 13333.34US 1NS 1NS 100US 20000US)

VG2 5 2 PULSE(0 100V 3333.34US 1NS 1NS 100US 20000US)

VG4 6 1 PULSE(0 100V 13333.34US 1NS 1NS 100US 20000US)

XT1 1 7 3 7 SCR

XT2 0 2 5 2 SCR

XT3 2 7 4 7 SCR

XT4 0 1 6 1 SCR

.SUBCKT SCR 1 2 3 2

S1 1 5 6 2 SMOD

RG 3 4 50

VX 4 2 DC 0V

VY 5 7 DC 0V

DT 7 2 DMOD

RT 6 2 1

CT 6 2 10UF

F1 2 6 POLY(2) VX VY 0 50 11

.MODEL SMOD VSWITCH(RON=0.0125 ROFF=10E+5 VON=0.5V VOFF=0V)

.MODEL DMOD D(IS=2.2E-15 BV=1800 TT=0)

.ENDS SCR

.TRAN 1US 60MS

.PROBE

.END

OUTPUT WAVEFORMS:-

RESULT: The response of single phase full converter circuit is simulated using PSPICE and wave forms have been plotted

AIM:- Pspice simulation of single-phase AC voltage controller using RL & E loads.

PROBLEM:-

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

PROGRAM:- * Single-phase AC Voltage controller*VS 1 0 SIN (0 169.7V 60) ;Source VoltageVG1 2 4 PULSE (0V 10V 4166.7US 1NS 1NS 100US 16666.66US)VG2 3 1 PULSE (0V 10V 12500.0US 1NS 1NS 100US 16666.66US)XT1 1 2 4 ASCR ;Thyristor T1XT2 4 3 1 ASCR ;Thyristor T2R 4 5 2.5 ;R-LoadL 5 6 6.5MH ;L-LoadVX 6 0 DC 0V ;Load Battery VoltageCS 1 7 0.1UF ; Snubber Circuit CapacitanceRS 7 4 750 ; Snubber Circuit Resistance*SUB CIRCUIT FOR AC THYRISTOR MODEL.SUBCKT ASCR 1 3 2*.MODEL anode cathode control cathode* NAME voltageS1 1 5 6 2 SMOD ; Voltage controlled switchRG 3 4 50VX 4 2 DC 0VVY 5 2 DC 0VRT 6 2 1CT 6 2 10UFF1 2 6 POLY(2) VX VY 0 50 11.MODEL SMOD VSWITCH (RON=0.0125 ROFF=10E+5 VON=0.5V VOFF=0V) ; Switch model.ENDS ASCR ; Ends subcircuit definition.TRAN 10US 50MS ; Transient analysis.PROBE ; Graphics postprocessor

.ENDOUTPUT WAVEFORMS:

RESULT:- The response of single phase AC voltage controller circuit is simulated using PSPICE and wave forms have been plotted.

4) Pspice simulation of resonant pulse commutation circuit and Buck chopper

AIM: PSPICE simulation of resonant pulse commutation circuit.

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

Circuit Diagram:

PROGRAM:Vs 1 0 DC 200VVg1 7 0 PULSE(0V 100V 0 1US 1US 0.4MS 1MS)Vg2 8 0 PULSE(0V 100V 0.4MS 1US 1US 0.6MS 1MS)Vg3 9 0 PULSE(0V 100V 0 1US 1US 0.2MS 1MS)Rg1 7 0 10MEGRg2 8 0 10MEGRG3 9 0 10MEGCs 10 11 0.1UF

Rs 11 4 725C 1 2 31.4UF IC=200VL 2 3 6.2UHD1 4 1 DMODDM 0 4 DMOD.MODEL DMOD D(IS=1E-25 BV=1000V)RM 4 5 0.4LM 5 6 5.2MHVx 6 0 DC 0VVy 1 10 DC 0VXT1 10 4 7 0 DCSCRXT2 3 4 8 0 DCSCRXT3 1 3 9 0 DCSCR.SUBCKT DCSCR 1 2 3 4DT 5 2 DMODST 1 5 3 4 SMOD.MODEL DMOD D(IS=1E-25 BV=1000V).MODEL SMOD VSWITCH (RON=0.1 ROFF=10E+6 VON=10V VOFF=5V).ENDS DCSCR.TRAN 0.5US 3MS 1.5MS 0.5US.PROBE.END

OUTPUT WAVEFORMS:-

RESULT:The capacitive voltage of resonant pulse commutation circuit is calculated andwaveforms have been plotted by PSPICE simulation.

AIM: PSPICE simulation of BUCK CHOPPER

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

PROGRAM:-* Buck chopperVS 1 0 DC 5VVY 1 2 DC 0V

L 2 3 150UHDM 3 4 DMODVX 4 5 DC 0VR 5 0 100C 5 0 220UFVG 7 0 PULSE (0V 6V 0US 0.1NS 0.1NS 26.7US 40US)RG 7 0 10MEGRB 7 6 10KM1 3 6 0 0 IRF150.MODEL DMOD D(IS=2.22E-15 BV=1200V IBV=13E-3) ; DIODE model parameters.MODEL IRF150 NMOS(VTO=2.83 KP=31.2U L=1U W=30M CGDO=0.418N CGSO=2.03N).TRAN 0.1US 2MS 1.8MS.PROBE.END

OUTPUT WAVEFORMS:-

RESULT:- BUCK CHOPPER is simulated and waveforms are plotted using pspice

5)Pspice simulation of single phase Inverter with PWM control

1. Aim: The objective is to study the effects of sinusoidal PWM control on the total harmonicdistortion (THD) of the output voltage for a single-phase full-bridge inverter under a resistiveload.Problem: A single-phase bridge inverter is shown in fig. The dc input voltage is 100V. It isoperated at an output frequency of fo=60Hz with a PWM control and four pulses per half-cycle.The modulation index M=0.6. The load is purely resistive with R=2.5 OHM. Write SPICEprogram and plot output voltage, the instantaneous carrier and reference voltages, and tocalculate Fourier coefficients of output voltage vo Use voltage-controlled switches to perform theswitching action.Apparatus: -Microsim Eval 8 PSPICE Software PackageComponents DescriptionThe following components are presented in this experiment Voltage Source, Resistor, Capacitor, and Inductor.Circuit diagram:

PROGRAM:Vs 1 0 DC 100VVT 17 0 PULSE (50V 0V 0 833.33US 833.33US 1NS 1666.67US)RT 17 0 2MEGVc1 15 0 PULSE(0 -30V 0 1NS 1NS 8333.33US 16666.6US)Rc1 15 0 2MEGVc3 16 0 PULSE (0 -30V 8333.33US 1NS 1NS 8333.33US 16666.67US)Rc3 16 0 2MEGR 4 6 2.7*L 5 6 10.2MHVx 3 4 DC 0VVy 1 2 DC 0VD1 3 2 DMODD2 0 6 DMODD3 6 2 DMODD4 0 3 DMOD.MODEL DMOD D(IS=2.2E-15 BV=1800V TT=0)Q1 2 7 3 QMODQ2 6 9 0 QMODQ3 2 11 6 QMODQ4 3 13 0 QMOD.MODEL QMOD NPN(IS=6.73F BF=416.4 CJC=3.638P CJE=4.493P)RG1 8 7 100RG2 10 9 100RG3 12 11 100RG4 14 13 100*SUBCIRCUIT CALL FOR PWM CONTROL

XPW1 17 15 8 3 PWMXPW2 17 15 10 0 PWMXPW3 17 16 12 6 PWMXPW4 17 16 14 0 PWM*SUBCIRCUIT FOR PWM CONTROL.SUBCKT PWM 1 2 3 4R1 1 5 1KR2 2 5 1KR1N 5 0 2MEGRF 5 3 100KR0 6 3 75C0 3 4 10PFE1 6 4 0 5 2E+5.ENDS PWM.TRAN 10US 16.6MS 0 10US.PROBE.FOUR 60HZ V(3,6).END

OUTPUT WAVEFORMS:-

Result:- The output voltage of Single phase PWM Inverter is plotted and Fourier coefficients arecalculated by PSPICE simulation.

6. Plotting of Bode plots, root locus and Nyquist plots for the transfer functions of systemup to 5th order using MATLAB.Apparatus:MATLAB/SIMULINK Software packageProblem1. k/s(s+1)(s+2)2. k(s+3)/s(s+3)(s^2+2s+3)4. Procedure1. Open the MATLAB M-file editor and write the program then save it.2. Initialize all the values, which are given in the problem.3. Simulate the program.4. Take printouts of the response. Program%Root locus of 5th order systemnum=[-3]den=[1 13 54 82 60 0]rlocus(num,den)

%Bode plot of 5th order systemnum=[-3]den=[1 13 54 82 60 0]bode(num,den)

%Nyquist plot of 5th order systemnum=[-3]den=[1 13 54 82 60 0]nyquist(num,den)

OUTPUT WAVEFORMS:-

RESULT:- Bode plots, root locus and Nyquist plots for the transfer functions of system for 5th order using MATLAB are plotted

Expt. No: 7PSPICE SIMULATION OF INTEGRATOR & DIFFERENTIATORAIM: To simulate an Op-amp based Integrator & Differentiator circuits using Pspice.SIMULATION TOOLS REQUIRED:PC with PSPICE SoftwareCIRCUIT DIAGRAMS:

PROGRAMS:INTEGRATOR:ANALYSIS OF INTEGRATOR CIRCUITVIN 1 0 PWL(0 0 1NS -1V 1MS -1V 1.0001MS 1V 2MS 1V 2.0001MS -1V 3MS -1V 3.0001MS 1V 4MS 1V)R1 1 2 2.5KRF 2 4 1MEGRX 3 0 1KRL 4 0 10KC1 2 4 0.1UFXA1 2 3 4 0 OPAMP.SUBCKT OPAMP 1 2 7 4RI 1 2 2.0E6GB 4 3 1 2 0.1MR1 3 4 10KC1 3 4 1.5619UFEA 4 5 3 4 2E+5R0 5 7 75.ENDS

.TRAN 50US 4MS

.PLOT TRAN V(4) V(1)

.PLOT AC VM(4) VP(4)

.PROBE

.END

DIFFERENTIATOR:ANALYSIS OF DIFFERENTIATOR CIRCUITVIN 1 0 PWL(0 0 1MS 1 2MS 0 3MS 1 4MS 0)R1 1 2 100RF 3 4 10KRX 5 0 10KRL 4 0 100KC1 2 3 0.4UFXA1 3 5 4 0 OPAMP.SUBCKT OPAMP 1 2 7 4RI 1 2 2.0E6GB 4 3 1 2 0.1MR1 3 4 10KC1 3 4 1.5619UFEA 4 5 3 4 2E+5RO 5 7 75.ENDS OPAMP.TRAN 10US 4MS.PLOT TRAN V(4) V(1).PROBE.ENDProcedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

OUTPUT WAVEFORMS:-

RESULT: Op-amp based Integrator & Differentiator circuits are simulated using pspice

EXP-8 :-STEP RESPONSE OF R-L-C CIRCUIT BY PARAMETRIC ANALYSIS USINGPSPICEAim: The objective is to find the response of a RLC series circuit using parametric values bygiving step input signal

Problem: - The R-L-C circuit R=1, 2, 8 OHM L=50UH and C=10UF use PSPICE to calculateand plot the transient response from 0 to 400us.The capacitor voltages are the output which is tobe plotted. Simulate this for STEP input by using parametric values, the input voltage magnitudeis 10 volts for all signals2. ApparatusMicrosim Eval 8 PSPICE software Package

3.Circuit diagram:

Procedure:1. Represent the nodes for a given circuit.2. Write PSPICE Program by initializing all the circuit parameters.3. Execute the program in Psice AD student and run the program.4. Make the corrections if required.5. Observe the out put and take printouts of that.

Program*TRANSIENT ANALYSIS OF A GIVEN R-L-C SERIES CIRCUITVS 1 0 PWL(0 0V 1NS 1V 1MS 1V ).PARAM VAL=1R 1 2 2

L 2 3 50UHC 3 0 10UF.TRAN 1US 400US.PROBE.END

OUTPUT WAVEFORM:-

Result:- The response of a RLC series circuit using parametric values bygiving step input signal is found using pspice

Exp9:-TRANSFER FUNCTION ANALYSIS OF GIVEN BLOCK DIAGRAM1. Aim: - The objective is to write the MATLAB program to find the time specifications of agiven system.2. Apparatus:MATLAB/SIMULINK Software packageProblem: Write a MATLAB program for a given system shown in fig and find the timespecifications of a system. Then if any steady state error is presents apply PI too reduce steadystate error.The system parameters areThe time constant of speed governor T g =02.sec.The time constant of turbine is T t =0.5.secAnd the transfer function of generator is =1/10s+0.81/R=20PI gain=7.Take incremental step load change PD=0.2..3. Circuit diagram

Procedure1. Open the MATLAB M-file editor and write the program then save it.2. Initialize all the values, which are given in the problem.3. Simulate the program.4. Take printouts of the response.5. Add the PI controller and repeat the steps 4 and 5.Program:-PROGRAM FOR TRANSFER FUNCTION ANALYSIS OF A GIVEN CIRCUITUSING MATLAB WITHOUT PI CONTROLLERPD=0.2; % STEP LOAD CHANGEnum=[0.1 0.7 1]; % TRANSFER FUNTION NUMERATORden=[1 7.08 10.56 20.8]; % TRANSFER FUNCTION DENOMINATORt=0:0.02:10; %TIME SETTINGc=-PD*step(num,den,t) %INITIALISING TOTAL TRANSFER FUNTIONplot(t,c)xlabel('t,sec') % X - AXIS SETTINGylabel('p.u') % Y - AXIS SETTINGtitle('STEP RESPONSE OF SPEED GOVERNING SYSTEM WITHOUT PI CONTROLLER')timespec(num,den)

PROGRAM FOR TRANSFER FUNCTION ANALYSIS OF A GIVEN CIRCUITUSING MATLAB WITH PI CONTROLLERPD=0.2; % STEP LOAD CHANGEPI=7; % PI INTEGRAL GAINnum=[0.1 0.7 1 0]; % TRANSFER FUNTION NUMERATORden=[1 7.08 10.56 20.8 PI]; % TRANSFER FUNCTION DENOMINATORt=0:0.02:12; %TIME SETTINGc=-PD*step(num,den,t) %INITIALISING TOTAL TRANSFER FUNTIONplot(t,c)xlabel('t,sec') % X - AXIS SETTINGylabel('p.u') % Y - AXIS SETTINGtitle('STEP RESPONSE OF SPEED GOVERNING SYSTEM WITH PI CONTROLLER')

waveforms:-

Result:-Transfer function analysis of given block diagram is done by using matlab


Recommended