+ All Categories
Home > Documents > Lactobacillus plantarum W1 - Winclove Probiotics

Lactobacillus plantarum W1 - Winclove Probiotics

Date post: 31-Oct-2021
Category:
Upload: others
View: 13 times
Download: 0 times
Share this document with a friend
2
This informaon is only for business-to-business purposes, not for consumers www.winclove.com Number of scientific articles Measured on Pubmed Nov 2014 L. plantarum W1, the world’s second most researched probiotic strain 600 120 100 80 60 40 20 0 La-5 acidophilus Lp 299 plantarum NCFM acidophilus Bb-12 bifidobacterium L. plantarum W1 LGG rhamnosus Lactobacillus plantarum W1 The intestinal microbiota plays a key role in several physiological, metabolic and immunologic processes and when disrupted is associated with disease. L. plantarum W1 is identical to the very well-documented L. plantarum WCFS1. The strain has proven to be able to survive the gastrointestinal tract, strengthen the intestinal barrier function and balance the immune system. Since the strain is highly stress resistant, it is suitable for industrial applications. L. plantarum is a multi-applicable and extensively studied probiotic strain. Probiotic characteristics The potential in vitro and in vivo effects of L. plantarum W1 have been extensively studied. Favorable probiotic characteristics of W1 are: • QPS (Qualified Presumption of Safe) status • Fully known genome and of human origin 1 • Halal and allergen free • Able to handle the oxidative stress in the colon 2 • Good lactic acid and acetate producer 3 • Fast growing to high cell densities 4 • Able to adapt to a wide variety of environments and substrates 5 • Potential to lower high cholesterol levels 6,7,8 • Good ability to adhere to the intestinal wall 9 • Ability to produce several antimicrobial substances 10,11,12,13 • High survival capacity in the human gastrointestinal tract 14, 15 • Potential to enhance the intestinal integrity 16,17 • Enhances the defense against intracellular pathogens such as bacteria and viruses 18,19 • Reduces inflammatory conditions 20,21
Transcript
Page 1: Lactobacillus plantarum W1 - Winclove Probiotics

This information is only for business-to-business purposes, not for consumers

www.winclove.com

Num

ber

of s

cien

tific

art

icle

sM

easu

red

on P

ubm

ed N

ov 2

014

L. plantarum W1, the world’s second most researched probiotic strain

600

120

100

80

60

40

20

0

La-5 acidophilus

Lp 299 plantarum

NCFM acidophilus

Bb-12 bifidobacterium

L. plantarum W1

LGG rhamnosus

Lactobacillus plantarum W1

The intestinal microbiota plays a key role in several physiological, metabolic and immunologic

processes and when disrupted is associated with disease. L. plantarum W1 is identical to the very

well-documented L. plantarum WCFS1. The strain has proven to be able to survive the

gastrointestinal tract, strengthen the intestinal barrier function and balance the immune system.

Since the strain is highly stress resistant, it is suitable for industrial applications. L. plantarum is a

multi-applicable and extensively studied probiotic strain.

Probiotic characteristics

The potential in vitro and in vivo effects of L. plantarum W1 have been

extensively studied. Favorable probiotic characteristics of W1 are:

• QPS (Qualified Presumption of Safe) status

• Fully known genome and of human origin1

• Halal and allergen free

• Able to handle the oxidative stress in the colon2

• Good lactic acid and acetate producer3

• Fast growing to high cell densities4

• Able to adapt to a wide variety of environments and substrates5

• Potential to lower high cholesterol levels6,7,8

• Good ability to adhere to the intestinal wall9

• Ability to produce several antimicrobial substances10,11,12,13

• High survival capacity in the human gastrointestinal tract14, 15

• Potential to enhance the intestinal integrity16,17

• Enhances the defense against intracellular pathogens such as bacteria

and viruses18,19

• Reduces inflammatory conditions20,21

Page 2: Lactobacillus plantarum W1 - Winclove Probiotics

References

1. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., ... & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum

WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990-1995.

2. Serrano, L. M., Molenaar, D., Wels, M., Teusink, B., Bron, P., de Vos, W., & Smid, E. (2007). Thioredoxin reductase is a key factor in the oxidative stress response of

Lactobacillus plantarum WCFS1. Microbial Cell Factories, 6(1), 29.

3. Lahtinen, S., Salminen, S., Von Wright, A., & Ouwehand, A. C. (Eds.). (2011).Lactic acid bacteria: microbiological and functional aspects. CRC Press.

4. Cohen, D., Renes, J., Bouwman, F. G., Zoetendal, E. G., Mariman, E., de Vos, W. M., & Vaughan, E. E. (2006). Proteomic analysis of log to stationary growth phase

Lactobacillus plantarum cells and a 2‐DE database.Proteomics, 6(24), 6485-6493.

5. Esteban-Torres, M., Reverón, I., Mancheño, J. M., de las Rivas, B., & Muñoz, R. (2013). Characterization of the first feruloyl esterase from Lactobacillus plantarum.

Applied and Environmental Microbiology.

6. Lambert, J. M., Bongers, R. S., de Vos, W. M., & Kleerebezem, M. (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in

Lactobacillus plantarum WCFS1. Applied and environmental microbiology, 74(15), 4719-4726.

7. Lambert, J. M., Siezen, R. J., de Vos, W. M., & Kleerebezem, M. (2008). Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive

bacteria. Microbiology, 154(8), 2492-2500.

8. Lambert, J. M., Weinbreck, F., & Kleerebezem, M. (2008). In Vitro Analysis of Protection of the Enzyme Bile Salt Hydrolase against Enteric Conditions by Whey

Protein− Gum Arabic Microencapsulation. Journal of agricultural and food chemistry, 56(18), 8360-8364.

9. Russo, P., López, P., Capozzi, V., de Palencia, P. F., Dueñas, M. T., Spano, G., & Fiocco, D. (2012). Beta-glucans improve growth, viability and colonization of probiotic

microorganisms. International journal of molecular sciences, 13(5), 6026-6039.

10. Sturme, M. H., Francke, C., Siezen, R. J., de Vos, W. M., & Kleerebezem, M. (2007). Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus

plantarum WCFS1. Microbiology, 153(12), 3939-3947.

11. Rolain, T., Bernard, E., Courtin, P., Bron, P. A., Kleerebezem, M., Chapot-Chartier, M. P., & Hols, P. (2012). Identification of key peptidoglycan hydrolases for morphogenesis,

autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1. Microbial cell factories, 11(1), 137.

12. Van der Veen, S., & Abee, T. (2011). Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride

and peracetic acid. International journal of food microbiology, 144(3), 421-431.

13. Hevia, A., Martínez, N., Ladero, V., Álvarez, M. A., Margolles, A., & Sánchez, B. (2013). An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum

NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin. Applied and environmental microbiology, 79(19), 6059-6066.

14. van Bokhorst-van de Veen, H., van Swam, I., Wels, M., Bron, P. A., & Kleerebezem, M. (2012). Congruent strain specific intestinal persistence of Lactobacillus plantarum in

an intestine-mimicking in vitro system and in human volunteers. PloS one, 7(9), e44588.

15. Vesa, T., Pochart, P., & Marteau, P. (2000). Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in

the human gastrointestinal tract. Alimentary Pharmacology and Therapeutics, 14(6), 823-828.

16. Karczewski, J., Troost, F. J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R. J. M., & Wells, J. M. (2010). Regulation of human epithelial tight junction proteins by

Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(6), G851-G859.

17. Cario, E., Gerken, G., & Podolsky, D. K. (2004). Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C.Gastroenterology,

127(1), 224-238.

18. Dong, H., Rowland, I., & Yaqoob, P. (2012). Comparative effects of six probiotic strains on immune function in vitro. British Journal of Nutrition, 108(3), 459.

19. Ramshaw, I. A., & Ramsay, A. J. (2000). The prime-boost strategy: exciting prospects for improved vaccination. Immunology today, 21(4), 163-165.

20. Smelt, M. J., de Haan, B. J., Bron, P. A., van Swam, I., Meijerink, M., Wells, J. M., ... & de Vos, P. (2013). Probiotics Can Generate FoxP3 T-Cell Responses in the Small

Intestine and Simultaneously Inducing CD4 and CD8 T Cell Activation in the Large Intestine. PloS one, 8(7), e68952.

21. Smelt, M. J., de Haan, B. J., Bron, P. A., van Swam, I., Meijerink, M., Wells, J. M., ... & de Vos, P. (2013). The Impact of Lactobacillus plantarum WCFS1 Teichoic Acid

D-Alanylation on the Generation of Effector and Regulatory T-cells in Healthy.

Winclove Probiotics

Hulstweg 11, 1032 LB Amsterdam, Netherlands

T +31 20 435 02 35

[email protected], www.winclove.com

Our global sales agent:

Spencer Food Industrial bv Amsterdam

T +31 20 620 89 28

[email protected]

This information is only for business-to-business purposes, not for consumers


Recommended