+ All Categories
Home > Documents > Labsheet Steam Turbine and Condenser

Labsheet Steam Turbine and Condenser

Date post: 10-Sep-2015
Category:
Upload: hashemyahyaqalmahdi
View: 27 times
Download: 4 times
Share this document with a friend
Description:
Turbine
Popular Tags:
20
UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering ________________________________________________________ DEPARTMENT OF PLANT AND AUTOMOTIVE ENGINEERING THERMODYNAMICS II LABORATORY LAPORAN MAKMAL/LABORATORY REPORT Kod M/Pelajaran/ Subject Code ENGINEERING LABORATORY VI BDA 37101 Kod & Tajuk Ujikaji/ Code & Title of Experiment Kod Kursus/ Course Code Seksyen /Section Kumpulan/Group No. K.P / I.C No. Nama Pelajar/Name of Student No. Matrik Lecturer/Instructor/Tutor’s Name 1. 2. Nama Ahli Kumpulan/ Group Members No. Matrik Penilaian / Assesment 1. Teori / Theory 10 % 2. Keputusan / Results 15 % 3. Pemerhatian /Observation 20 % 4. Pengiraan / Calculation 10 % 5. Perbincangan / Discussions 25 % Tarikh Ujikaji / Date of Experiment Kesimpulan / Conclusion 15 % Tarikh Hantar / Date of Submission Rujukan / References 5 % JUMLAH / TOTAL 100% COP DITERIMA/APPROVED STAMP ULASAN PEMERIKSA/COMMENTS
Transcript
  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    DEPARTMENT OF PLANT AND AUTOMOTIVE ENGINEERING

    THERMODYNAMICS II LABORATORY

    LAPORAN MAKMAL/LABORATORY REPORT

    Kod M/Pelajaran/ Subject Code

    ENGINEERING LABORATORY VI BDA 37101

    Kod & Tajuk Ujikaji/ Code & Title of Experiment

    Kod Kursus/ Course Code

    Seksyen /Section

    Kumpulan/Group No. K.P / I.C No. Nama Pelajar/Name of Student

    No. Matrik

    Lecturer/Instructor/Tutors Name

    1. 2.

    Nama Ahli Kumpulan/ Group Members

    No. Matrik Penilaian / Assesment

    1. Teori / Theory 10 %

    2.

    Keputusan / Results 15 %

    3. Pemerhatian /Observation 20 %

    4. Pengiraan / Calculation 10 %

    5. Perbincangan / Discussions 25 %

    Tarikh Ujikaji / Date of Experiment

    Kesimpulan / Conclusion 15 %

    Tarikh Hantar / Date of Submission

    Rujukan / References 5 %

    JUMLAH / TOTAL 100%

    COP DITERIMA/APPROVED STAMP

    ULASAN PEMERIKSA/COMMENTS

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 2

    COURSE INFORMATION

    COURSE TITLE: ENGINEERING LABORATORY VI (BDA 37101) TOPIC 3: STEAM TURBINE AND CONDENSER 1. OBJECTIVE

    After completing the experiment, students shall be able to determine the performance of the steam turbine which is set to a certain speed, with different inlet pressure.

    2. EXPERIMENT EQUIPMENT It is a two rows velocity compounded unit (Two Row Curtis Stage Type) turbine. It consists of a set of nozzle, 2 rows of rotating blade and a row of fixed blade. A temperature and pressure measuring instrument is mounted at the inlet of the turbine. After steam expands in the turbine, it will flow into the condenser. The condenser consists of tubes, which allow cooling water to travel in it and allow heat to transfer from steam to the surrounding. The measurement of steam flow is done before steam is allowed to enter the boiler.

    The measurement of the temperature and pressure of the steam and cooling water can also be done at the inlet and exit of the condenser. It will enable us to do energy balance and determining the energy loss on the condenser.

    The turbine shaft is connected to an electric dynamometer. The ammeter and voltmeter to calculate the power required by the dynamometer is also available. Besides that, torque measuring instrument and tachometer to measure the speed is also available.

    3. INTRODUCTION Turbine is used to transfer energy from a high pressure to a low pressure flow. Because of that there will be a decrease in enthalpy while converting the energy to the mechanical work. Steam will accelerate when it flows into sets of fixed nozzle, which change the kinetic energy. The steam will then be deflected by the curvature of the turbine blade and causes a force that is equivalent to the change of the momentum. This force will rotate the rotor and it will transfer work through its shaft.

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 3

    4. THEORY

    Ideally we always assume that the expansion process in turbine is an adiabatic process since the velocity of steam is extremely high. However, due to friction the process is irreversible. From the steady flow energy equation, the shaft work is equal to the steam mass rate multiply with the change of enthalpy at the inlet and outlet of the turbine. Theoretically, the work in turbine is maximum when the process is isentropic (Figure1).

    In Figure 1, state 1 shows the condition at inlet of the turbine and state 2 shows the actual outlet condition. If an isentropic process was to be happened, the condition at the outlet of the turbine will be at state 2s.

    1

    2 S 2

    isobars

    Inlet

    Outlet

    h

    s

    For turbine

    Process 1-2 shows the actual turbine work and process 1-2s shows the isentropic work of the turbine. Turbine efficiency can be define as

    t work turbineisentropic work turbineactual =

    12

    12

    hhhh

    s

    4.1 GOVERNING EQUATION To evaluate the performance of the turbine, several parameters should be calculated:

    Condensate mass flow rate (kg/min)

    (min) collection of Time(kg) condensate collected of Mass

    Figure 1: h-s diagram showing expansion process in turbine

    kJ/kg

    kJ/kgK

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 4

    To convert steam and exhaust pressure to abs. (bar.abs)

    750

    mmHg pressure Barometricreading gauge pressure

    Brake power (kW)

    6010001 x 2

    xNT where N (rpm) and T (Nm)

    Power of electrical generator (kW)

    1000r voltagedynamomete x amperer Dynamomete

    Specific steam consumption (kg/kW)

    power Brakehourper rate nconsumptio Steam

    Supplied steam energy (kJ/min)

    Inlet steam enthalpy x steam consumption rate

    Supplied steam energy at the nozzle (kJ/min) Enthalpy at nozzle x steam consumption rate

    Supplied exhaust energy (kJ/min)

    Enthalpy at exhaust x steam consumption rate

    Decrement of energy at the control valve (kJ/min) Supplied steam energy - Supplied steam energy at the nozzle

    Decrement of turbine energy (kJ/min) Supplied steam energy Supplied exhaust energy

    Energy of brake power. (kJ/min)

    Brake power (kW) x 60

    Energy of friction and loses (kJ/min) Reduction of energy at turbine Energy of brake power

    Energy of cooling water (kJ/min) Cooling water mass rate x 4.18 x temperature rise

    Energy of condensate (kJ/min) Cooling water mass rate x 4.18 x temperature of condensate

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 5

    Isentropic energy decrement (kJ/min)

    Supplied steam energy at the nozzle (Isentropic exhaust enthalpy x steam consumption rate)

    Supplied Rankine energy (kJ/min)

    Supplied steam energy at the nozzle Energy of condensate.

    Mechanical efficiency (% me )

    100 x in turbineenergy ofReduction power brake ofEnergy

    Isentropic efficiency ( iso %)

    100 x reductionenergy Isentropic

    in turbineenergy ofReduction

    Rankine efficiency( R %)

    100 x energy Rankine

    in turbineenergy ofReduction

    Electrical conversion efficiency ( E %)

    100 x power brake Turbinegenerator electrical ofPower

    Thermal efficiency ( th %)

    100 x energy Rankine

    power brake ofEnergy

    Relative efficiency ( lRe %)

    100 x efficiency Rankineefficiency Thermal

    Energy consumption rate (kJ/kW-min)

    power Brake

    energy Rankine Supplied

    Energy of cooling water (kJ/min)

    Exhaust energy Energy of condensate

    Radiation energy (kJ/min) Supplied steam energy (Energy of brake power+ energy of

    friction and losses + energy of cooling water + energy of condensate)

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 6

    4.2 GRAPHS a. Characteristic of curves Form the analysis; parameters as follows could be plotted against inlet nozzle pressure. This is to describe the characteristic of the turbine visually. The parameters are:

    Steam consumption rate Brake power Electrical power Specific steam consumption Thermal efficiency

    Example of the graph is shown in Figure 2

    Brake power

    Steam consumption rate

    Thermal efficiency

    Specific steam consumption

    Inlet nozzle pressure

    Figure 2: Characteristic of a steam turbine b. Distribution of energy Besides looking at the characteristic of the curve, this experiment also gives information on the energy distribution in the turbine and condenser. Energy in turbine consist of:

    Supplied steam energy Supplied steam energy at nozzle Exhaust energy Reduction of energy at the control valve Energy of brake power Energy of friction and losses Energy of cooling water Energy of condensate Losses due to radiation

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 7

    Figure 3 shows the energy distribution.

    5000

    10,000

    15,000

    20,000

    25,000

    Radiation Loses And friction

    Brake power Condesate Water Cooling

    Figure 3: Energy distribution

    4.3 ADDITIONAL THEORY (10%)

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 8

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 9

    5. EXPERIMENT PROCEDURES

    a. Boil water in boiler and set the temperature at superheater. On the superheater.

    b. Ensure that the inlet temperature and pressure is 230oC and 8.6 bar before starting the experiment.

    c. Open the turbine exhaust fully and allow cooling water to condenser. d. On the vacuum pump motor. e. Set the draincock to open. f. Open the drain cock a little bit to allow drainage of water and when all

    water is drained and steam is generated, close back the drain cock. g. Open the stop valve to a condition where maximum inlet pressure and

    velocity is obtained h. Record the following data:

    Steam temperature and pressure Nozzle temperature and pressure Exhaust temperature and pressure Condenser temperature and pressure Velocity Torque load Voltage and current Cooling water flow rate Temperature and pressure of cooling water Condensate temperature No of nozzle Barometric pressure Time

    i. Repeat the experiment using different number of nozzle and different inlet

    pressure to obtain the optimum condition at a given speed.

    6. EXPERIMENT DATA

    Please refer to the data sheets provided in Appendix A and B. 7. RESULTS AND DISCUSSIONS

    a. Calculate the required parameters. b. Draw the characteristic curves as per Figure 2. c. Sketch the energy distribution.

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 10

    7.1 OBSERVATION (20%)

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 11

    7.2 CALCULATION (10%)

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 12

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 13

    7.3 DISCUSSIONS (25%)

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 14

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 15

    8. QUESTIONS

    a. Describe the factors that affect the experimental result.

    ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................

    b. Give any suggestion to improve the experiment. ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .........................................................................................................................

    ......................................................................................................................... ......................................................................................................................... .........................................................................................................................

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 16

    9. CONCLUSION (15%)

    Deduce conclusions from the experiment. Please comment on your experimental work in terms of achievement, problems faced throughout the experiment and suggest recommendation for improvements.

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 17

    10. REFERENCES (5%)

    ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .........................................................................................................................

    ......................................................................................................................... ......................................................................................................................... .........................................................................................................................

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    ________________________________________________________

    BDA37101-Edition III/2011 18

    STEAM TURBINE AND CONDENSER APPENDIX A

    DATA SHEET1 2 3 4 5 6 7 8 9 10 Average

    Time secBarometric pressure mmHgTurbine: Steam Pressure bar.gTurbine: Steam Temperature oCTurbine: Steam Pressure at nozzle bar.gTurbine: Steam Temperature at nozzle oCTurbine: Nozzle Pressure bar.gTurbine: Exhaust Temperature oCTurbine: Speed rpmTurbine: Torque NmCondenser : Inlet Steam temperature oCCondenser : Inlet Steam Pressure bar.gCondenser : Inlet water temperature oCCondenser : Outlet water temperature oCDynamometer: Current ampsDynamometer: Voltage VCondensate : Temperature oCCondensate : Measuring time secCondensate : Measurement quantity ltr

    Condensate : Initial water level ltr m3

    Condensate :Final water level ltr

    Name : .Nozzle Code No Outlet

    DiameterThroat

    DiameterOpen / Close

    Nozzle Code No Outlet Diamete

    Throat Diamete

    Open / Close

    1-5Date : . 6 8

    7 9

    Cooling Water quantityDryness factor at the inlet of turbine

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    __________________________________________________________________

    BDA37101-Edition III/2011 19

    APPENDIX B

    DATA SHEET

    Observe Data1 2 3 4 5 6 7 8 9 10 Average

    Number of opened nozzle and its locationTime secBarometric pressure mmHgTurbine: Steam Pressure bar.gTurbine: Steam Temperature oCTurbine: Steam Pressure at nozzle bar.gTurbine: Steam Temperature at nozzle oCTurbine: Nozzle Pressure bar.gTurbine: Exhaust Temperature oCTurbine: Speed rpmTurbine: Torque NmCondenser : Inlet Steam temperature oCCondenser : Inlet Steam Pressure bar.gCondenser : Inlet water temperature oCCondenser : Outlet water temperature oCDynamometer: Current ampsDynamometer: Voltage VCondensate : Temperature oCCondensate : cooling water flow secDryness factor at the inlet of turbine

  • UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

    __________________________________________________________________

    BDA37101-Edition III/2011 20

    DATA SHEET

    Calculated Data

    Cooling water flow rate kg/minInlet steam pressure bar.absNozzle steam pressure bar.absExaust pressure bar.absSteam consumption rate kg/minInlet steam enthalpy kJ/kgSteam enthalphy at nozzle kJ/kgExaust enthalpy kJ/kgIsentropic Exaust enthalpy kJ/kgBrake power kWElectrical genarator power kWspecific steam consumption kJ/kWSupplied steam energy kJ/minSupplied steam energy at nozzle kJ/minSupplied Exaust energy kJ/minDecrement of energy at the control valve kJ/minDecrement of energy at turbine kJ/minEnergy of brake power kJ/minEnergy of friction and loses kJ/minEnergy of cooling water kJ/minEnergy of condensate kJ/minIsentropic energy decrement kJ/minSupplied Rankine Energy kJ/minMechanical efficiency %Isentropic efficiency %Rankine efficiency %Electrical conversion efficiency %Thermal efficiency %


Recommended