+ All Categories
Home > Documents > Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic...

Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic...

Date post: 25-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
30
Lagrangian surgery and Rigid analytic family of Floer homologies Kenji Fukaya A part of this talk is based on joint work with YongGeun Oh, Kaoru Ono, Hiroshi Ohta 1
Transcript
Page 1: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Lagrangian surgery and 

Rigid analytic family of Floer homologies

Kenji Fukaya

A part of this talk is based on joint work withYong‐Geun Oh, Kaoru Ono, Hiroshi Ohta

1

Page 2: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Why Family of Floer cohomology ?

It is expected that if family Floer cohomology is built in an ideal waythen homological Mirror symmetry conjecture will be proved.

2

Page 3: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

( , )X ω a sympectic manifold

L X⊂ (relatively spin) Lagrangian submanifold

0 0: ( ; ) ( ; ), 0,1, 2,kkm H L H L k⊗Λ → Λ = …

F‐Oh‐Ohta‐Ono(AMS/IP 46)

10

0

( ) ( ; ) ( , , ) 0kk

L b H L m b b∞

=

⎧ ⎫= ∈ Λ =⎨ ⎬⎩ ⎭

∑ …M

(Filtered) A infinity structure

Maurer‐Cartan Scheme

( )i iLb ∈M 1 1 2 2 0, ), , ); )(( (HF L b L b Λ

Floer homology3

Page 4: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

L X⊂Suppose Maslov index of  is  0.

0 , 0, limii i i iii

a T aλ λ λ→∞

⎧ ⎫Λ = ∈ ≥ = ∞⎨ ⎬

⎩ ⎭∑ C

1 1 2 2 0, ), , ); )(( (HF L b L b Λ is  Z  graded.

4

10[ ]T −Λ = Λ

Page 5: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Homological Mirror symmetry conjecture (Kontsevitch)

( , )X ω ( , )X J∨Mirror complex manifold.

L X⊂ ( )E L X ∨→ Object of derived categoryof coherent sheaves.

5

1 2( , )HF L L 1 2Ext( ( ), ( ))E L E L≅

Page 6: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Guess (related to (a version of) Stronminger‐Yau‐Zaslow conjecture)

( ( ), )( ) ( , ( ( ), ); )L u bE L HF L L u b= Λ

( ( ))u B

X L u∨

=∪M ( )L u : a family of Lagrangian submanifoldparametrized by

Mirror Object  =   family of Floer homologies

6

u B∈

Page 7: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

7

L

B

Xi

ππ is a locally trivial fiber bundle

1( ) ( )L u uπ −=

( ) : ( )L ui L u X→

is a Lagrangian embedding.

1( ( ); )uT B H L u→ R is an isomorphism.Assume

( )L u X⊂Suppose Maslov index of  is  0.

B has flat affine structure.

:s B → L is a section.

Page 8: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Theorem 1 (to be written up, a part is in arXiv:0908.0148)

8

1( ) ( ( )) ( ( );2 1 )u B

L u H L u π∈

= −∪M L M Z

has a structure of rigid analytic space.

(1)

(2) L′ is a another Lagrangian submanifold (relatively spin, Maslov = 0).

( )b L′ ′∈M

( , ) (( , ), ( ( ), ); )u b HF L b L u b′ ′ Λ

If

then

defines an object of derived category of coherent sheaves on   ( )M L

Page 9: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

9

Kontsevich‐Soibelman proposed to use Rigid analytic geometry to study homological Mirror symmetry around 2000.

Various operators etc. appears in Floer theory and Gromov‐Witten theory is one over (universal) Novikov ring = a kind of formal power series ring, and its convergence is not know. 

An idea to use rigid analytic geometry is first to construct everything in the lebel of formal power series (Novikov ring) and prove a version of Mirror symmetry (formal power series version) and use GAGA of rigid analytic geometry to prove convergence later (in the complex side). 

Page 10: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

10

10

0( ) ( ; ) ( , , ) 0k

kL b H L m b b

=

⎧ ⎫= ∈ Λ =⎨ ⎬⎩ ⎭

∑ …M

22

0 1. ,rank0

( ) ( , , ) ( ( ); ), ( ) ( ( ))lu k u u l H

k

P x m x x H L u P x P x∞

==

= ∈ Λ =∑ ……

i ix x=∑ e ie is a basis of   1( ( ); )H L u R

, 11

( ) ( , , )il lu i u m

iP x T P y yλ

=

=∑ …

exp( )i iy x=

' 1 1( ' , , ' ) ( , , )u m u mP y y P y y=… …

1 11( , , )i i m mu u u uu u

i i i my T y Q T y T y′ ′′− −−′ = + …

,1 1 1 11 , 1

1( , , ) ( , , )i jm m m mu u u uu u u u

i m i j mj

Q T y T y T Q T y T yλ∞

′ ′′ ′− −− −

=

= ∑… …

1 1, 1 1 1( , , ) , , , , ,l

i u m m mP y y y y y y− −⎡ ⎤∈ ⎣ ⎦… … …R

,u ui i′ are affine coordinate of  ,u u′

Page 11: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Theorem 1 is good enough to construct homological Mirror functor for torus.

11

To go beyond the case of torus we need to include singular fiber.

The main result of this talk says that we can do it in the case of simplest singular fiber.

Page 12: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

12

L

B

Xi

ππ is a locally trivial fiber bundle over

1( ) ( )L u uπ −=

( ) : ( )L ui L u X→

is a Lagrangian embedding.

1( ( ); )ouT B H L u→ R is an isomorphism.Assume

oB B−

oB

is a finitely many point

dim 4X =R1 2( ) ( )L u u Tπ −= =

ou B B∈ − 1( ) ( )L u uπ −=

ou B∈

is immersed         with one self intersection point which is transversal. 

2S

Page 13: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Theorem 2 (to be written up)

13

1( ) ( ( )) ( ( );2 1 )u B

L u H L u π∈

= −∪M L M Z

has a structure of rigid analytic space.

(1)

(2) L′ is a another Lagrangian submanifold (relatively spin, Maslov = 0).

( )b L′ ′∈M

( , ) (( , ), ( ( ), ); )u b HF L b L u b′ ′ Λ

If

then

defines an object of derived category of coherent sheaves on   ( )M L

Page 14: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

14

Application

Construction of homological Mirror functor for K3 surface.

Note:  Homological Mirrror symmetry was proved for quartic surface by P. Seidel.

Page 15: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

15

Method of proof:

Lagrangian surgery and behavior of Floer homologies via surgery.

(F,Oh,Ohta,Ono; Chapter 10 of Lagrangian Floer thoery book.)

Floer theory of Immersed Lagrangian submanifold.

(M. Akaho – D. Joyce, arXiv:0803.0717)

Page 16: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

1 2X L L⊃ ∪ Two Lagragian submanifolds which intersect at one point transversaly.

1 2#L L L± ±= is the connected sum,  embedded in   X

1L

2LL+

L−

Lagrangian surgery

16(Lalonde‐Sikovar, Polterovich)

Page 17: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Theorem 3 (F‐Oh‐Ohta‐Ono, will be in the revised version of Chapter 10)

There exist long exact sequences

Note:  Proved before by P. Seidel in case        or         is a sphere and exact case(= the case of Dehn twist).

2L1L

2 2 1 2 1 1(( , ), ( , )) (( , ), ( , ( , )) (( , ), ( , ))HF L b L b HF L b L b b HF L b L b−′ ′ ′ ′ ′ ′→ → → →

17

iLAssueme Maslov index of         are zero. 

1 2( ) ( ) ( )L L L± = ×M M M(1)

(2) ( )i ib L∈M ( )b L′ ′∈MIf

1 1 1 2 2 2(( , ), ( , )) (( , ), ( , ( , )) (( , ), ( , ))HF L b L b HF L b L b b HF L b L b+′ ′ ′ ′ ′ ′→ → → →

and

Page 18: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Holomorphic triangle

Becomes holomorphic 2 gon

Becomes             parametrizedfamily of holomorphic 2 gons

2nS −

Idea of the proof

18

Page 19: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

19

Floer theory of Immersed Lagrangian submanifold.

(M. Akaho – D. Joyce, arXiv:0803.0717)

Special case:  (0)L is immersed 2‐sphere with one self intersection point which is transversal. 

(( ), ( (0), ))HF L b L b′ ′

0 0( (0))L = Λ ⊕ΛM

is parametrized by

1 2 0 0( , ) ( (0))b x x L= ∈ = Λ ⊕ΛM

Page 20: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

20

(0)LL′

p

q

1 2

1 2

1 21 2

( , ) 1 2 1 2( , , )

, 0,1,2,

, # (( , , ); , )k kx x

k kk k

p q T x x M k k p qβ ω

β

β∩

=

∂ = ∑…

1

2 r

Page 21: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

21

1 2(( , , ); , )M k k p qβ

β

1 21, 3k k= =

p qL′

r r r r

Page 22: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

22

Resolve singularity by surgery.

There are 2 parameter family of smooth Lagrangianobtained.

2T

Page 23: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

23

BVanishing cycle is realized by Holomorphic disc

Wall crossing line

=

Page 24: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

Holomorphic triangle

Becomes holomorphic 2 gon

Becomes             parametrizedfamily of holomorphic 2 gons

2nS −

=24

0 2 pointsS =

Page 25: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

25

1 21 2 1k kT x x T xβ ω β ω∩ ∩

1T yβ ω∩

1 1 2( )T y y yβ ω∩ ±

One disc

Two discs

p

q

Page 26: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

26

(1)

(2)

(3)

(4)

(1) (2) (3) (4) (1)

Moduli of holomorphic strips

Bifurcation of the moduli space of holomorphic striparound `type one’ singular fiber(F‐Oh‐Ohta‐Ono 2000 version of [FOOO]) 

Page 27: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

27

BVanishing cycle is realized by Holomorphic disc

Wall crossing line

=

Page 28: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

28

1 2

1 2

1 2

( , ) 1 2 1 2( , , )

, # (( , , ); , )k kx x

k kp q T x x M k k p qβ ω

β

β∩∂ = ∑

1 2

1 2 1 1

1 2

1 1( , ) 1 2 1 2

( , , )

, ( ) # (( , , ); , )k ky y

k k

p q T y y y y M k k p qβ ω

β

β∩ − −∂ = ±∑

1 2

1 2 1

1 2

( , ) 1 1 2 1 2( , , )

, ( ) # (( , , ); , )k ky y

k k

p q T y y y y M k k p qβ ω

β

β−∩∂ = ±∑

Page 29: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

29

1 21 2 1k kT x x T xβ ω β ω∩ ∩

1T yβ ω∩

1 1 2( )T y y yβ ω∩ ±

One disc

Two discs

p

q

Page 30: Lagrangiansurgery and Rigid analytic family of Floerhomologiesfukaya/Berkeley.pdf · Rigid analytic family of Floerhomologies Kenji Fukaya A part of this talk is based on joint work

30

1 1

1 11 1

2 2

x y

x y y y− −

=

= ±1

1 1 1 21

2

x y y y

x y −

′ ′= ±

′=

1 1 1 2y y y y′ ′= ±

11 1 1 2y y y y−′′ = ±

11 1 2y y y−′′= ±

This is the monodromy by the Dehn twist.(= singularity of affine structure).

This coordinate change is the same as one appearing in the work by Gross‐Siebert.


Recommended