+ All Categories
Home > Documents > LAMPIRAN A FOTO WIRELESS SERVICE BELL...Dim x As String /*menetukan tipe data dari variabel x...

LAMPIRAN A FOTO WIRELESS SERVICE BELL...Dim x As String /*menetukan tipe data dari variabel x...

Date post: 02-Apr-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
92
LAMPIRAN A FOTO WIRELESS SERVICE BELL
Transcript

LAMPIRAN A

FOTO WIRELESS SERVICE BELL

LAMPIRAN B

SKEMATIK WIRELESS SERVICE BELL

--------------------------------------------------------------------------

SKEMATIK TRANSMITTER .................................................................... B-1

SKEMATIK RECEIVER ............................................................................ B-2

--------------------------------------------------------------------------

SKEMATIK TRANSMITTER

SKEMATIK RECEIVER

LAMPIRAN C

PROGRAM PADA PENGONTROL MIKRO

ATMEGA16

/************************************************** *** This program was produced by the CodeWizardAVR V1.25.3 Professional Automatic Program Generator © Copyright 1998-2007 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

Project : Version : Date : 8/3/2010 Author : F4CG Company : F4CG Comments:

Chip type : ATmega16 Program type : Application Clock frequency : 11.059200 MHz Memory model : Small External SRAM size : 0 Data Stack size : 256 *************************************************** **/

#include <mega16.h> #include <delay.h>

// Alphanumeric LCD Module functions #asm .equ __lcd_port=0x15 ;PORTC #endasm #include <lcd.h>

#define RXB8 1 #define TXB8 0 #define UPE 2 #define OVR 3 #define FE 4 #define UDRE 5 #define RXC 7

#define FRAMING_ERROR (1<<FE) #define PARITY_ERROR (1<<UPE) #define DATA_OVERRUN (1<<OVR) #define DATA_REGISTER_EMPTY (1<<UDRE) #define RX_COMPLETE (1<<RXC)

// USART Receiver buffer #define RX_BUFFER_SIZE 8 char rx_buffer[RX_BUFFER_SIZE];

#if RX_BUFFER_SIZE<256 unsigned char rx_wr_index,rx_rd_index,rx_counter; #else unsigned int rx_wr_index,rx_rd_index,rx_counter; #endif

// This flag is set on USART Receiver buffer overflow bit rx_buffer_overflow;

// USART Receiver interrupt service routine interrupt [USART_RXC] void usart_rx_isr(void) char status,data; status=UCSRA; data=UDR; if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0) rx_buffer[rx_wr_index]=data; if (++rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0; if (++rx_counter == RX_BUFFER_SIZE) rx_counter=0; rx_buffer_overflow=1; ; ; if(data=='R') /*program penanganan data interrupt yang diperoleh untuk mereset LCD*/ lcd_clear();

#ifndef _DEBUG_TERMINAL_IO_ // Get a character from the USART Receiver buffer #define _ALTERNATE_GETCHAR_ #pragma used+ char getchar(void) char data; while (rx_counter==0); data=rx_buffer[rx_rd_index]; if (++rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0; #asm("cli") --rx_counter; #asm("sei") return data; #pragma used- #endif

// Standard Input/Output functions

#include <stdio.h>

// Declare your global variables here

void main(void) // Declare your local variables here

// Input/Output Ports initialization // Port A initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTA=0x00; DDRA=0x00;

// Port B initialization // Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out // State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0 PORTB=0x00; DDRB=0xFF;

// Port C initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTC=0x00; DDRC=0x00;

// Port D initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTD=0x00; DDRD=0x00;

// Timer/Counter 0 initialization // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=FFh // OC0 output: Disconnected TCCR0=0x00; TCNT0=0x00; OCR0=0x00;

// Timer/Counter 1 initialization // Clock source: System Clock // Clock value: Timer 1 Stopped // Mode: Normal top=FFFFh // OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off

// Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off TCCR1A=0x00; TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00;

// Timer/Counter 2 initialization // Clock source: System Clock // Clock value: Timer 2 Stopped // Mode: Normal top=FFh // OC2 output: Disconnected ASSR=0x00; TCCR2=0x00; TCNT2=0x00; OCR2=0x00;

// External Interrupt(s) initialization // INT0: Off // INT1: Off // INT2: Off MCUCR=0x00; MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00;

// USART initialization // Communication Parameters: 8 Data, 1 Stop, No Parity // USART Receiver: On // USART Transmitter: On // USART Mode: Asynchronous // USART Baud rate: 9600 UCSRA=0x00; UCSRB=0x98; UCSRC=0x86; UBRRH=0x00; UBRRL=0x47;

// Analog Comparator initialization // Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off ACSR=0x80; SFIOR=0x00;

// LCD module initialization lcd_init(16);

// Global enable interrupts #asm("sei")

while (1)

PORTB=0B11111110; /*program pengolah data pada receiver*/ if(PINA.4==1) if(PINA.7==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 1 BILL"); printf("MEJA 1 BILL "); if(PINA.4==1) if(PINA.6==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 1 MENU"); printf("MEJA 1 MENU "); delay_ms(100); PORTB=0B11111101; if(PINA.4==1) if(PINA.7==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 2 BILL"); printf("MEJA 2 BILL "); if(PINA.4==1) if(PINA.6==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 2 MENU"); printf("MEJA 2 MENU "); delay_ms(100);

PORTB=0B11111011; if(PINA.4==1) if(PINA.7==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 3 BILL"); printf("MEJA 3 BILL "); if(PINA.4==1) if(PINA.6==1) lcd_clear(); lcd_gotoxy(0,0); lcd_putsf("MEJA 3 MENU"); printf("MEJA 3 MENU "); delay_ms(100); if (PINA.5==0) lcd_clear(); ;

LAMPIRAN D

PROGRAM INTERFACING VB6

Dim x As String /*menetukan tipe data dari variabel x sebagai string*/

Private Sub Command1_Click() /*program penghentian sistem bila button exit di klik*/

MSComm1.PortOpen = False

Unload Me

End Sub

Private Sub Form_Load() /*program pengaktifan komunikasi serial*/

MSComm1.CommPort = 1

MSComm1.Settings = "9600,n,8,1"

MSComm1.PortOpen = True

List1.Clear

End Sub

Private Sub Image10_Click() /*program peresetan dan pengiriman interrupt ketika image10 diklik*/

Image3.Visible = False

Image2.Visible = False

Image1.Visible = True

Image10.Visible = False

Text4.Visible = False

Text5.Visible = False

Timer2.Enabled = False

Timer3.Enabled = False

MSComm1.Output = "R"

End Sub

Private Sub Image11_Click() /*program peresetan dan pengiriman interrupt ketika image11 diklik*/

Image5.Visible = False

Image6.Visible = False

Image4.Visible = True

Image11.Visible = False

Text6.Visible = False

Text7.Visible = False

Timer4.Enabled = False

Timer5.Enabled = False

MSComm1.Output = "R"

End Sub

Private Sub Image12_Click() /*program peresetan dan pengiriman interrupt ketika image12 diklik*/

Image8.Visible = False

Image9.Visible = False

Image7.Visible = True

Image12.Visible = False

Text8.Visible = False

Text9.Visible = False

Timer6.Enabled = False

Timer7.Enabled = False

MSComm1.Output = "R"

End Sub

Private Sub Timer1_Timer() /*program penerimaan, pengecekan data, & pengaturan tampilannya*/

x = MSComm1.Input

If Len(x) > 0 Then

If Left(x, 11) = "MEJA 1 BILL" Then

Image2.Visible = True

Image1.Visible = False

Timer2.Enabled = True

Image10.Visible = True

Text4.Visible = True

Text5.Visible = False

End If

If Left(x, 11) = "MEJA 1 MENU" Then

Image2.Visible = True

Image1.Visible = False

Timer2.Enabled = True

Image10.Visible = True

Text5.Visible = True

Text4.Visible = False

End If

If Left(x, 11) = "MEJA 2 BILL" Then

Image5.Visible = True

Image4.Visible = False

Timer4.Enabled = True

Image11.Visible = True

Text6.Visible = True

Text7.Visible = False

End If

If Left(x, 11) = "MEJA 2 MENU" Then

Image5.Visible = True

Image4.Visible = False

Timer4.Enabled = True

Image11.Visible = True

Text7.Visible = True

Text6.Visible = False

End If

If Left(x, 11) = "MEJA 3 BILL" Then

Image8.Visible = True

Image7.Visible = False

Timer6.Enabled = True

Image12.Visible = True

Text8.Visible = True

Text9.Visible = False

End If

If Left(x, 11) = "MEJA 3 MENU" Then

Image8.Visible = True

Image7.Visible = False

Timer6.Enabled = True

Image12.Visible = True

Text9.Visible = True

Text8.Visible = False

End If

List1.AddItem (x & Format$(Time, "hh:mm:ss AM/PM"))

End If

End Sub

Private Sub Timer2_Timer() /*program membuat image3 berkedip dengan selang waktu tertentu*/

Image3.Visible = True

Timer2.Enabled = False

Timer3.Enabled = True

End Sub

Private Sub Timer3_Timer()

Image3.Visible = False

Timer2.Enabled = True

Timer3.Enabled = False

End Sub

Private Sub Timer4_Timer() /*program membuat image6 berkedip dengan selang waktu tertentu*/

Image6.Visible = True

Timer4.Enabled = False

Timer5.Enabled = True

End Sub

Private Sub Timer5_Timer()

Image6.Visible = False

Timer5.Enabled = False

Timer4.Enabled = True

End Sub

Private Sub Timer6_Timer() /*program membuat image9 berkedip dengan selang waktu tertentu*/

Image9.Visible = True

Timer6.Enabled = False

Timer7.Enabled = True

End Sub

Private Sub Timer7_Timer()

Image9.Visible = False

Timer7.Enabled = False

Timer6.Enabled = True

End Sub

LAMPIRAN E

DATASHEET

--------------------------------------------------------------------------

IC HT12D (DECODER) ............................................................................ E-1

IC HT12E (ENCODER) ............................................................................. E-10

MODUL RF TLP-RLP 315 ........................................................................ E-23

IC 74LS04 (INVERTER) ........................................................................... E-24

IC NE555 (CLOCK) .................................................................................. E-26

IC MAX232 (TRANSCEIVER) ................................................................ E-36

--------------------------------------------------------------------------

212

Series of Decoders

Selection Table

Function Address

No.

DataVT Oscillator Trigger Package

Part No. No. Type

HT12D 8 4 L Ö RC oscillator DIN active ²Hi² 18 DIP/20 SOP

HT12F 12 0 ¾ Ö RC oscillator DIN active ²Hi² 18 DIP/20 SOP

Notes: Data type: L stands for latch type data output.

VT can be used as a momentary data output.

1 July 12, 1999

General Description

The 212

decoders are a series of CMOS LSIs for

remote control system applications. They are

paired with Holtek¢s 212

series of encoders (re-

fer to the encoder/decoder cross reference ta-

ble). For proper operation, a pair of

encoder/decoder with the same number of ad-

dresses and data format should be chosen.

The decoders receive serial addresses and data

from a programmed 212

series of encoders that

are transmitted by a carrier using an RF or an

IR transmission medium. They compare the se-

rial input data three times continuously with

their local addresses. If no error or unmatched

codes are found, the input data codes are de-

coded and then transferred to the output pins.

The VT pin also goes high to indicate a valid

transmission.

The 212

series of decoders are capable of decod-

ing informations that consist of N bits of ad-

dress and 12-N bits of data. Of this series, the

HT12D is arranged to provide 8 address bits

and 4 data bits, and HT12F is used to decode 12

bits of address information.

Features

· Operating voltage: 2.4V~12V

· Low power and high noise immunity CMOS

technology

· Low standby current

· Capable of decoding 12 bits of information

· Pair with Holtek¢s 212

series of encoders

· Binary address setting

· Received codes are checked 3 times

· Address/Data number combination- HT12D: 8 address bits and 4 data bits- HT12F: 12 address bits only

· Built-in oscillator needs only 5% resistor

· Valid transmission indicator

· Easy interface with an RF or an infrared

transmission medium

· Minimal external components

Applications

· Burglar alarm system

· Smoke and fire alarm system

· Garage door controllers

· Car door controllers

· Car alarm system

· Security system

· Cordless telephones

· Other remote control systems

Block Diagram

Note: The address/data pins are available in various combinations (see the address/data table).

Pin Assignment

212

Series of Decoders

2 July 12, 1999

D a t a S h i f t R e g i s t e r

O s c i l l a t o r

B u f f e r

S y n c . D e t e c t o r

D i v i d e r

C o m p a r a t o r C o m p a r a t o r

B u f f e r T r a n s m i s s i o n G a t e C i r c u i t

D a t a D e t e c t o r

C o n t r o l L o g i c

O S C 1O S C 2

D I N

V D D V S S

V T

D a t a L a t c h C i r c u i t

A d d r e s s

8 - A d d r e s s4 - D a t a

1 2 - A d d r e s s 0 - D a t a

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

V D D

V T

O S C 1

O S C 2

D I N

D 1 1

D 1 0

D 9

D 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

1 2 - A d d r e s s 0 - D a t a

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

V D D

V T

O S C 1

O S C 2

D I N

A 1 1

A 1 0

A 9

A 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

1

2

3

4

5

6

7

8

9

1 0

2 0

1 9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

N C

V D D

V T

O S C 1

O S C 2

D I N

A 1 1

A 1 0

A 9

A 8

N C

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

8 - A d d r e s s4 - D a t a

1

2

3

4

5

6

7

8

9

1 0

2 0

1 9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

N C

V D D

V T

O S C 1

O S C 2

D I N

D 1 1

D 1 0

D 9

D 8

N C

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

H T 1 2 F 2 0 S O P

H T 1 2 F 1 8 D I P

H T 1 2 D 1 8 D I P

H T 1 2 D 2 0 S O P

Pin Description

Pin Name I/OInternal

ConnectionDescription

A0~A11 I

NMOS

TRANSMISSION

GATE

Input pins for address A0~A11 setting

They can be externally set to VDD or VSS.

D8~D11 O CMOS OUT Output data pins

DIN I CMOS IN Serial data input pin

VT O CMOS OUT Valid transmission, active high

OSC1 I OSCILLATOR Oscillator input pin

OSC2 O OSCILLATOR Oscillator output pin

VSS I ¾ Negative power supply (GND)

VDD I ¾ Positive power supply

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage...............................-0.3V to 13V Storage Temperature.................-50°C to 125°C

Input Voltage....................VSS-0.3 to VDD+0.3V Operating Temperature ..............-20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maxi-

mum Ratings² may cause substantial damage to the device. Functional operation of this de-

vice at other conditions beyond those listed in the specification is not implied and prolonged

exposure to extreme conditions may affect device reliability.

212

Series of Decoders

3 July 12, 1999

N M O ST R A N S M I S S I O N

G A T E

C M O S I N O S C I L L A T O R

O S C 1 O S C 2

C M O S O U T

E N

Electrical Characteristics Ta=25°C

Symbol ParameterTest Conditions

Min. Typ. Max. UnitVDD Conditions

VDD Operating Voltage ¾ ¾ 2.4 5 12 V

ISTB Standby Current5V

Oscillator stops¾ 0.1 1 mA

12V ¾ 2 4 mA

IDD Operating Current 5VNo load

fOSC=150kHz¾ 200 400 mA

IO

Data Output Source

Current (D8~D11)5V VOH=4.5V -1 -1.6 ¾ mA

Data Output Sink

Current (D8~D11)5V VOL=0.5V 1 1.6 ¾ mA

IVT

VT Output Source Current5V

VOH=4.5V -1 -1.6 ¾ mA

VT Output Sink Current VOL=0.5V 1 1.6 ¾ mA

VIH ²H² Input Voltage 5V ¾ 3.5 ¾ 5 V

VIL ²L² Input Voltage 5V ¾ 0 ¾ 1 V

fOSC Oscillator Frequency 5V ROSC=51kW ¾ 150 ¾ kHz

212

Series of Decoders

4 July 12, 1999

212

Series of Decoders

5 July 12, 1999

Functional Description

Operation

The 212

series of decoders provides various com-

binations of addresses and data pins in differ-

ent packages so as to pair with the 212

series of

encoders.

The decoders receive data that are transmitted

by an encoder and interpret the first N bits of

code period as addresses and the last 12-N bits

as data, where N is the address code number. A

signal on the DIN pin activates the oscillator

which in turn decodes the incoming address

and data. The decoders will then check the re-

ceived address three times continuously. If the

received address codes all match the contents of

the decoder¢s local address, the 12-N bits of

data are decoded to activate the output pins

and the VT pin is set high to indicate a valid

transmission. This will last unless the address

code is incorrect or no signal is received.

The output of the VT pin is high only when the

transmission is valid. Otherwise it is always

low.

Output type

Of the 212

series of decoders, the HT12F has no

data output pin but its VT pin can be used as a

momentary data output. The HT12D, on the

other hand, provides 4 latch type data pins

whose data remain unchanged until new data

are received.

Part

No.

Data

Pins

Address

Pins

Output

Type

Operating

Voltage

HT12D 4 8 Latch 2.4V~12V

HT12F 0 12 ¾ 2.4V~12V

Flowchart

The oscillator is disabled in the standby state

and activated when a logic ²high² signal applies

to the DIN pin. That is to say, the DIN should be

kept low if there is no signal input.

Y e s

C o d e i n ?

S t o r e d a t a

N o

Y e s

N o

N o

N o

Y e s

S t a n d b y m o d e

D i s a b l e V T &i g n o r e t h e r e s t o f

t h i s w o r d

Y e s

N o

Y e s

A d d r e s s o rd a t a e r r o r ?

L a t c h d a t a t o o u t p u t &a c t i v a t e V T

A d d r e s s b i t sm a t c h e d ?

M a t c hp r e v i o u s s t o r e d

d a t a ?

P o w e r o n

3 t i m e so f c h e c k i n gc o m p l e t e d ?

Decoder timing

Encoder/Decoder cross reference table

Decoders

Part No.Data Pins Address Pins VT Pair Encoder

Package

Encoder Decoder

DIP SOP DIP SOP

HT12D 4 8 ÖHT12A 18 20

18 20HT12E 18 20

HT12F 0 12 ÖHT12A 18 20

18 20HT12E 18 20

Address/Data sequence

The following table provides address/data sequence for various models of the 212

series of decoders. A

correct device should be chosen according to the requirements of the individual addresses and data.

Part No.Address/Data Bits

0 1 2 3 4 5 6 7 8 9 10 11

HT12D A0 A1 A2 A3 A4 A5 A6 A7 D8 D9 D10 D11

HT12F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

212

Series of Decoders

6 July 12, 1999

2 c l o c k s1 4

c h e c k

4 w o r d s 4 w o r d s

E n c o d e rD O U T

T r a n s m i t t e dC o n t i n u o u s l y

< 1 w o r d

E n c o d e rT r a n s m i s s i o n

E n a b l e

c h e c k

D e c o d e r V T

L a t c h e dD a t a O u t

2 c l o c k s1 4

Oscillator frequency vs supply voltage

The recommended oscillator frequency is fOSCD (decoder) @ 50 fOSCE (HT12E encoder)

@1

3fOSCE (HT12A encoder).

212

Series of Decoders

7 July 12, 1999

f o s c( S c a l e )

R o s c ( W )

0 . 5 0

( 1 0 0 k H z ) 1 . 0 0

1 . 5 0

2 . 0 0

2 . 5 0

3 . 5 0

4 . 0 0

3 . 0 0

0 . 2 5

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 V D D ( V D C )

6 8 k

6 2 k

5 6 k

5 1 k

4 7 k

4 3 k

3 9 k

3 6 k

3 3 k

3 0 k

2 7 k

7 5 k

8 2 k

1 0 0 k

1 2 0 k

1 5 0 k

1 8 0 k

2 2 0 k

Application Circuits

Notes: Typical infrared receiver: PIC-12043T/PIC-12043S (KODESHI CORP.)

or LTM9052 (LITEON CORP.)

Typical RF receiver: JR-200 (JUWA CORP.)

RE-99 (MING MICROSYSTEM, U.S.A.)

212

Series of Decoders

8 July 12, 1999

R e c e i v e r C i r c u i t

H T 1 2 D

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

V D D

V T

O S C 1

O S C 2

D I N

D 1 1

D 1 0

D 9

D 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

R O S C

V D D

R e c e i v e r C i r c u i t

H T 1 2 F

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S

V D D

V T

O S C 1

O S C 2

D I N

A 1 1

A 1 0

A 9

A 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

R O S C

V D D

212

Series of Decoders

9 July 12, 1999

Copyright ã 1999 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtekassumes no responsibility arising from the use of the specifications described. The applications mentioned herein areused solely for the purpose of illustration and Holtek makes no warranty or representation that such applicationswill be suitable without further modification, nor recommends the use of its products for application that may pres-ent a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without priornotification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.Tel: 886-3-563-1999Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.Tel: 886-2-2782-9635Fax: 886-2-2782-9636Fax: 886-2-2782-7128 (International sales hotline)

Holtek Microelectronics Enterprises Ltd.RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong KongTel: 852-2-745-8288Fax: 852-2-742-8657

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

HT12A/HT12E

212

Series of Encoders

Selection Table

Function Address

No.

Address/

Data No.

Data

No.Oscillator Trigger Package

Carrier

Output

Negative

PolarityPart No.

HT12A 8 0 4455kHz

resonatorD8~D11

18 DIP

20 SOP38kHz No

HT12E 8 4 0RC

oscillatorTE

18 DIP

20 SOPNo No

Note: Address/Data represents pins that can be address or data according to the decoder require-

ment.

1 April 11, 2000

General Description

The 212 encoders are a series of CMOS LSIs for

remote control system applications. They are

capable of encoding information which consists

of N address bits and 12N data bits. Each ad-

dress/data input can be set to one of the two

logic states. The programmed addresses/data

are transmitted together with the header bits

via an RF or an infrared transmission medium

upon receipt of a trigger signal. The capability

to select a TE trigger on the HT12E or a DATA

trigger on the HT12A further enhances the ap-

plication flexibility of the 212 series of encoders.

The HT12A additionally provides a 38kHz car-

rier for infrared systems.

Features

Operating voltage 2.4V~5V for the HT12A 2.4V~12V for the HT12E

Low power and high noise immunity CMOS

technology

Low standby current: 0.1A (typ.) at

VDD=5V

HT12A with a 38kHz carrier for infrared

transmission medium

Minimum transmission word Four words for the HT12E One word for the HT12A

Built-in oscillator needs only 5% resistor

Data code has positive polarity

Minimal external components

HT12A/E: 18-pin DIP/20-pin SOP package

Applications

Burglar alarm system

Smoke and fire alarm system

Garage door controllers

Car door controllers

Car alarm system

Security system

Cordless telephones

Other remote control systems

Block Diagram

TE trigger

HT12E

DATA trigger

HT12A

Note: The address data pins are available in various combinations (refer to the address/data table).

HT12A/HT12E

2 April 11, 2000

!

"

#

$

% ! &

"

#

' ( )

* *

!

$

Pin Assignment

Pin Description

Pin Name I/OInternal

ConnectionDescription

A0~A7 I

CMOS IN

Pull-high

(HT12A)

Input pins for address A0~A7 setting

These pins can be externally set to VSS or left open

NMOS

TRANSMISSION

GATE

PROTECTION

DIODE

(HT12E)

AD8~AD11 I

NMOS

TRANSMISSION

GATE

PROTECTION

DIODE

(HT12E)

Input pins for address/data AD8~AD11 setting

These pins can be externally set to VSS or left open

D8~D11 ICMOS IN

Pull-high

Input pins for data D8~D11 setting and transmission en-

able, active low

These pins should be externally set to VSS or left open

(see Note)

DOUT O CMOS OUT Encoder data serial transmission output

L/MB ICMOS IN

Pull-high

Latch/Momentary transmission format selection pin:

Latch: Floating or VDD

Momentary: VSS

HT12A/HT12E

3 April 11, 2000

+

%

&

!

"

*

*

' ( )

,

$

+

%

&

!

$

,

$

!

&

%

+

+

%

&

!

$

,

,

$

!

&

%

+

-

"

*

*

' ( )

,

$

-

+

%

&

!

+

%

&

!

"

,

$

+

%

&

!

$

,

$

!

&

%

+

+

%

&

!

$

,

,

$

!

&

%

+

-

"

,

$

-

+

%

&

!

Pin Name I/OInternal

ConnectionDescription

TE ICMOS IN

Pull-highTransmission enable, active low (see Note)

OSC1 I OSCILLATOR 1 Oscillator input pin

OSC2 O OSCILLATOR 1 Oscillator output pin

X1 I OSCILLATOR 2 455kHz resonator oscillator input

X2 O OSCILLATOR 2 455kHz resonator oscillator output

VSS I Negative power supply, grounds

VDD I Positive power supply

Note: D8~D11 are all data input and transmission enable pins of the HT12A.

TE is a transmission enable pin of the HT12E.

Approximate internal connections

Absolute Maximum Ratings

Supply Voltage (HT12A) ..............0.3V to 5.5V Supply Voltage (HT12E) ...............0.3V to 13V

Input Voltage....................VSS0.3 to VDD+0.3V Storage Temperature.................50C to 125C

Operating Temperature...............20C to 75C

Note: These are stress ratings only. Stresses exceeding the range specified under Absolute Maxi-

mum Ratings may cause substantial damage to the device. Functional operation of this device

at other conditions beyond those listed in the specification is not implied and prolonged expo-

sure to extreme conditions may affect device reliability.

HT12A/HT12E

4 April 11, 2000

- ) . - ) / / -

) / -0 1 2 3 2

) " / ' ' .

/ ' ' .

* *

-

- ) . - ) / / - 0 . / - /

Electrical Characteristics

HT12A Ta=25C

Symbol ParameterTest Conditions

Min. Typ. Max. UnitVDD Conditions

VDD Operating Voltage 2.4 3 5 V

ISTB Standby Current3V

Oscillator stops 0.1 1 A

5V 0.1 1 A

IDD Operating Current3V No load

fOSC=455kHz

200 400 A

5V 400 800 A

IDOUT Output Drive Current 5VVOH=0.9VDD (Source) 1 1.6 mA

VOL=0.1VDD (Sink) 2 3.2 mA

VIH H Input Voltage 0.8VDD VDD V

VIL L Input Voltage 0 0.2VDD V

RDATAD8~D11 Pull-high

Resistance5V VDATA=0V 150 300 k

HT12E Ta=25C

Symbol ParameterTest Conditions

Min. Typ. Max. UnitVDD Conditions

VDD Operating Voltage 2.4 5 12 V

ISTB Standby Current3V

Oscillator stops 0.1 1 A

12V 2 4 A

IDD Operating Current3V No load

fOSC=3kHz

40 80 A

12V 150 300 A

IDOUT Output Drive Current 5VVOH=0.9VDD (Source) 1 1.6 mA

VOL=0.1VDD (Sink) 1 1.6 mA

VIH H Input Voltage 0.8VDD VDD V

VIL L Input Voltage 0 0.2VDD V

fOSC Oscillator Frequency 5V ROSC=1.1M 3 kHz

RTE TE Pull-high Resistance 5V VTE=0V 1.5 3 M

HT12A/HT12E

5 April 11, 2000

Functional Description

Operation

The 212 series of encoders begin a 4-word transmission cycle upon receipt of a transmission enable

(TE for the HT12E or D8~D11 for the HT12A, active low). This cycle will repeat itself as long as the

transmission enable (TE or D8~D11) is held low. Once the transmission enable returns high the en-

coder output completes its final cycle and then stops as shown below.

HT12A/HT12E

6 April 11, 2000

+ 4 + 4

"

5 4

Transmission timing for the HT12E

"

5 4

$ 6 7 1

4

4 2 $ 8 9 :

4

Transmission timing for the HT12A (L/MB=Floating or VDD)

"

$ 6 7 1

4

5 4

! 4

4

! 4

; < =

; < =

Transmission timing for the HT12A (L/MB=VSS)

Information word

If L/MB=1 the device is in the latch mode (for use with the latch type of data decoders). When the trans-

mission enable is removed during a transmission, the DOUT pin outputs a complete word and then

stops. On the other hand, if L/MB=0 the device is in the momentary mode (for use with the momentary

type of data decoders). When the transmission enable is removed during a transmission, the DOUT

outputs a complete word and then adds 7 words all with the 1 data code.

An information word consists of 4 periods as illustrated below.

Address/data waveform

Each programmable address/data pin can be externally set to one of the following two logic states as

shown below.

HT12A/HT12E

7 April 11, 2000

( > # ?

? ? ; > = ? ?

Composition of information

@ @

@ A @

(

Address/Data bit waveform for the HT12E

@ @

@ A @

@ @

@ A @

$ 8 9 :

Address/Data bit waveform for the HT12A

The address/data bits of the HT12A are transmitted with a 38kHz carrier for infrared remote con-

troller flexibility.

Address/data programming (preset)

The status of each address/data pin can be individually pre-set to logic high or low. If a transmis-

sion-enable signal is applied, the encoder scans and transmits the status of the 12 bits of ad-

dress/data serially in the order A0 to AD11 for the HT12E encoder and A0 to D11 for the HT12A

encoder.

During information transmission these bits are transmitted with a preceding synchronization bit. If

the trigger signal is not applied, the chip enters the standby mode and consumes a reduced current of

less than 1A for a supply voltage of 5V.

Usual applications preset the address pins with individual security codes using DIP switches or PCB

wiring, while the data is selected by push buttons or electronic switches.

The following figure shows an application using the HT12E:

The transmitted information is as shown:

Pilot

&

Sync.

A0

1

A1

0

A2

1

A3

0

A4

0

A5

0

A6

1

A7

1

AD8

1

AD9

1

AD10

1

AD11

0

HT12A/HT12E

8 April 11, 2000

+ % & ! $ ,

"

Address/Data sequence

The following provides the address/data sequence table for various models of the 212 series of

encoders. The correct device should be selected according to the individual address and data require-

ments.

Part No.Address/Data Bits

0 1 2 3 4 5 6 7 8 9 10 11

HT12A A0 A1 A2 A3 A4 A5 A6 A7 D8 D9 D10 D11

HT12E A0 A1 A2 A3 A4 A5 A6 A7 AD8 AD9 AD10 AD11

Transmission enable

For the HT12E encoders, transmission is enabled by applying a low signal to the TE pin. For the

HT12A encoders, transmission is enabled by applying a low signal to one of the data pins D8~D11.

Two erroneous HT12E application circuits

The HT12E must follow closely the application circuits provided by Holtek (see the Application cir-

cuits).

Error: AD8~AD11 pins input voltage > VDD+0.3V

HT12A/HT12E

9 April 11, 2000

,

$

Error: The ICs power source is activated by pins AD8~AD11

Flowchart

HT12A HT12E

Note: D8~D11 are transmission enables of the HT12A.

TE is the transmission enable of the HT12E.

HT12A/HT12E

10 April 11, 2000

,

$

>

> B-

-

4 2 ?

> B

' ( ) < - B

2

-

C

C

C

! 2

0 4

>

> B

-

-

C

C

+ 4

>

+ 4

0 4

Oscillator frequency vs supply voltage

The recommended oscillator frequency is fOSCD (decoder) 50 fOSCE (HT12E encoder)

1

3fOSCE (HT12A encoder)

HT12A/HT12E

11 April 11, 2000

+ % & ! $ ,

#

#

; 8 9 : = #

+ #

% #

& #

! #

# )

# % )

# )

# )

, 8

$ 8

! % 8

& $ 8

& 8

% & 8

% 8

+ ! 8

Application Circuits

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)

Typical RF transmitter: JR-220 (JUWA CORP.)

HT12A/HT12E

12 April 11, 2000

+ % % 8

)

? D

? D

$ %

+

%

&

!

$

,

+

%

&

!

"

*

*

' ( )

,

$

$

!

&

%

+

8

+

%

&

!

"

,

$

+

%

&

!

$

,

$

!

&

%

+

.

HT12A/HT12E

13 April 11, 2000

Copyright 2000 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtekassumes no responsibility arising from the use of the specifications described. The applications mentioned herein areused solely for the purpose of illustration and Holtek makes no warranty or representation that such applicationswill be suitable without further modification, nor recommends the use of its products for application that may pres-ent a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without priornotification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.Tel: 886-3-563-1999Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.Tel: 886-2-2782-9635Fax: 886-2-2782-9636Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd.RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong KongTel: 852-2-745-8288Fax: 852-2-742-8657

TLP434A & RLP434A RF ASK Hybrid Modules for Radio Control ( New Version )

Laipac Technology, Inc.105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada

Tel: (905)762-1228 Fax: (905)763-1737 e-mail: [email protected]

Symbol Parameter Conditions Min Typ Max Unit

Vcc Operating supply voltage 2.0 - 12.0 V

Icc 1 Peak Current (2V) - - 1.64 mA

Icc 2 Peak Current (12V) - - 19.4 mA

Vh Input High Voltage Idata= 100uA (High) Vcc-0.5 Vcc Vcc+0.5 V

Vl Input Low Voltage Idata= 0 uA (Low) - - 0.3 V

FO Absolute Frequency 315Mhz module 314.8 315 315.2 MHz

PO RF Output Power- 50ohm Vcc = 9V-12V - 16 - dBm

Vcc = 5V-6V - 14 - dBm

DR Data Rate External Encoding 512 4.8K 200K bps

Notes : ( Case Temperature = 25°C +- 2°C , Test Load Impedance = 50 ohm )

Application Circuit : Typical Key-chain Transmitter using HT12E-18DIP, a Binary 12 bit Encoder from

Holtek Semiconductor Inc. Application Circuit : Typical RF Receiver using HT12D-18DIP, a Binary 12 bit Decoder with 8 bit uC HT48RXX from

Holtek Semiconductor Inc.

Easy-Link

Wireless

Symbol Parameter Conditions Min Typ Max

Vcc Operating supply voltage 3.3 5.0V 6.0 V

Itot Operating Current - 4.5 mA

Idata = +200 uA ( High ) Vcc-0.5 - Vcc V Vdata Data Out

Idata = -10 uA ( Low ) - - 0.3 V

Electrical Characteristics

Characteristics SYM Min Typ Max Unit

Operation Radio Frequency FC 315, 418 and 433.92 MHz

Sensitivity Pref -110 dBm

Channel Width +-500 Khz

Noise Equivalent BW 4 Khz

Receiver Turn On Time 5 ms

Operation Temperature Top -20 - 80 C

Baseboard Data Rate 4.8 KHz

TLP434A Ultra Small Transmitter

1 2 3 4

13.0mm

13.3mm

2.54mm

pin 1 : GND

pin 2 : Data In

pin 3 : Vcc

pin 4 : Antenna ( RF output )

Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz

Modulation : ASKOperation Voltage : 2 - 12 VDC

24.72mm

43.42mm

1 2 3 4

3 4

5 6 7 8

7 8

10.5mm

11.5mm

pin 1 : Gnd

pin 2 : Digital Data Output

pin 3 : Linear Output /Test

pin 4 : Vcc

pin 5 : Vcc

pin 6 : Gnd

pin 7 : Gnd

pin 8 : Antenna

FrequencyFrequency Frequency Frequency 315, 418 and 433.92 Mhz315, 418 and 433.92 Mhz315, 418 and 433.92 Mhz315, 418 and 433.92 MhzModulation : ASK

Supply Voltage : 3.3 - 6.0 VDC

Output : Digital & Linear

RLP434A SAW Based Receiver10.3mm

5-1

FAST AND LS TTL DATA

HEX INVERTER

14 13 12 11 10 9

1 2 3 4 5 6

VCC

8

7

GND

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply Voltage 54

74

4.5

4.75

5.0

5.0

5.5

5.25

V

TA Operating Ambient Temperature Range 54

74

–55

0

25

25

125

70

°C

IOH Output Current — High 54, 74 –0.4 mA

IOL Output Current — Low 54

74

4.0

8.0

mA

SN54/74LS04

HEX INVERTER

LOW POWER SCHOTTKY

J SUFFIX

CERAMIC

CASE 632-08

N SUFFIX

PLASTIC

CASE 646-06

141

14

1

ORDERING INFORMATION

SN54LSXXJ Ceramic

SN74LSXXN Plastic

SN74LSXXD SOIC

14

1

D SUFFIX

SOIC

CASE 751A-02

5-2

FAST AND LS TTL DATA

SN54/74LS04

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input HIGH Voltage 2.0 VGuaranteed Input HIGH Voltage for

All Inputs

VIL Input LOW Voltage54 0.7

VGuaranteed Input LOW Voltage for

VIL Input LOW Voltage74 0.8

Vp g

All Inputs

VIK Input Clamp Diode Voltage –0.65 –1.5 V VCC = MIN, IIN = –18 mA

VOH Output HIGH Voltage54 2.5 3.5 V VCC = MIN, IOH = MAX, VIN = VIH

VOH Output HIGH Voltage74 2.7 3.5 V

CC , OH , IN IHor VIL per Truth Table

VOL Output LOW Voltage54, 74 0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,

VIN = VIL or VIHVOL Output LOW Voltage74 0.35 0.5 V IOL = 8.0 mA

VIN = VIL or VIHper Truth Table

IIH Input HIGH Current20 µA VCC = MAX, VIN = 2.7 V

IIH Input HIGH Current0.1 mA VCC = MAX, VIN = 7.0 V

IIL Input LOW Current –0.4 mA VCC = MAX, VIN = 0.4 V

IOS Short Circuit Current (Note 1) –20 –100 mA VCC = MAX

ICC

Power Supply Current

Total, Output HIGH 2.4 mA VCC = MAXICCTotal, Output LOW 6.6

mA VCC MAX

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tPLH Turn-Off Delay, Input to Output 9.0 15 ns VCC = 5.0 V

tPHL Turn-On Delay, Input to Output 10 15 ns

CCCL = 15 pF

July 1998

NDIP8

(Plastic Package)

DSO8

(Plastic Micropackage)

1

2

3

4 5

6

7

8 1 - GND

2 - Trigger3 - Output

4 - Reset

5 - Control voltage

6 - Threshold

7 - Discharge

8 - VCC

PIN CONNECTIONS (top view)

. LOW TURN OFF TIME.MAXIMUM OPERATING FREQUENCYGREATERTHAN 500kHz. TIMING FROMMICROSECONDS TO HOURS.OPERATES IN BOTH ASTABLE ANDMONOSTABLEMODES. HIGH OUTPUT CURRENT CAN SOURCE ORSINK 200mA. ADJUSTABLE DUTY CYCLE. TTL COMPATIBLE. TEMPERATURE STABILITY OF 0.005%PERoC

ORDER CODES

PartNumber

TemperatureRange

Package

N D

NE555 0oC, 70oC • •

SA555 –40oC, 105oC • •

SE555 –55oC, 125

oC • •

DESCRIPTION

TheNE555monolithic timing circuit isa highlystable

controllercapableofproducingaccuratetime delays

or oscillation. In the time delay mode of operation,

the time is precisely controlled by one external re-

sistorandcapacitor.Forastableoperationasanos-

cillator, the free running frequency and the duty cy-cle are both accurately controlled with two external

resistors and one capacitor. The circuit may be trig-gered and reset on falling waveforms, and the out-

put structure can source or sink up to 200mA. TheNE555 is available in plastic and ceramic minidip

packageand in a 8-leadmicropackage and inmetal

can package version.

NE555SA555 - SE555

GENERAL PURPOSE SINGLE BIPOLAR TIMERS

1/10

THRESHOLD

COMP

5kΩ

5kΩ

5kΩ

TRIGGER

R

FLIP-FLOP

S

Q

DISCHARGE

OUT

INHIBIT/

RESET

RESET

COMP

S -8086

S

+

CONTROL VOLTAGE

VCC

BLOCK DIAGRAM

OUTPUT

CONTROLVOLTAGE

THRESHOLDCOMPARATOR

VCC

R14.7kΩ

R2830Ω

Q5 Q6 Q7 Q8 Q9

R34.7kΩ

R41kΩ

R85kΩ

Q1

Q2 Q3

Q4

Q10

Q11 Q12

Q13

THRESHOLD

TRIGGER

RESET

DISCHARGE

G ND

2

4

7

1

Q14

Q15

R510kΩ

R6100kΩ

R7100kΩ

R105kΩ

Q17

Q16 Q18

R95kΩ D2

R16100Ω

R154.7kΩ

R14220Ω

Q24

Q23

R174.7kΩ

3

Q22

Ρ13

D1

Q19Q20

Q21

R126.8kΩ

5

TRIGGER COMPARATOR FLIP FLOP

R115kΩ

3.9kΩ

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

Vcc Supply Voltage 18 V

Toper Operating Free Air Temperature Range for NE555for SA555for SE555

0 to 70–40 to 105–55 to 125

oC

Tj Junction Temperature 150oC

Tstg Storage Temperature Range –65 to 150oC

NE555/SA555/SE555

2/10

ELECTRICAL CHARACTERISTICS

Tamb = +25oC, VCC = +5V to +15V (unless otherwise specified)

Symbol ParameterSE555 NE555 - SA555

UnitMin. Typ. Max. Min. Typ. Max.

ICC Supply Current (RL ∞) (- note 1)Low State VCC = +5V

VCC = +15VHigh State VCC = 5V

3102

512

3102

615

mA

Timing Error (monostable)(RA = 2k to 100kΩ, C = 0.1µF)Initial Accuracy - (note 2)Drift with TemperatureDrift with Supply Voltage

0.5300.05

21000.2

1500.1

3

0.5

%ppm/°C%/V

Timing Error (astable)(RA, RB = 1kΩ to 100kΩ, C = 0.1µF,VCC = +15V)Initial Accuracy - (note 2)Drift with TemperatureDrift with Supply Voltage

1.5900.15

2.251500.3

%ppm/°C%/V

VCL Control Voltage levelVCC = +15VVCC = +5V

9.62.9

103.33

10.43.8

92.6

103.33

114

V

Vth Threshold VoltageVCC = +15VVCC = +5V

9.42.7

103.33

10.64

8.82.4

103.33

11.24.2

V

Ith Threshold Current - (note 3) 0.1 0.25 0.1 0.25 µA

Vtrig Trigger VoltageVCC = +15VVCC = +5V

4.81.45

51.67

5.21.9

4.51.1

51.67

5.62.2

V

Itrig Trigger Current (Vtr ig = 0V) 0.5 0.9 0.5 2.0 µA

Vreset Reset Voltage - (note 4) 0.4 0.7 1 0.4 0.7 1 V

Ireset Reset CurrentVreset = +0.4VVreset = 0V

0.10.4

0.41

0.10.4

0.41.5

mA

VOL Low Level Output VoltageVCC = +15V, IO(sink) = 10mA

IO(sink) = 50mAIO(sink) = 100mAIO(sink) = 200mA

VCC = +5V, IO(sink) = 8mAIO(sink) = 5mA

0.10.422.50.10.05

0.150.52.2

0.250.2

0.10.422.50.30.25

0.250.752.5

0.40.35

V

VOH High Level Output VoltageVCC = +15V, IO(source) = 200mA

IO(source) = 100mAVCC = +5V, IO(source) = 100mA

133

12.513.33.3

12.752.75

12.513.33.3

V

Notes : 1. Supply current when output is high is typically 1mA less.2. Tested at VCC = +5V and VCC = +15V.3. This will determine the maximum value of RA + RB for +15V operation the max total is R = 20MΩ and for 5V operationthe max total R = 3.5MΩ.

OPERATING CONDITIONS

Symbol Parameter SE555 NE555 - SA555 Unit

VCC Supply Voltage 4.5 to 18 4.5 to 18 V

Vth, Vtrig, Vcl, Vreset Maximum Input Voltage VCC VCC V

NE555/SA555/SE555

3/10

ELECTRICAL CHARACTERISTICS (continued)

Symbol ParameterSE555 NE555 - SA555

UnitMin. Typ. Max. Min. Typ. Max.

Idis(off) Discharge Pin Leakage Current(output high) (Vdis = 10V)

20 100 20 100 nA

Vdis(sat) Discharge pin Saturation Voltage(output low) - (note 5)VCC = +15V, Idis = 15mAVCC = +5V, Idis = 4.5mA

18080

480200

18080

480200

mV

trtf

Output Rise TimeOutput Fall Time

100100

200200

100100

300300

ns

toff Turn off Time - (note 6) (Vreset = VCC) 0.5 0.5 µsNotes : 5. No protection against excessive Pin 7 current is necessary, providing the package dissipation rating will not be exceeded.

6. Time mesaured from a positive going input pulse from 0 to 0.8x VCC into the threshold to the drop from high to low of theoutput trigger is tied to treshold.

Figure 1 : Minimum Pulse Width Required for

Trigering

Figure 2 : Supply Current versus SupplyVoltage

Figure 3 : Delay Time versus Temperature Figure 4 : LowOutput Voltage versus Output

Sink Current

NE555/SA555/SE555

4/10

Figure 5 : Low Output Voltage versus Output

SinkCurrent

Figure 6 : LowOutput Voltage versus Output

Sink Current

Figure 7 : High Output Voltage Drop versus

Output

Figure 8 : Delay Time versus Supply Voltage

Figure 9 : PropagationDelay versus Voltage

Level of Trigger Value

NE555/SA555/SE555

5/10

CAPACITOR VOLTAGE = 2.0V/div

t = 0.1 ms / div

INPUT = 2.0V/div

OUTPUT VOLTAGE = 5.0V/div

R1 = 9.1kΩ, C1 = 0.01µF, R = 1kΩL

Figure 11

Reset

Trigger

Output

R1

C1

Control Voltage

0.01µF

NE555

= 5 to 15VVCC

4

2

3

1

5

6

7

8

Figure 10

C(µF)10

1.0

0.1

0.01

0.00110 100 1.0 10 100 10 (t )dµs µs ms ms ms s

10M

Ω1MΩ10

0kΩ10

kΩR1=1k

Ω

Figure 12

APPLICATION INFORMATION

MONOSTABLEOPERATION

In the monostable mode, the timer functions as a

one-shot.Referring to figure 10 theexternal capaci-

tor is initially held discharged by a transistor inside

the timer.

The circuit triggers on a negative-going input signal

when the level reaches1/3 Vcc. Once triggered, the

circuit remains in this state until the set time has

elapsed, even if it is triggered again during this in-

terval.Thedurationof theoutputHIGHstateisgivenby t = 1.1 R1C1 and is easily determined by

figure 12.

Notice that since the charge rate and the threshold

levelof the comparatorarebothdirectlyproportional

to supply voltage, the timing interval is independent

of supply. Applying a negativepulse simultaneouslyto the reset terminal (pin 4) and the trigger terminal

(pin 2) during the timing cycle discharges the exter-

nalcapacitorand causes the cycle to start over.The

timing cycle now starts on the positive edge of the

reset pulse. During the time the reset pulse in ap-

plied, the output is driven to its LOW state.

When anegativetriggerpulse is applied topin 2, the

flip-flop is set, releasing the short circuit across theexternalcapacitor anddriving the outputHIGH. The

voltage across the capacitor increases exponen-

tiallywith the time constantτ =R1C1. When the volt-ageacross the capacitor equals2/3Vcc, the compa-

ratorresets the flip-flopwhich thendischarge the ca-pacitor rapidly and drivers the output to its LOW

state.

Figure 11shows theactual waveformsgeneratedin

thismode of operation.

When Reset is not used, it should be tied high toavoid any possibly or false triggering.

ASTABLEOPERATION

When the circuit is connectedas shown in figure 13

(pin 2and 6connected)it triggers itself and freerunsas a multivibrator. The external capacitor charges

throughR1 and R2and discharges throughR2only.

Thus thedutycyclemay beprecisely set by the ratio

of these two resistors.

In the astable mode of operation, C1 charges and

dischargesbetween 1/3 Vcc and 2/3 Vcc. As in thetriggeredmode, thechargeanddischarge timesand

therefore frequency are independentof the supply

voltage.

NE555/SA555/SE555

6/10

t = 0.5 ms / div

OUTPUT VOLTAGE = 5.0V/div

CAPACITOR VOLTAGE = 1.0V/div

R1 = R2 = 4.8kΩ, C1= 0.1µF, R = 1kΩL

Figure 14

C(µF)10

1.0

0.1

0.01

0.0010.1 1 10 100 1k 10k f (Hz)o

1MΩ

R1+R2=10MΩ

100kΩ

10kΩ

1kΩ

Figure 15 : Free Running Frequency versus R1,

R2 andC1

Figure14showsactualwaveformsgeneratedin this

mode of operation.

The charge time (output HIGH) is given by :

t1 =0.693 (R1 + R2) C1and the discharge time (output LOW) by :

t2 =0.693 (R2) C1Thus the total period T is given by :

T = t1 + t2 = 0.693 (R1 + 2R2) C1The frequency ofoscillation is them :

f =1

T=

1.44

(R1 + 2R2) C1andmay be easily found by figure 15.

The duty cycle is given by :

D =R2

R1 + 2R2

Output 3

4 8

7

5

1

R1

C12

6

R2

Control

Voltage

NE555

VCC = 5 to 15V

0.01µF

Figure 13

PULSEWIDTHMODULATOR

When the timer is connected in the monostable

mode and triggered with a continuous pulse train,theoutput pulse width can bemodulatedby a signal

applied to pin 5. Figure 16 shows the circuit.

Trigger

Output

R

C

NE555

2

4

3

1

5

6

7

Modulation

Input

8

A

VCC

Figure 16 : PulseWidth Modulator.

NE555/SA555/SE555

7/10

LINEARRAMP

When the pullup resistor, RA, in the monostable cir-cuit is replacedbya constantcurrent source,a linear

ramp is generated. Figure 17 shows a circuit con-figuration that will perform this function.

Trigger

Output

C

NE555

2

4

3

1

5

6

7

8

E

VCC

0.01µFR2

R1R

2N4250

or equiv.

Figure 17.

Out

RA

C

NE55

2

4

3

1

5

6

7

8

VCC

51kΩ

RB

22kΩ

0.01µF

VCC

0.01µF

Figure 19 : 50%Duty Cycle Oscillator.

Figure 18 showswaveformsgeneratorby the linear

ramp.

The time interval is given by :

T =(2/3 VCCRE (R1+ R2) C

R1 VCC − VBE (R1+ R2)VBE = 0.6V

Figure 18 : Linear Ramp.

VCC = 5V Top trace : input 3V/DIVTime = 20µs/DIV Middle trace : output 5V/DIVR1 = 47kΩ Bottom trace : output 5V/DIVR2 = 100kΩ Bottom trace : capacitor voltageRE = 2.7kΩ 1V/DIVC = 0.01µF

50%DUTY CYCLE OSCILLATOR

For a 50% duty cycle the resistors RA andRE maybeconnectedas in figure19.The time preriod for the

output high is the same as previous,

t1 = 0.693RA C.

For the output low it is t2 =

[(RARB) ⁄ (RA + RB)] CLn

RB − 2RA2RB − RA

Thus the frequencyof oscillation is f = 1

t1 + t2

Note that this circuit will not oscillate if RB is greater

than1/2 RA because the junction of RA andRB can-

notbring pin2 down to 1/3 VCC andtrigger the lowercomparator.

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to

protect associated circuitry. Minimum recom-

mended is 0.1µF in parallel with 1µF electrolytic.

NE555/SA555/SE555

8/10

PM-DIP8.EPS

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

DimensionsMillimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 3.32 0.131

a1 0.51 0.020

B 1.15 1.65 0.045 0.065

b 0.356 0.55 0.014 0.022

b1 0.204 0.304 0.008 0.012

D 10.92 0.430

E 7.95 9.75 0.313 0.384

e 2.54 0.100

e3 7.62 0.300

e4 7.62 0.300

F 6.6 0260

i 5.08 0.200

L 3.18 3.81 0.125 0.150

Z 1.52 0.060

DIP8.TBL

NE555/SA555/SE555

9/10

PM-SO8.EPS

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

DimensionsMillimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.75 0.069

a1 0.1 0.25 0.004 0.010

a2 1.65 0.065

a3 0.65 0.85 0.026 0.033

b 0.35 0.48 0.014 0.019

b1 0.19 0.25 0.007 0.010

C 0.25 0.5 0.010 0.020

c1 45o(typ.)

D 4.8 5.0 0.189 0.197

E 5.8 6.2 0.228 0.244

e 1.27 0.050

e3 3.81 0.150

F 3.8 4.0 0.150 0.157

L 0.4 1.27 0.016 0.050

M 0.6 0.024

S 8o(max.)

SO8.TBL

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the

consequences of use of such information nor for any infringement of patents or other rights of third parties which may resultfrom its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifi-

cations mentioned in this publication are subject to change without notice. This publication supersedes and replaces all infor-

mation previously supplied. STMicroelectronics products are not authorized for use as critical components in life supportdevices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

1998 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - MoroccoThe Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom- U.S.A. O

RDERCODE:

NE555/SA555/SE555

10/10

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

General DescriptionThe MAX220–MAX249 family of line drivers/receivers isintended for all EIA/TIA-232E and V.28/V.24 communica-tions interfaces, particularly applications where ±12V isnot available.

These parts are especially useful in battery-powered sys-tems, since their low-power shutdown mode reducespower dissipation to less than 5µW. The MAX225,MAX233, MAX235, and MAX245/MAX246/MAX247 useno external components and are recommended for appli-cations where printed circuit board space is critical.

________________________Applications

Portable Computers

Low-Power Modems

Interface Translation

Battery-Powered RS-232 Systems

Multidrop RS-232 Networks

____________________________Features

Superior to Bipolar Operate from Single +5V Power Supply

(+5V and +12V—MAX231/MAX239)

Low-Power Receive Mode in Shutdown(MAX223/MAX242)

Meet All EIA/TIA-232E and V.28 Specifications

Multiple Drivers and Receivers

3-State Driver and Receiver Outputs

Open-Line Detection (MAX243)

Ordering Information

Ordering Information continued at end of data sheet.

*Contact factory for dice specifications.

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

________________________________________________________________ Maxim Integrated Products 1

Selection Table

19-4323; Rev 11; 2/03

PART

MAX220CPE

MAX220CSE

MAX220CWE 0°C to +70°C

0°C to +70°C

0°C to +70°C

TEMP RANGE PIN-PACKAGE

16 Plastic DIP

16 Narrow SO

16 Wide SO

MAX220C/D 0°C to +70°C Dice*

MAX220EPE

MAX220ESE

MAX220EWE -40°C to +85°C

-40°C to +85°C

-40°C to +85°C 16 Plastic DIP

16 Narrow SO

16 Wide SO

MAX220EJE -40°C to +85°C 16 CERDIP

MAX220MJE -55°C to +125°C 16 CERDIP

Power No. of Nominal SHDN RxPart Supply RS-232 No. of Cap. Value & Three- Active in Data RateNumber (V) Drivers/Rx Ext. Caps (µF) State SHDN (kbps) FeaturesMAX220 +5 2/2 4 0.1 No — 120 Ultra-low-power, industry-standard pinoutMAX222 +5 2/2 4 0.1 Yes — 200 Low-power shutdownMAX223 (MAX213) +5 4/5 4 1.0 (0.1) Yes 120 MAX241 and receivers active in shutdownMAX225 +5 5/5 0 — Yes 120 Available in SOMAX230 (MAX200) +5 5/0 4 1.0 (0.1) Yes — 120 5 drivers with shutdownMAX231 (MAX201) +5 and 2/2 2 1.0 (0.1) No — 120 Standard +5/+12V or battery supplies;

+7.5 to +13.2 same functions as MAX232MAX232 (MAX202) +5 2/2 4 1.0 (0.1) No — 120 (64) Industry standardMAX232A +5 2/2 4 0.1 No — 200 Higher slew rate, small capsMAX233 (MAX203) +5 2/2 0 — No — 120 No external capsMAX233A +5 2/2 0 — No — 200 No external caps, high slew rateMAX234 (MAX204) +5 4/0 4 1.0 (0.1) No — 120 Replaces 1488MAX235 (MAX205) +5 5/5 0 — Yes — 120 No external capsMAX236 (MAX206) +5 4/3 4 1.0 (0.1) Yes — 120 Shutdown, three stateMAX237 (MAX207) +5 5/3 4 1.0 (0.1) No — 120 Complements IBM PC serial portMAX238 (MAX208) +5 4/4 4 1.0 (0.1) No — 120 Replaces 1488 and 1489MAX239 (MAX209) +5 and 3/5 2 1.0 (0.1) No — 120 Standard +5/+12V or battery supplies;

+7.5 to +13.2 single-package solution for IBM PC serial portMAX240 +5 5/5 4 1.0 Yes — 120 DIP or flatpack packageMAX241 (MAX211) +5 4/5 4 1.0 (0.1) Yes — 120 Complete IBM PC serial portMAX242 +5 2/2 4 0.1 Yes 200 Separate shutdown and enableMAX243 +5 2/2 4 0.1 No — 200 Open-line detection simplifies cablingMAX244 +5 8/10 4 1.0 No — 120 High slew rateMAX245 +5 8/10 0 — Yes 120 High slew rate, int. caps, two shutdown modesMAX246 +5 8/10 0 — Yes 120 High slew rate, int. caps, three shutdown modesMAX247 +5 8/9 0 — Yes 120 High slew rate, int. caps, nine operating modesMAX248 +5 8/8 4 1.0 Yes 120 High slew rate, selective half-chip enablesMAX249 +5 6/10 4 1.0 Yes 120 Available in quad flatpack package

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243(VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.)

Note 1: Input voltage measured with TOUT in high-impedance state, SHDN or VCC = 0V.

Note 2: For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

Supply Voltage (VCC) ...............................................-0.3V to +6VInput VoltagesTIN..............................................................-0.3V to (VCC - 0.3V)RIN (Except MAX220) ........................................................±30VRIN (MAX220).....................................................................±25VTOUT (Except MAX220) (Note 1) .......................................±15VTOUT (MAX220)...............................................................±13.2V

Output VoltagesTOUT...................................................................................±15VROUT.........................................................-0.3V to (VCC + 0.3V)

Driver/Receiver Output Short Circuited to GND.........ContinuousContinuous Power Dissipation (TA = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW

20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW

Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°CMAX2_ _AE_ _, MAX2_ _E_ _ ..........................-40°C to +85°CMAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C

Storage Temperature Range .............................-65°C to +160°CLead Temperature (soldering, 10s) .................................+300°C

V1.4 0.8Input Logic Threshold Low

UNITSMIN TYP MAXPARAMETER CONDITIONS

Input Logic Threshold HighAll devices except MAX220 2 1.4

V

All except MAX220, normal operation 5 40Logic Pull-Up/lnput Current

SHDN = 0V, MAX222/242, shutdown, MAX220 ±0.01 ±1µA

VCC = 5.5V, SHDN = 0V, VOUT = ±15V, MAX222/242 ±0.01 ±10Output Leakage Current

VCC = SHDN = 0V, VOUT = ±15V ±0.01 ±10µA

200 116Data Rate kbps

Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V 300 10M Ω

Output Short-Circuit Current VOUT = 0V ±7 ±22 mA

RS-232 Input Voltage Operating Range ±30 V

All except MAX243 R2IN 0.8 1.3RS-232 Input Threshold Low VCC = 5V

MAX243 R2IN (Note 2) -3V

All except MAX243 R2IN 1.8 2.4RS-232 Input Threshold High VCC = 5V

MAX243 R2IN (Note 2) -0.5 -0.1V

All except MAX243, VCC = 5V, no hysteresis in shdn. 0.2 0.5 1RS-232 Input Hysteresis

MAX243 1V

RS-232 Input Resistance 3 5 7 kΩ

TTL/CMOS Output Voltage Low IOUT = 3.2mA 0.2 0.4 V

TTL/CMOS Output Voltage High IOUT = -1.0mA 3.5 VCC - 0.2 V

Sourcing VOUT = GND -2 -10mATTL/CMOS Output Short-Circuit Current

Shrinking VOUT = VCC 10 30

V±5 ±8Output Voltage Swing All transmitter outputs loaded with 3kΩ to GND

RS-232 TRANSMITTERS

RS-232 RECEIVERS

2.4MAX220: VCC = 5.0V

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

_______________________________________________________________________________________ 3

Note 3: MAX243 R2OUT is guaranteed to be low when R2IN is ≥ 0V or is floating.

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.)

Operating Supply Voltage

SHDN Threshold High

4.5 5.5 V

MAX222/242

Transmitter-Output Enable Time

(SHDN Goes High), Figure 4

2.0 1.4 V

MAX220 0.5 2

tET

No loadMAX222/232A/233A/242/243 4 10

MAX222/232A/233A/242/243 6 12 30

MAX220 12

VCC Supply Current (SHDN = VCC),

Figures 5, 6, 11, 19 3kΩ load

both inputs MAX222/232A/233A/242/243 15

mA

Transition Slew Rate

TA = +25°C 0.1 10

CL = 50pF to 2500pF,

RL = 3kΩ to 7kΩ,

VCC = 5V, TA = +25°C,

measured from +3V

to -3V or -3V to +3V

TA = 0°C to +70°C

CONDITIONS

2 50

MAX220 1.5 3 30

V/µs

TA = -40°C to +85°C 2 50

MAX222/242, 0.1µF caps(includes charge-pump start-up)

Shutdown Supply Current MAX222/242

TA = -55°C to +125°C 35 100

µA

SHDN Input Leakage Current MAX222/242 ±1 µA

SHDN Threshold Low MAX222/242 1.4 0.8 V

250

MAX222/232A/233A/242/243 1.3 3.5

µs

tPHLTMAX220 4 10

Transmitter-Output Disable Time

(SHDN Goes Low), Figure 4tDT

MAX222/232A/233A/242/243 1.5 3.5

Transmitter Propagation Delay

TLL to RS-232 (Normal Operation),

Figure 1 tPLHTMAX220 5 10

µs

V2.0 1.4

MAX222/242, 0.1µF caps

µA±0.05 ±10

600

TTL/CMOS Output Leakage Current

EN Input Threshold High

MAX222/232A/233A/242/243 0.5 1

ns

tPHLRMAX220 0.6 3

tPLHRMAX222/232A/233A/242/243 0.6 1

Receiver Propagation Delay

RS-232 to TLL (Normal Operation),

Figure 2

tPHLT - tPLHT

MAX220 0.8 3

µs

MAX222/232A/233A/242/243

tPHLS MAX242 0.5 10Receiver Propagation Delay

RS-232 to TLL (Shutdown), Figure 2 tPLHS MAX242 2.5 10µs

Receiver-Output Enable Time, Figure 3 tER MAX242

UNITSMIN TYP MAX

125 500

PARAMETER

MAX242

ns

SHDN = VCC or EN = VCC (SHDN = 0V for MAX222),

0V ≤ VOUT ≤ VCC

Receiver-Output Disable Time, Figure 3 tDR MAX242 160 500 ns

300ns

Transmitter + to - Propagation

Delay Difference (Normal Operation) MAX220 2000

tPHLR - tPLHRMAX222/232A/233A/242/243 100

nsReceiver + to - Propagation

Delay Difference (Normal Operation) MAX220 225

V1.4 0.8EN Input Threshold Low MAX242

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

4 _______________________________________________________________________________________

__________________________________________Typical Operating Characteristics

MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243

10

8

-100 5 15 25

OUTPUT VOLTAGE vs. LOAD CURRENT

-4

-6

-8

-2

6

4

2

MA

X2

20

-01

LOAD CURRENT (mA)

OU

TPU

T V

OLT

AG

E (V

)

10

0

20

0.1µF

EITHER V+ OR V- LOADED

VCC = ±5VNO LOAD ONTRANSMITTER OUTPUTS(EXCEPT MAX220, MAX233A)

V- LOADED, NO LOAD ON V+

V+ LOADED, NO LOAD ON V-

1µF

1µF0.1µF

11

10

40 10 40 60

AVAILABLE OUTPUT CURRENT

vs. DATA RATE

6

5

7

9

8

MA

X2

20

-02

DATA RATE (kbits/sec)

OU

TPU

T C

UR

REN

T (m

A)

20 30 50

OUTPUT LOAD CURRENTFLOWS FROM V+ TO V-

VCC = +5.25V

ALL CAPS1µF

ALL CAPS0.1µF

VCC = +4.75V

+10V

-10V

MAX222/MAX242

ON-TIME EXITING SHUTDOWN

+5V+5V

0V

0V

MA

X2

20

-03

500µs/div

V+,

V-

VO

LTA

GE

(V)

1µF CAPSV+

V+

V-V-

SHDN

0.1µF CAPS

1µF CAPS

0.1µF CAPS

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

_______________________________________________________________________________________ 5

VCC ...........................................................................-0.3V to +6VV+................................................................(VCC - 0.3V) to +14VV- ............................................................................+0.3V to -14VInput VoltagesTIN ............................................................-0.3V to (VCC + 0.3V)RIN......................................................................................±30V

Output VoltagesTOUT ...................................................(V+ + 0.3V) to (V- - 0.3V)ROUT .........................................................-0.3V to (VCC + 0.3V)

Short-Circuit Duration, TOUT ......................................ContinuousContinuous Power Dissipation (TA = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW24-Pin Narrow Plastic DIP

(derate 13.33mW/°C above +70°C) ..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW

20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W44-Pin Plastic FP (derate 11.11mW/°C above +70°C) .....889mW14-Pin CERDIP (derate 9.09mW/°C above +70°C) ..........727mW16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW24-Pin Narrow CERDIP

(derate 12.50mW/°C above +70°C) ..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW

Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°CMAX2 _ _ E _ _ ...................................................-40°C to +85°CMAX2 _ _ M _ _ ...............................................-55°C to +125°C

Storage Temperature Range .............................-65°C to +160°CLead Temperature (soldering, 10s) .................................+300°C

ABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241

ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,

VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional

operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to

absolute maximum rating conditions for extended periods may affect device reliability.

CONDITIONS MIN TYP MAX UNITS

Output Voltage Swing All transmitter outputs loaded with 3kΩ to ground ±5.0 ±7.3 V

VCC Power-Supply CurrentNo load,

TA = +25°C

5 10

mA7 15

0.4 1

V+ Power-Supply Current1.8 5

mA5 15

Shutdown Supply Current TA = +25°C15 50

VInput Logic Threshold High

TIN 2.0

EN, SHDN (MAX223);

EN, SHDN (MAX230/235/236/240/241)2.4

Logic Pull-Up Current TIN = 0V 1.5 200

Receiver Input Voltage

Operating Range-30 30 V

µA

µA1 10

VInput Logic Threshold Low TIN; EN, SHDN (MAX233); EN, SHDN (MAX230/235–241) 0.8

MAX231/239

MAX223/230/234–238/240/241

MAX232/233

PARAMETER

MAX239

MAX230/235/236/240/241

MAX231

MAX223

mA

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

6 _______________________________________________________________________________________

V

0.8 1.2

PARAMETER MIN TYP MAX UNITSCONDITIONS

Normal operation

SHDN = 5V (MAX223)

SHDN = 0V (MAX235/236/240/241)

1.7 2.4

RS-232 Input Threshold LowTA = +25°C,

VCC = 5V

0.6 1.5

VRS-232 Input Threshold HighTA = +25°C,

VCC = 5V Shutdown (MAX223)

SHDN = 0V,

EN = 5V (R4IN‚ R5IN)

1.5 2.4

ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,

VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.)

Shutdown (MAX223)

SHDN = 0V,

EN = 5V (R4IN, R5IN)

Normal operation

SHDN = 5V (MAX223)

SHDN = 0V (MAX235/236/240/241)

RS-232 Input Hysteresis VCC = 5V, no hysteresis in shutdown 0.2 0.5 1.0 V

RS-232 Input Resistance TA = +25°C, VCC = 5V 3 5 7 kΩ

TTL/CMOS Output Voltage Low IOUT = 1.6mA (MAX231/232/233, IOUT = 3.2mA) 0.4 V

TTL/CMOS Output Voltage High IOUT = -1mA 3.5 VCC - 0.4 V

TTL/CMOS Output Leakage Current0V ≤ ROUT ≤ VCC; EN = 0V (MAX223);

EN = VCC (MAX235–241 )0.05 ±10 µA

MAX223 600nsReceiver Output Enable Time

Normal

operation MAX235/236/239/240/241 400

MAX223 900nsReceiver Output Disable Time

Normal

operation MAX235/236/239/240/241 250

Normal operation 0.5 10

µsSHDN = 0V

(MAX223)

4 40Propagation Delay

RS-232 IN to

TTL/CMOS OUT,

CL = 150pF6 40

3 5.1 30

V/µsMAX231/MAX232/MAX233, TA = +25°C, VCC = 5V,

RL = 3kΩ to 7kΩ, CL = 50pF to 2500pF, measured from

+3V to -3V or -3V to +3V

4 30

Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V 300 Ω

Transmitter Output Short-Circuit

Current±10 mA

tPHLS

tPLHS

Transition Region Slew Rate

MAX223/MAX230/MAX234–241, TA = +25°C, VCC = 5V,

RL = 3kΩ to 7kΩ‚ CL = 50pF to 2500pF, measured from

+3V to -3V or -3V to +3V

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

_______________________________________________________________________________________ 7

8.5

6.54.5 5.5

TRANSMITTER OUTPUT

VOLTAGE (VOH) vs. VCC

7.0

8.0

MA

X2

20

-04

VCC (V)

VO

H (

V)

5.0

7.5

1 TRANSMITTERLOADED

3 TRANS-MITTERSLOADED

4 TRANSMITTERSLOADED

2 TRANSMITTERSLOADED

TA = +25°CC1–C4 = 1µFTRANSMITTERLOADS =3kΩ || 2500pF

7.4

6.00 2500

TRANSMITTER OUTPUT VOLTAGE (VOH)

vs. LOAD CAPACITANCE AT

DIFFERENT DATA RATES

6.4

6.2

7.2

7.0

MA

X2

20

-05

LOAD CAPACITANCE (pF)

VO

H (

V)

15001000500 2000

6.8

6.6

160kbits/sec80kbits/sec20kbits/sec

TA = +25°CVCC = +5V3 TRANSMITTERS LOADEDRL = 3kΩ

C1–C4 = 1µF

12.0

4.00 2500

TRANSMITTER SLEW RATE

vs. LOAD CAPACITANCE

6.0

5.0

11.0

9.0

10.0

MA

X2

20

-06

LOAD CAPACITANCE (pF)

SLE

W R

ATE

(V

/µs)

15001000500 2000

8.0

7.0

TA = +25°CVCC = +5VLOADED, RL = 3kΩ

C1–C4 = 1µF

1 TRANSMITTER LOADED

2 TRANSMITTERS LOADED

3 TRANSMITTERS LOADED

4 TRANSMITTERS LOADED

-6.0

-9.04.5 5.5

TRANSMITTER OUTPUT

VOLTAGE (VOL) vs. VCC

-8.0

-8.5

-6.5

-7.0

MA

X2

20

-07

VCC (V)

VO

L (V

)

5.0

-7.5

4 TRANS-MITTERSLOADED

TA = +25°CC1–C4 = 1µFTRANSMITTERLOADS =3kΩ || 2500pF

1 TRANS-MITTERLOADED

2 TRANS-MITTERSLOADED

3 TRANS-MITTERSLOADED

-6.0

-7.60 2500

TRANSMITTER OUTPUT VOLTAGE (VOL)

vs. LOAD CAPACITANCE AT

DIFFERENT DATA RATES

-7.0

-7.2

-7.4

-6.2

-6.4

MA

X2

20

-08

LOAD CAPACITANCE (pF)

VO

L (V

)

15001000500 2000

-6.6

-6.8160kbits/sec80kbits/sec20Kkbits/sec

TA = +25°CVCC = +5V3 TRANSMITTERS LOADEDRL = 3kΩ

C1–C4 = 1µF

10

-100 5 10 15 20 25 30 35 40 45 50

TRANSMITTER OUTPUT VOLTAGE (V+, V-)

vs. LOAD CURRENT

-2

-6

-4

-8

8

6

MA

X2

20

-09

CURRENT (mA)

V+,

V-

(V)

4

2

0V+ AND V-EQUALLYLOADED

V- LOADED,NO LOADON V+

TA = +25°CVCC = +5VC1–C4 = 1µF

ALL TRANSMITTERS UNLOADED

V+ LOADED,NO LOADON V-

__________________________________________Typical Operating Characteristics

MAX223/MAX230–MAX241

*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTS

V+, V- WHEN EXITING SHUTDOWN

(1µF CAPACITORS)MAX220-13

SHDN*

V-

O

V+

500ms/div

Input Logic Threshold Low

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

8 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249

ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless oth-erwise noted.)

Note 4: Input voltage measured with transmitter output in a high-impedance state, shutdown, or VCC = 0V.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional

operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to

absolute maximum rating conditions for extended periods may affect device reliability.

Supply Voltage (VCC) ...............................................-0.3V to +6VInput VoltagesTIN‚ ENA, ENB, ENR, ENT, ENRA,ENRB, ENTA, ENTB..................................-0.3V to (VCC + 0.3V)RIN .....................................................................................±25VTOUT (Note 3).....................................................................±15VROUT ........................................................-0.3V to (VCC + 0.3V)

Short Circuit (one output at a time)TOUT to GND............................................................ContinuousROUT to GND............................................................Continuous

Continuous Power Dissipation (TA = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W40-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ...611mW44-Pin PLCC (derate 13.33mW/°C above +70°C) ...........1.07W

Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°CMAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C

Storage Temperature Range .............................-65°C to +160°CLead Temperature (soldering,10s) ..................................+300°C

VCC = 0V,

VOUT = ±15V

µATables 1a–1d

±0.01 ±25

Normal operation

Shutdown

Tables 1a–1d, normal operation

All transmitter outputs loaded with 3kΩ to GND

ENA, ENB, ENT, ENTA, ENTB =

VCC, VOUT = ±15V

VRS-232 Input Hysteresis

RS-232 Input Threshold Low V

V±5 ±7.5Output Voltage Swing

Output Leakage Current (Shutdown)

±0.01 ±25

Ω300 10MVCC = V+ = V- = 0V, VOUT = ±2V (Note 4)Transmitter Output Resistance

µA

PARAMETER

±0.05 ±0.10

MIN TYP MAX UNITS

Normal operation, outputs disabled,

Tables 1a–1d, 0V ≤ VOUT ≤ VCC, ENR_ = VCCTTL/CMOS Output Leakage Current

10 30Shrinking VOUT = VCCmA

-2 -10Sourcing VOUT = GND

V3.5 VCC - 0.2IOUT = -1.0mATTL/CMOS Output Voltage High

V0.2 0.4IOUT = 3.2mATTL/CMOS Output Voltage Low

kΩ3 5 7

0.2 0.5 1.0VCC = 5V

1.4 0.8 V

TTL/CMOS Output Short-Circuit Current

V1.8 2.4

0.8 1.3VCC = 5V

RS-232 Input Resistance

V±25RS-232 Input Voltage Operating Range

mA±7 ±30VOUT = 0VOutput Short-Circuit Current

kbps120 64Data Rate

CONDITIONS

VCC = 5V

µA±0.01 ±1

Logic Pull-Up/lnput Current10 50

Tables 1a–1d

RS-232 Input Threshold High

V2 1.4Input Logic Threshold High

RS-232 TRANSMITTERS

RS-232 RECEIVERS

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

_______________________________________________________________________________________ 9

Operating Supply Voltage4.75 5.25

V

Transmitter Enable Time

MAX225 10 20

tET

No loadMAX244–MAX249 11 30

5 10 30

MAX225 40

VCC Supply Current

(Normal Operation) 3kΩ loads on

all outputs MAX244–MAX249 57

mA

Transition Slew Rate

8 25

CL = 50pF to 2500pF, RL = 3kΩ to 7kΩ, VCC = 5V,

TA = +25°C, measured from +3V to -3V or -3V to +3V

TA = TMIN to TMAX

CONDITIONS

50

V/µs

MAX246–MAX249 (excludes charge-pump startup)

Shutdown Supply Current µA

5

tPHLT 1.3 3.5

µs

tPLHT 1.5 3.5

Transmitter Disable Time, Figure 4

Transmitter Propagation Delay

TLL to RS-232 (Normal Operation),

Figure 1

µs

tDT 100 ns

Transmitter + to - Propagation

Delay Difference (Normal Operation)tPHLT - tPLHT

UNITSMIN TYP MAX

350

PARAMETER

ns

Receiver + to - Propagation

Delay Difference (Normal Operation)tPHLR - tPLHR 350 ns

4.5 5.5MAX244–MAX249

MAX225

Leakage current ±1

Threshold low 1.4 0.8Control Input

Threshold high 2.4 1.4V

µA

TA = +25°C

tPHLR 0.6 1.5

tPLHR 0.6 1.5

Receiver Propagation Delay

TLL to RS-232 (Normal Operation),

Figure 2

µs

tPHLS 0.6 10

tPLHS 3.0 10

Receiver Propagation Delay

TLL to RS-232 (Low-Power Mode),

Figure 2

µs

Receiver-Output Enable Time, Figure 3 tER 100 500 ns

Receiver-Output Disable Time, Figure 3 tDR 100 500 ns

MAX225/MAX245–MAX249(includes charge-pump startup)

10 ms

POWER SUPPLY AND CONTROL LOGIC

AC CHARACTERISTICS

Note 5: The 300Ω minimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or VCC =

0V is 10MΩ as is implied by the leakage specification.

ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless oth-erwise noted.)

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

10 ______________________________________________________________________________________

__________________________________________Typical Operating Characteristics

MAX225/MAX244–MAX249

18

20 1 2 3 4 5

TRANSMITTER SLEW RATE

vs. LOAD CAPACITANCE

8

6

4

16 MA

X2

20

-10

LOAD CAPACITANCE (nF)

TRA

NS

MIT

TER

SLE

W R

ATE

(V

/µs)

14

12

10

VCC = 5V

EXTERNAL POWER SUPPLY1µF CAPACITORS

40kb/s DATA RATE 8 TRANSMITTERSLOADED WITH 3kΩ

10

-100 5 10 15 20 25 30 35

OUTPUT VOLTAGE

vs. LOAD CURRENT FOR V+ AND V-

-2

-4

-6

-8

8

MA

X2

20

-11

LOAD CURRENT (mA)

OU

TPU

T V

OLT

AG

E (V

)

6

4

2

0

V+ AND V- LOADED

EITHER V+ OR V- LOADED

V+ AND V- LOADED

VCC = 5VEXTERNAL CHARGE PUMP1µF CAPACITORS 8 TRANSMITTERSDRIVING 5kΩ AND2000pF AT 20kbits/sec

V- LOADED

V+ LOADED

9.0

5.00 1 2 3 4 5

TRANSMITTER OUTPUT VOLTAGE (V+, V-)

vs. LOAD CAPACITANCE AT

DIFFERENT DATA RATES

6.0

5.5

8.5 MA

X2

20

-12

LOAD CAPACITANCE (nF)

V+,

V (

V)

8.0

7.5

7.0

6.5

VCC = 5V WITH ALL TRANSMITTERS DRIVENLOADED WITH 5kΩ

10kb/sec

20kb/sec

40kb/sec

60kb/sec

100kb/sec

200kb/sec

ALL CAPACITIORS 1µF

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 11

INPUT

OUTPUT

+3V

V+

0V

V-

0V

tPLHT tPHLT

tPHLR

tPHLS

tPLHR

tPLHS

50%VCC

50%

+3V

50%INPUT

OUTPUT

*EXCEPT FOR R2 ON THE MAX243 WHERE -3V IS USED.

0V*

50%

GND

Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay Timing

EN

RX IN

a) TEST CIRCUIT

b) ENABLE TIMING

c) DISABLE TIMING

EN INPUT

RECEIVEROUTPUTS

RX OUTRX

1kΩ

0V

+3V

EN

EN

+0.8V

+3.5V

OUTPUT ENABLE TIME (tER)

VCC - 2V

VOL + 0.5V

VOH - 0.5V

OUTPUT DISABLE TIME (tDR)

VCC - 2V

+3V

0V

150pF

EN INPUT

VOH

RECEIVEROUTPUTS

VOL

1 OR 0 TX

3kΩ 50pF

-5V

+5V

OUTPUT DISABLE TIME (tDT)

V+

SHDN+3V

0V

V-

0V

a) TIMING DIAGRAM

b) TEST CIRCUIT

Figure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable Timing

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

12 ______________________________________________________________________________________

ENT ENR OPERATION STATUS TRANSMITTERS RECEIVERS

0 0 Normal Operation All Active All Active

0 1 Normal Operation All Active All 3-State

1 0 Shutdown All 3-State All Low-Power Receive Mode

1 1 Shutdown All 3-State All 3-State

Table 1a. MAX245 Control Pin Configurations

ENT ENROPERATION

STATUS

TRANSMITTERS RECEIVERS

TA1–TA4 TB1–TB4 RA1–RA5 RB1–RB5

0 0 Normal Operation All Active All Active All Active All Active

0 1 Normal Operation All Active All ActiveRA1–RA4 3-State,

RA5 Active

RB1–RB4 3-State,

RB5 Active

1 0 Shutdown All 3-State All 3-StateAll Low-Power

Receive Mode

All Low-Power

Receive Mode

1 1 Shutdown All 3-State All 3-State

RA1–RA4 3-State,

RA5 Low-Power

Receive Mode

RB1–RB4 3-State,

RB5 Low-Power

Receive Mode

Table 1b. MAX245 Control Pin Configurations

Table 1c. MAX246 Control Pin Configurations

ENA ENBOPERATION

STATUS

TRANSMITTERS RECEIVERS

TA1–TA4 TB1–TB4 RA1–RA5 RB1–RB5

0 0 Normal Operation All Active All Active All Active All Active

0 1 Normal Operation All Active All 3-State All ActiveRB1–RB4 3-State,

RB5 Active

1 0 Shutdown All 3-State All ActiveRA1–RA4 3-State,

RA5 ActiveAll Active

1 1 Shutdown All 3-State All 3-State

RA1–RA4 3-State,

RA5 Low-Power

Receive Mode

RB1–RB4 3-State,

RA5 Low-Power

Receive Mode

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 13

TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB4

0 0 0 0 Normal Operation All Active All Active All Active All Active

0 0 0 1 Normal Operation All Active All Active All Active

All 3-State, except

RB5 stays active on

MAX247

0 0 1 0 Normal Operation All Active All Active All 3-State All Active

0 0 1 1 Normal Operation All Active All Active All 3-State

All 3-State, except

RB5 stays active on

MAX247

0 1 0 0 Normal Operation All Active All 3-State All Active All Active

0 1 0 1 Normal Operation All Active All 3-State All Active

All 3-State, except

RB5 stays active on

MAX247

0 1 1 0 Normal Operation All Active All 3-State All 3-State All Active

0 1 1 1 Normal Operation All Active All 3-State All 3-State

All 3-State, except

RB5 stays active on

MAX247

1 0 0 0 Normal Operation All 3-State All Active All Active All Active

1 0 0 1 Normal Operation All 3-State All Active All Active

All 3-State, except

RB5 stays active on

MAX247

1 0 1 0 Normal Operation All 3-State All Active All 3-State All Active

1 0 1 1 Normal Operation All 3-State All Active All 3-State

All 3-State, except

RB5 stays active on

MAX247

1 1 0 0 Shutdown All 3-State All 3-StateLow-Power

Receive Mode

Low-Power

Receive Mode

1 1 0 1 Shutdown All 3-State All 3-StateLow-Power

Receive Mode

All 3-State, except

RB5 stays active on

MAX247

1 1 1 0 Shutdown All 3-State All 3-State All 3-StateLow-Power

Receive Mode

1 1 1 1 Shutdown All 3-State All 3-State All 3-State

All 3-State, except

RB5 stays active on

MAX247

Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations

MAX248

OPERATION

STATUSENRB

MAX247 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB5

TRANSMITTERS

ENRAENTBENTA

MAX249 TA1–TA3 TB1–TB3 RA1–RA5 RB1–RB5

RECEIVERS

MA

X2

20

–M

AX

24

9 _______________Detailed DescriptionThe MAX220–MAX249 contain four sections: dualcharge-pump DC-DC voltage converters, RS-232 dri-vers, RS-232 receivers, and receiver and transmitterenable control inputs.

Dual Charge-Pump Voltage ConverterThe MAX220–MAX249 have two internal charge-pumpsthat convert +5V to ±10V (unloaded) for RS-232 driveroperation. The first converter uses capacitor C1 to dou-ble the +5V input to +10V on C3 at the V+ output. Thesecond converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output.

A small amount of power may be drawn from the +10V(V+) and -10V (V-) outputs to power external circuitry(see the Typical Operating Characteristics section),except on the MAX225 and MAX245–MAX247, wherethese pins are not available. V+ and V- are not regulated,so the output voltage drops with increasing load current.Do not load V+ and V- to a point that violates the mini-mum ±5V EIA/TIA-232E driver output voltage whensourcing current from V+ and V- to external circuitry.

When using the shutdown feature in the MAX222,MAX225, MAX230, MAX235, MAX236, MAX240,MAX241, and MAX245–MAX249, avoid using V+ and V-to power external circuitry. When these parts are shutdown, V- falls to 0V, and V+ falls to +5V. For applica-tions where a +10V external supply is applied to the V+pin (instead of using the internal charge pump to gen-erate +10V), the C1 capacitor must not be installed andthe SHDN pin must be tied to VCC. This is because V+is internally connected to VCC in shutdown mode.

RS-232 DriversThe typical driver output voltage swing is ±8V whenloaded with a nominal 5kΩ RS-232 receiver and VCC =+5V. Output swing is guaranteed to meet the EIA/TIA-232E and V.28 specification, which calls for ±5V mini-mum driver output levels under worst-case conditions.These include a minimum 3kΩ load, VCC = +4.5V, andmaximum operating temperature. Unloaded driver out-put voltage ranges from (V+ -1.3V) to (V- +0.5V).

Input thresholds are both TTL and CMOS compatible.The inputs of unused drivers can be left unconnectedsince 400kΩ input pull-up resistors to VCC are built in(except for the MAX220). The pull-up resistors force theoutputs of unused drivers low because all drivers invert.The internal input pull-up resistors typically source 12µA,except in shutdown mode where the pull-ups are dis-abled. Driver outputs turn off and enter a high-imped-ance state—where leakage current is typicallymicroamperes (maximum 25µA)—when in shutdown

mode, in three-state mode, or when device power isremoved. Outputs can be driven to ±15V. The power-supply current typically drops to 8µA in shutdown mode.The MAX220 does not have pull-up resistors to force theoutputs of the unused drivers low. Connect unusedinputs to GND or VCC.

The MAX239 has a receiver three-state control line, andthe MAX223, MAX225, MAX235, MAX236, MAX240,and MAX241 have both a receiver three-state controlline and a low-power shutdown control. Table 2 showsthe effects of the shutdown control and receiver three-state control on the receiver outputs.

The receiver TTL/CMOS outputs are in a high-imped-ance, three-state mode whenever the three-state enableline is high (for the MAX225/MAX235/MAX236/MAX239–MAX241), and are also high-impedance whenever theshutdown control line is high.

When in low-power shutdown mode, the driver outputsare turned off and their leakage current is less than 1µAwith the driver output pulled to ground. The driver outputleakage remains less than 1µA, even if the transmitteroutput is backdriven between 0V and (VCC + 6V). Below-0.5V, the transmitter is diode clamped to ground with1kΩ series impedance. The transmitter is also zenerclamped to approximately VCC + 6V, with a seriesimpedance of 1kΩ.

The driver output slew rate is limited to less than 30V/µsas required by the EIA/TIA-232E and V.28 specifica-tions. Typical slew rates are 24V/µs unloaded and10V/µs loaded with 3Ω and 2500pF.

RS-232 ReceiversEIA/TIA-232E and V.28 specifications define a voltagelevel greater than 3V as a logic 0, so all receivers invert.Input thresholds are set at 0.8V and 2.4V, so receiversrespond to TTL level inputs as well as EIA/TIA-232E andV.28 levels.

The receiver inputs withstand an input overvoltage upto ±25V and provide input terminating resistors with

+5V-Powered, Multichannel RS-232Drivers/Receivers

14 ______________________________________________________________________________________

PART SHDN EN EN(R) RECEIVERS

MAX223 __

Low

High

High

X

Low

High

High Impedance

Active

High Impedance

MAX225 __ __High Impedance

Active__

MAX235

MAX236

MAX240

Low

Low

High

__ __

Low

High

X

High Impedance

Active

High Impedance

Table 2. Three-State Control of Receivers

Low

High

SHDN

__

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 15

nominal 5kΩ values. The receivers implement Type 1interpretation of the fault conditions of V.28 andEIA/TIA-232E.

The receiver input hysteresis is typically 0.5V with aguaranteed minimum of 0.2V. This produces clear out-put transitions with slow-moving input signals, evenwith moderate amounts of noise and ringing. Thereceiver propagation delay is typically 600ns and isindependent of input swing direction.

Low-Power Receive ModeThe low-power receive-mode feature of the MAX223,MAX242, and MAX245–MAX249 puts the IC into shut-down mode but still allows it to receive information. Thisis important for applications where systems are periodi-cally awakened to look for activity. Using low-powerreceive mode, the system can still receive a signal thatwill activate it on command and prepare it for communi-cation at faster data rates. This operation conservessystem power.

Negative Threshold—MAX243The MAX243 is pin compatible with the MAX232A, differ-ing only in that RS-232 cable fault protection is removedon one of the two receiver inputs. This means that controllines such as CTS and RTS can either be driven or leftfloating without interrupting communication. Differentcables are not needed to interface with different pieces ofequipment.

The input threshold of the receiver without cable faultprotection is -0.8V rather than +1.4V. Its output goespositive only if the input is connected to a control linethat is actively driven negative. If not driven, it defaultsto the 0 or “OK to send” state. Normally‚ the MAX243’sother receiver (+1.4V threshold) is used for the data line(TD or RD)‚ while the negative threshold receiver is con-nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.).

Other members of the RS-232 family implement theoptional cable fault protection as specified by EIA/TIA-232E specifications. This means a receiver output goeshigh whenever its input is driven negative‚ left floating‚or shorted to ground. The high output tells the serialcommunications IC to stop sending data. To avoid this‚the control lines must either be driven or connectedwith jumpers to an appropriate positive voltage level.

Shutdown—MAX222–MAX242 On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ andMAX241‚ all receivers are disabled during shutdown.On the MAX223 and MAX242‚ two receivers continue tooperate in a reduced power mode when the chip is inshutdown. Under these conditions‚ the propagationdelay increases to about 2.5µs for a high-to-low inputtransition. When in shutdown, the receiver acts as aCMOS inverter with no hysteresis. The MAX223 andMAX242 also have a receiver output enable input (ENfor the MAX242 and EN for the MAX223) that allowsreceiver output control independent of SHDN (SHDNfor MAX241). With all other devices‚ SHDN (SHDN forMAX241) also disables the receiver outputs.

The MAX225 provides five transmitters and fivereceivers‚ while the MAX245 provides ten receivers andeight transmitters. Both devices have separate receiverand transmitter-enable controls. The charge pumpsturn off and the devices shut down when a logic high isapplied to the ENT input. In this state, the supply cur-rent drops to less than 25µA and the receivers continueto operate in a low-power receive mode. Driver outputsenter a high-impedance state (three-state mode). Onthe MAX225‚ all five receivers are controlled by theENR input. On the MAX245‚ eight of the receiver out-puts are controlled by the ENR input‚ while the remain-ing two receivers (RA5 and RB5) are always active.RA1–RA4 and RB1–RB4 are put in a three-state modewhen ENR is a logic high.

Receiver and Transmitter Enable Control Inputs

The MAX225 and MAX245–MAX249 feature transmitterand receiver enable controls.

The receivers have three modes of operation: full-speedreceive (normal active)‚ three-state (disabled)‚ and low-power receive (enabled receivers continue to functionat lower data rates). The receiver enable inputs controlthe full-speed receive and three-state modes. Thetransmitters have two modes of operation: full-speedtransmit (normal active) and three-state (disabled). Thetransmitter enable inputs also control the shutdownmode. The device enters shutdown mode when alltransmitters are disabled. Enabled receivers function inthe low-power receive mode when in shutdown.

MA

X2

20

–M

AX

24

9 Tables 1a–1d define the control states. The MAX244has no control pins and is not included in these tables.

The MAX246 has ten receivers and eight drivers withtwo control pins, each controlling one side of thedevice. A logic high at the A-side control input (ENA)causes the four A-side receivers and drivers to go intoa three-state mode. Similarly, the B-side control input(ENB) causes the four B-side drivers and receivers togo into a three-state mode. As in the MAX245, one A-side and one B-side receiver (RA5 and RB5) remainactive at all times. The entire device is put into shut-down mode when both the A and B sides are disabled(ENA = ENB = +5V).

The MAX247 provides nine receivers and eight driverswith four control pins. The ENRA and ENRB receiverenable inputs each control four receiver outputs. TheENTA and ENTB transmitter enable inputs each controlfour drivers. The ninth receiver (RB5) is always active.The device enters shutdown mode with a logic high onboth ENTA and ENTB.

The MAX248 provides eight receivers and eight driverswith four control pins. The ENRA and ENRB receiverenable inputs each control four receiver outputs. TheENTA and ENTB transmitter enable inputs control fourdrivers each. This part does not have an always-activereceiver. The device enters shutdown mode and trans-mitters go into a three-state mode with a logic high onboth ENTA and ENTB.

The MAX249 provides ten receivers and six drivers withfour control pins. The ENRA and ENRB receiver enableinputs each control five receiver outputs. The ENTAand ENTB transmitter enable inputs control three dri-vers each. There is no always-active receiver. Thedevice enters shutdown mode and transmitters go intoa three-state mode with a logic high on both ENTA andENTB. In shutdown mode, active receivers operate in alow-power receive mode at data rates up to20kbits/sec.

__________Applications InformationFigures 5 through 25 show pin configurations and typi-cal operating circuits. In applications that are sensitiveto power-supply noise, VCC should be decoupled toground with a capacitor of the same value as C1 andC2 connected as close as possible to the device.

+5V-Powered, Multichannel RS-232Drivers/Receivers

16 ______________________________________________________________________________________

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 17

TOP VIEW

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

VCC

GND

T1OUT

R1INC2+

C1-

V+

C1+

MAX220

MAX232

MAX232A R1OUT

T1IN

T2IN

R2OUTR2IN

T2OUT

V-

C2-

DIP/SO

V+

V-

2 +10VC1+C1

C2

1

3

4

5

11

10

12

9

6

14

7

13

8

T1IN

R1OUT

T2IN

R2OUT

T1OUT

R1IN

T2OUT

R2IN

+5V INPUT

C2+ -10V

C4

RS-232OUTPUTS

RS-232INPUTS

TTL/CMOSINPUTS

TTL/CMOSOUTPUTS

GND

15

5kΩ

5kΩ

400kΩ

400kΩ

+5V

+5V

+10V TO -10VVOLTAGE INVERTER

+5V TO +10VVOLTAGE DOUBLER

16

C3

C5

CAPACITANCE (µF)

DEVICEMAX220MAX232MAX232A

C14.71.00.1

C24.71.00.1

C3101.00.1

C4101.00.1

C54.71.00.1

C2-

C1-

VCC

5kΩ

DIP/SO

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

SHDN

VCC

GND

T1OUTC1-

V+

C1+

(N.C.) EN

R1IN

R1OUT

T1IN

T2INT2OUT

V-

C2-

C2+

109 R2OUTR2IN

MAX222

MAX242

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

SHDN

VCC

GND

T1OUTC1-

V+

C1+

(N.C.) EN

N.C.

R1IN

R1OUT

N.C.T2OUT

V-

C2-

C2+

12

11

9

10

T1IN

T2INR2OUT

R2IN

MAX222

MAX242

SSOP

( ) ARE FOR MAX222 ONLY.PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIP/SO PACKAGES ONLY.

V+

V-

3 +10VC1

C2

2

4

5

6

12

11

13

7

15

8

14

9

T1IN

R1OUT

T2IN

R2OUT

T1OUT

(EXCEPT MAX220)

(EXCEPT MAX220)

R1IN

T2OUT

R2IN

+5V INPUT

C2+ -10V

C4

RS-232OUTPUTS

RS-232INPUTS

TTL/CMOSINPUTS

TTL/CMOSOUTPUTS

GND

16

5kΩ

400kΩ

400kΩ

+5V

+5V

+10V TO -10VVOLTAGE INVERTER

VCC+5V TO +10V

VOLTAGE DOUBLER

17

C3

C5

1

10

18SHDN

EN(N.C.)

ALL CAPACITORS = 0.1µF

C2-

C1+

C1-

TOP VIEW

Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit

Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

18 ______________________________________________________________________________________

13

14

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

VCC

VCC VCC

400kΩ

400kΩ

400kΩ

400kΩ

400kΩ

T1OUT+5V

+5V

0.1

+5V

3

28 27

4

25

24

23

26

5

6

7

22

GNDENR

ENR

GND

21

+5V

+5V

+5V

T2OUT

T3OUT

T4OUT

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

1413

2

1

T5OUT

T5OUT

R1IN

R2IN

R3IN

R4IN

R5IN

T1IN11

12

18

17

16

15

10

9

8

19

20

T2IN

T3IN

T4IN

T5IN

ENT

R2OUT

R3OUT

R4OUT

PINS (ENR, GND, VCC, T5OUT) ARE INTERNALLY CONNECTED.

CONNECT EITHER OR BOTH EXTERNALLY. T5OUT IS A SINGLE DRIVER.

R5OUT

R1OUT

VCC

ENT

T3INT2IN

T1IN

ENR

ENR

T4IN

T5IN

R4OUT

R5OUTR3IN

R3OUT

R2OUT

R1OUT

20

19

18

17

9

10

11

12

R5IN

R4IN

T3OUT

T4OUTT2OUT

T1OUT

R1IN

R2IN

SO

MAX225

16

15

T5OUT

MAX225 FUNCTIONAL DESCRIPTION

5 RECEIVERS

5 TRANSMITTERS

2 CONTROL PINS

1 RECEIVER ENABLE (ENR)

1 TRANSMITTER ENABLE (ENT)

T5OUTGND

GND

TOP VIEW

Figure 7. MAX225 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 19

GND

10

27R3OUT

23R4OUT

R3IN

R4IN

5kΩ

5kΩ

5 4R2OUT R2IN

5kΩ

RS-232INPUTS

LOGICOUTPUTS

RS-232OUTPUTS

TTL/CMOSINPUTS

R2

8 9R1OUT R1IN

5kΩ

R1

R3

R4

19 18R5OUT R5IN

5kΩ

R5

27 T1IN T1OUT

+5V

400kΩ

+5V

6 3T2IN T2OUTT2

400kΩ

20 T3OUT 1T3IN

+5V

T3

400kΩ

C1+

C1-

1.0µF

12VCC

+5V INPUT

11

17

1.0µF

131.0µF

+5V TO +10VVOLTAGE DOUBLER

26

1.0µF

T1

2821 T4IN T4OUT

+5V

400kΩ

T4

14

C2+

C2-

15

1.0µF 16

+10V TO -10VVOLTAGE INVERTER

V+

22

EN (EN)2425

28

27

26

25

24

23

22

21

20

19

18

17

16

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

T4OUT

R3IN

R3OUT

SHDN (SHDN)

R4IN*

C2+

R4OUT*

T4IN

T3IN

R5OUT*

R5IN*

V-

C2-

C1-

V+

C1+

VCC

GND

R1IN

R1OUT

T1IN

T2IN

R2OUT

R2IN

T2OUT

T1OUT

T3OUT

Wide SO/SSOP

MAX223

MAX241

EN (EN)

SHDN(SHDN)

*R4 AND R5 IN MAX223 REMAIN ACTIVE IN SHUTDOWN

NOTE: PIN LABELS IN ( ) ARE FOR MAX241

V-

TOP VIEW

Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

20 ______________________________________________________________________________________

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

T5IN

N.C.

SHDNT2IN

T2OUT

T1OUT

T5OUT

T4IN

T3IN

V-C1+

VCC

GND

T1IN

12

11

9

10

C2-

C2+C1-

V+

DIP/SO

MAX230

V+

V-

9C1+

C1-

8

10

11

12

5

4

14

13

2

3

1

20

T3IN

T4IN

T2IN

T5IN

T1OUT

T2OUT

+5V INPUT

C2+

C2-

RS-232OUTPUTS

TTL/CMOSINPUTS

GND

6

400kΩ+5V

400kΩ

+5V

400kΩ

+5V

400kΩ+5V

400kΩ

+5V

+10V TO -10VVOLTAGE INVERTER

VCC+5V TO +10V

VOLTAGE DOUBLER

7

1.0µF

1.0µF

1.0µF

1.0µF

19

15

16

T3OUT T4OUT

18x

T1IN

T3OUT

T4OUT

T5OUT

17

1.0µF

T2

T3

T4

T5

N.C. SHDN

T1

TOP VIEW

Figure 9. MAX230 Pin Configuration and Typical Operating Circuit

V+

V-

14C1+

C1-

1

2

8

7

3

11

4T2IN

T1IN T1OUT

T2OUT

+5V INPUT

RS-232INPUTS

TTL/CMOSOUTPUTS

GND

12 (14)

5kΩ

5kΩ

+12V TO -12VVOLTAGE CONVERTER

13 (15)

1.0µF

1.0µF

C21.0µF

400kΩ

+5V

400kΩ

+5V

6

9 10R1IN

R2INR2OUT

R1OUT

5

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

V+

VCC

GND

T1OUTT2OUT

V-

C-

C+

MAX231

R1IN

R1OUT

T1IN

N.C.N.C.

T2IN

R2OUT

R2IN

SO

(12)

RS-232OUTPUTS

TTL/CMOSINPUTS

(11)

(13)(10)

VCC

PIN NUMBERS IN ( ) ARE FOR SO PACKAGE

14

13

12

11

10

9

8

1

2

3

4

5

6

7

V+

VCC

GND

T1OUTT2OUT

V-

C-

C+

MAX231

R1IN

R1OUT

T1INT2IN

R2OUT

R2IN

DIP

+7.5V TO +12V

(16)

T1

T2

R1

R2

TOP VIEW

Figure 10. MAX231 Pin Configurations and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 21

2

1

5

18T2IN

T1IN T1OUT

T2OUT

+5V INPUT

RS-232OUTPUTS

TTL/CMOSOUTPUTS

GND GND

6 9

400kΩ

+5V

400kΩ

+5V

5kΩ

5kΩ

7

20

3 4R1IN

R2INR2OUT

R1OUT

19

RS-232OUTPUTS

TTL/CMOSINPUTS

VCC

( ) ARE FOR SO PACKAGE ONLY.

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

R2IN

T2OUT

V-R1IN

R1OUT

T1IN

C2-

C2+

V+ (C1-)

C1- (C1+)(V+) C1+

VCC

GND

T1OUT

12

11

9

10

V- (C2+)

C2+ (C2-)(V-) CS-

GND

DIP/SO

MAX233

MAX233A

T2IN R2OUT

C1+

C1-

V-

V-

V+

C2+

C2-

C2-

C2+

8 (13)

13 (14)

12 (10)

17

14 (8)

11 (12)

15

16

10 (11)

DO NOT MAKECONNECTIONS TO

THESE PINS

INTERNAL -10POWER SUPPLY

INTERNAL +10VPOWER SUPPLY

1.0µF

TOP VIEW

Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

T3OUT

T4OUT

T4IN

T3INT1IN

T2IN

T2OUT

T1OUT

MAX234

V-

C2-

C2+

C1-V+

C1+

VCC

GND

DIP/SO

V+

V-

8C1+

C1-

1.0µF

1.0µF

1.0µF

7

9

10

11

4

3

13

14

12

1

3

16

15

T1IN

T3IN

T2IN

T4IN

T1OUT

T3OUT

T2OUT

T4OUT

+5V INPUT

C2-

C2+

RS-232OUTPUTS

TTL/CMOSINPUTS

GND

5

+5V

+5V

+10V TO -10VVOLTAGE INVERTER

VCC

+5V TO +10VVOLTAGE DOUBLER

6

+5V

+5V

400kΩ

400kΩ

400kΩ

400kΩ

1.0µF

1.0µF

T1

T2

T4

T3

TOP VIEW

Figure 12. MAX234 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

22 ______________________________________________________________________________________

1.0µF

+5V INPUT

GND

11

6

23

5R2OUT

RS-232INPUTS

TTL/CMOSOUTPUTS

14 13

21

R5OUT

5kΩ

17 18R4OUT

5kΩ

24R3OUT

5kΩ

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

R3IN

R3OUT

T5IN

SHDNT2OUT

T1OUT

T3OUT

T4OUT

EN

T5OUT

R4IN

R4OUTT1IN

T2IN

R2OUT

R2IN

16

15

14

13

9

10

11

12

T4IN

T3IN

R5OUT

R5INVCC

GND

R1IN

R1OUT

DIP

MAX235

5kΩ

9 10R1OUT R1IN

R2IN

R3IN

R4IN

R5IN

5kΩ

7

15

3

4T2IN

T3OUT RS-232OUTPUTS

TTL/CMOSINPUTS

22 19T5IN T5OUT

+5V

16 1T4IN T4OUT

+5V

2T3IN

+5V

+5V

8 T1IN T1OUT

+5V

T2OUT

T1

T1

R2

R3

R4

R5

T2

T3

T5

T4

400kΩ

400kΩ

400kΩ

400kΩ

400kΩ

SHDNEN20

12

VCC

TOP VIEW

Figure 13. MAX235 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 23

GND

8

23R2OUT RS-232INPUTS

TTL/CMOSOUTPUTS

17 16

21

R3OUT

R2IN

R3IN

5kΩ

5kΩ

5 4R1OUT R1IN

5kΩ

RS-232OUTPUTS

TTL/CMOSINPUTS

R1

R2

R3

27 T1IN T1OUT

+5V

T1

400kΩ

6 3T2IN

+5V

T2OUTT2

400kΩ

18 T3OUT 1T3IN

+5V

T3

400kΩ

19 24T4IN T4OUT

+5V

T4

400kΩ

SHDNEN20

11C1+

C1-

1.0µF

10

12

13

14

15

+5V INPUT

C2+

C2-

VCC

+5V TO +10VVOLTAGE DOUBLER

9 1.0µF

1.0µF+10V TO -10V

VOLTAGE INVERTER

22

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

T4OUT

R2IN

R2OUT

SHDNR1IN

T2OUT

T1OUT

T3OUT

T4IN

T3IN

R3OUTGND

T1IN

T2IN

R1OUT

16

15

14

13

9

10

11

12

R3IN

V-

C2-

C2+C1-

V+

C1+

VCC

DIP/SO

MAX236 EN

1.0µF

1.0µF

TOP VIEW

V+

V-

Figure 14. MAX236 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

24 ______________________________________________________________________________________

GND

8

23R2OUT RS-232INPUTS

TTL/CMOSOUTPUTS

17 16R3OUT

R2IN

R3IN

5kΩ

5kΩ

5 4R1OUT R1IN

5kΩ

RS-232OUTPUTS

TTL/CMOSINPUTS

R1

R2

R3

27 T1IN T1OUT

+5V

T1

400kΩ

6 3T2IN

+5V

T2OUTT2

400kΩ

18 T3OUT 1T3IN

+5V

T3

400kΩ

21 20T5IN T5OUT

+5V

T5

400kΩ

11C1+

C1-

1.0µF

10

12

13

14

15

+5V INPUT

C2+

C2-

VCC

+5V TO +10VVOLTAGE DOUBLER

9 1.0µF

1.0µF+10V TO -10V

VOLTAGE INVERTER

22

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

T4OUT

R2IN

R2OUT

T5INR1IN

T2OUT

T1OUT

T3OUT

T4IN

T3IN

R3OUTGND

T1IN

T2IN

R1OUT

16

15

14

13

9

10

11

12

R3IN

V-

C2-

C2+C1-

V+

C1+

VCC

DIP/SO

MAX237 T5OUT

1.0µF

1.0µF

19 24T4IN T4OUT

+5V

T4

400kΩ

V+

V-

TOP VIEW

Figure 15. MAX237 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 25

GND

8

3R2OUT

22 23R3OUT

R2IN

R3IN

5kΩ

5kΩ

6 7R1OUT R1IN

5kΩ

RS-232OUTPUTS

TTL/CMOSINPUTS

RS-232INPUTS

TTL/CMOSOUTPUTS

R1

R2

R3

17 16R4OUT R4IN

5kΩ

R4

25 T1IN T1OUT

+5V

400kΩ

+5V

18 1T2IN T2OUTT2

400kΩ

19 T3OUT 24T3IN

+5V

T3

400kΩ

11C1+

C1-

1.0µF

10

12

13

14

15

+5V INPUT

C2+

C2-

VCC

+5V TO +10VVOLTAGE DOUBLER

9 1.0µF

1.0µF

+10V TO -10VVOLTAGE INVERTER

4

1.0µF

1.0µF

21 20T4IN T4OUT

+5V

T4

400kΩ

T124

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

T3OUT

R3IN

R3OUT

T4INR2OUT

R2IN

T1OUT

T2OUT

TOP VIEW

T3IN

T2IN

R4OUTGND

R1IN

R1OUT

T1IN

16

15

14

13

9

10

11

12

R4IN

V-

C2-

C2+C1-

V+

C1+

VCC

DIP/SO

MAX238 T4OUT

V+

V-

Figure 16. MAX238 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

26 ______________________________________________________________________________________

GND

3

18R3OUT

12R4OUT

R3IN

R4IN

5kΩ

5kΩ

22 21R2OUT R2IN

5kΩ

RS-232OUTPUTS

TTL/CMOSINPUTS

RS-232INPUTS

TTL/CMOSOUTPUTS

R2

1 2R1OUT R1IN

5kΩ

R1

R3

R4

10 9R5OUT R5IN

5kΩ

R5

1924 T1IN T1OUT

+5V

400kΩ

+5V

23 20T2IN T2OUTT2

400kΩ

16 T3OUT 13T3IN

+5V

T3

400kΩ

C1+

C1-

1.0µF

6 VCC8

+5V INPUT

4 5

1.0µF+10V TO -10V

VOLTAGE INVERTER

17

1.0µF

T1

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

T1IN

T2IN

R2OUT

R2INVCC

GND

R1IN

R1OUT

T1OUT

R3IN

R3OUTV-

C-

C+

V+

16

15

14

13

9

10

11

12

T3IN

N.C.

EN

T3OUTR4IN

R4OUT

R5OUT

R5IN

DIP/SO

MAX239 T2OUT

7.5V TO 13.2VINPUT

7

V+

11

EN14 15N.C.

V-

TOP VIEW

Figure 17. MAX239 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 27

GND

18

4R3OUT

40R4OUT

R3IN

R4IN

5kΩ

5kΩ

13 10R2OUT R2IN

5kΩ

RS-232INPUTS

TTL/CMOSOUTPUTS

RS-232OUTPUTS

TTL/CMOSINPUTS

R2

16 17R1OUT R1IN

5kΩ

R1

R3

R4

36 35R5OUT R5IN

5kΩ

R5

715 T1IN T1OUT

+5V400kΩ

+5V

14 8T2IN T2OUTT2

400kΩ

37 T3OUT 6T3IN

+5V

T3

400kΩ

C1+

C1-

1.0µF

25VCC

+5V INPUT

19

30

1.0µF

26

1.0µF

+5V TO +10VVOLTAGE DOUBLER

3

1.0µF

T1

+5V

2 41T5IN T5OUTT5

400kΩ

538 T4IN T4OUT

+5V400kΩ

T4

27

C2+

C2-

28

1.0µF 29

+5V TO -10VVOLTAGE INVERTER

V+

39

EN42 43

Plastic FP

MAX240

SHDN

EN

T5OUT

R4IN

R4OUT

R5OUT

R5IN

N.C.

N.C.

T3IN

T4IN

R2OUT

T2IN

T1IN

R1OUT

R1IN

N.C.

N.C.

N.C.

N.C.

VCC

GND

R2 I

N

N.C

.

T4O

UT

T2O

UT

T1O

UT

T3O

UT

N.C

.

R3 I

N

R3 O

UT

N.C

.

T5IN

N.C

.

C1+ C

2

V+

C1-

C2+

N.C

.

V-

N.C

.

N.C

.

N.C

.

3332313029282726252423

34

35

36

37

38

39

40

41

42

43

44

1234567891011

22

21

20

19

18

17

16

15

14

13

12

SHDN

TOP VIEW

V-

Figure 18. MAX240 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

28 ______________________________________________________________________________________

V+

V-

2 +10VC1+

C1-

1

3

4

5

11

10

12

9

6

14

7

13

8

T1IN

R1OUT

T2IN

R2OUT

T1OUT

R1IN

T2OUT

R2IN

+5V INPUT

C2+

C2-

-10V

RS-232OUTPUTS

RS-232INPUTS

TTL/CMOSINPUTS

TTL/CMOSOUTPUTS

GND

15

5kΩ

5kΩ

400kΩ

400kΩ

+5V

+5V

+10V TO -10VVOLTAGE INVERTER

+5V TO +10VVOLTAGE DOUBLER

16

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

C1+ VCC

GND

T1OUT

R1IN

R1OUT

T1IN

T2IN

R2OUT

MAX243

DIP/SO

V+

C1-

V-

C2+

C2-

T2OUT

R2IN

0.1µF

0.1µF

0.1µF

0.1µF

ALL CAPACITORS = 0.1µF

0.1µF

RECEIVER INPUT

≤ -3 V

OPEN

≥ +3V

R1 OUTPUT

HIGH

HIGH

LOW

R2 OUTPUT

HIGH

LOW

LOW

TOP VIEW

VCC

Figure 19. MAX243 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 29

400kΩ

+10V TO -10V VOLTAGE INVERTER

+5V TO +10V VOLTAGE DOUBLER

VCC

400kΩ

400kΩ

GND

+5V +5V

+5V +5V

+5V

25

24

23

2120

2

1µF

1µF

1µF 1µF

1µF

16

3

17

4

18

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

C2-

C2+

C1-

C1+

TA2OUT

TA2IN

TA3OUT

TA3IN

TA4OUT

TA4IN

9 RA1IN

10 RA1OUT

8 RA2IN

11 RA2OUT

7 RA3IN

12 RA3OUT

6 RA4IN

13 RA4OUT

5 RA5IN

14

19

RA5OUT

26

22

43

29

42

28

41

27

36

35

37

34

38

33

39

32

40

31

V-

V+

TB2OUT

TB2IN

400kΩ

2

15

TA1OUT

TA1IN

44

30

TB1OUT

TB1IN

TB3OUT

TB3IN

TB4OUT

TB4IN

RB1IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

RB5IN

RB5OUT

MAX249 FUNCTIONAL DESCRIPTION

10 RECEIVERS

5 A-SIDE RECEIVER

5 B-SIDE RECEIVER

8 TRANSMITTERS

4 A-SIDE TRANSMITTERS

4 B-SIDE TRANSMITTERS

NO CONTROL PINS

441234 404142435

21 24 2625 27 2822 2319 20

8

9

10

11

12

13

14

15

16

17 29

30

31

32

33

34

35

36

37

38

TA3IN

VC

C

RA

5IN

MAX244

PLCC

TOP VIEWT A

4OU

T

T A3O

UT

T A2O

UT

T A1O

UT

T B1O

UT

T B2O

UT

T B3O

UT

TB4O

UT

RB

5IN

GN

D V+

C1+

C2+C1- V-

C2-

T B3I

N

T B4I

N

RB3IN

RB2IN

RB1IN

RB1OUT

RB2OUT

RB3OUT

RB4OUT

RB5OUT

TB1IN

TB2IN

TA2IN

TA1IN

RA5OUT

RA4OUT

RA3OUT

RA2OUT

RA1OUT

RA1IN

RA2IN

7 39 RB4INRA3IN

6

18

RA

4IN

T A4I

N

+5V +5V

+5V +5V

Figure 20. MAX244 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

30 ______________________________________________________________________________________

400kΩ

VCC

400kΩ

400kΩ

GND

+5V +5V

+5V +5V

+5V

40

17

1µF

3

18

4

19

5

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

TA2OUT

TA2IN

TA3OUT

TA3IN

TA4OUT

TA4IN

1

11 RA1IN

10 RA1OUT

12 RA2IN

9 RA2OUT

13 RA3IN

8 RA3OUT

14 RA4IN

7 RA4OUT

15 RA5IN

6

20

RA5OUT

23

37

22

36

21

35

29

30

28

31

27

32

26

33

25

34

TB2OUT

TB2IN

TB3OUT

TB3IN

TB4OUT

TB4IN

RB1IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

RB5IN

RB5OUT

+5V +5V

400kΩ

16

2

TA1OUT

TA1IN

24

38

TB1OUT

TB1IN

+5V +5V40 VCC

ENT

TB1IN

TB2IN

TB3IN

TB4IN

RB5OUT

RB4OUT

RB3OUT

RB2OUT

RB1OUT

RB1IN

RB2IN

RB3IN

RB4IN

RB5IN

TB1OUT

TB2OUT

TB3OUT

TB4OUT

39

38

37

36

35

34

33

32

31

1

2

3

4

5

6

7

8

9

10

ENR

TA1IN

TA2IN

TA3IN

TA4IN

RA5OUT

RA4OUT

RA3OUT

RA2OUT

RA1OUT

RA1IN

RA2IN

RA3IN

RA4IN

RA5IN

TA1OUT

TA2OUT

TA3OUT

TA4OUT

GND

TOP VIEW

MAX245

30

29

28

27

26

25

24

23

22

21

11

12

13

14

15

16

17

18

19

DIP

20

MAX245 FUNCTIONAL DESCRIPTION

10 RECEIVERS

5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE)

5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)

8 TRANSMITTTERS

4 A-SIDE TRANSMITTERS

2 CONTROL PINS

1 RECEIVER ENABLE (ENR)

1 TRANSMITTER ENABLE (ENT)

39ENR ENT

Figure 21. MAX245 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 31

400kΩ

VCC

400kΩ

GND

+5V

+5V

+5V

+5V

+5V

40

16

1µF

2

18

4

TA1OUT

TA1IN

TA3OUT

TA3IN

20

24

38

22

36

1 39

TB1OUT

TB1IN

TB3OUT

TB3IN

400kΩ

+5V

17

3

TA2OUT

TA2IN

+5V

23

37

TB2OUT

TB2IN

400kΩ

+5V

19

5

TA4OUT

TA4IN

+5V

21

35

TB4OUT

TB4IN

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

11 RA1IN

10 RA1OUT

12 RA2IN

9 RA2OUT

13 RA3IN

8 RA3OUT

14 RA4IN

7 RA4OUT

15 RA5IN

6 RA5OUT

29

30

28

31

27

32

26

33

25

34

RB1IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

RB5IN

RB5OUT

40 VCC

ENB

TB1IN

TB2IN

TB3IN

TB4IN

RB5OUT

RB4OUT

RB3OUT

RB2OUT

RB1OUT

RB1IN

RB2IN

RB3IN

RB4IN

RB5IN

TB1OUT

TB2OUT

TB3OUT

TB4OUT

39

38

37

36

35

34

33

32

31

1

2

3

4

5

6

7

8

9

10

ENA

TA1IN

TA2IN

TA3IN

TA4IN

RA5OUT

RA4OUT

RA3OUT

RA2OUT

RA1OUT

RA1IN

RA2IN

RA3IN

RA4IN

RA5IN

TA1OUT

TA2OUT

TA3OUT

TA4OUT

GND

TOP VIEW

MAX246

30

29

28

27

26

25

24

23

22

21

11

12

13

14

15

16

17

18

19

DIP

20

MAX246 FUNCTIONAL DESCRIPTION

10 RECEIVERS

5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE)

5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)

8 TRANSMITTERS

4 A-SIDE TRANSMITTERS

4 B-SIDE TRANSMITTERS

2 CONTROL PINS

ENABLE A-SIDE (ENA)

ENABLE B-SIDE (ENB)

ENA ENB

Figure 22. MAX246 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

32 ______________________________________________________________________________________

400kΩ

VCC

400kΩ

GND

+5V

+5V

+5V

+5V

+5V

1

40

16

1µF

2

18

4

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

ENTA

TA1OUT

TA1IN

TA3OUT

TA3IN

6 RB5OUT

12 RA1IN

10 RA1OUT

13 RA2IN

9 RA2OUT

14 RA3IN

8 RA3OUT

15 RA4IN

7

20

RA4OUT

11

39

24

38

22

36

29

31

28

32

27

33

26

34

30ENRA

ENTB

TB1OUT

TB1IN

TB3OUT

TB3IN

RB1IN

5kΩ

25RB5IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

ENRB

400kΩ

+5V

17

3

TA2OUT

TA2IN

+5V

23

37

TB2OUT

TB2IN

400kΩ

+5V

19

5

TA4OUT

TA4IN

+5V

21

35

TB4OUT

TB4IN

40 VCC

ENTB

TB1IN

TB2IN

TB3IN

TB4IN

RB4OUT

RB3OUT

RB2OUT

RB1OUT

RB1IN

RB2IN

RB3IN

RB4IN

RB5IN

TB1OUT

TB2OUT

TB3OUT

TB4OUT

39

38

37

36

35

34

33

32

31

1

2

3

4

5

6

7

8

9

10

ENTA

TA1IN

TA2IN

TA3IN

TA4IN

RB5OUT

RA4OUT

RA3OUT

RA2OUT

RA1OUT

RA1IN

RA2IN

RA3IN

RA4IN

TA1OUT

TA2OUT

TA3OUT

TA4OUT

GND

TOP VIEW

MAX247

30

29

28

27

26

25

24

23

22

21

11

12

13

14

15

16

17

18

19

DIP

20

ENRA ENRB

MAX247 FUNCTIONAL DESCRIPTION

9 RECEIVERS

4 A-SIDE RECEIVERS

5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)

8 TRANSMITTERS

4 A-SIDE TRANSMITTERS

4 B-SIDE TRANSMITTERS

4 CONTROL PINS

ENABLE RECEIVER A-SIDE (ENRA)

ENABLE RECEIVER B-SIDE (ENRB)

ENABLE RECEIVER A-SIDE (ENTA)

ENABLE RECEIVERr B-SIDE (ENTB)

Figure 23. MAX247 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 33

400kΩ

+10V TO -10V VOLTAGE INVERTER

+5V TO +10V VOLTAGE DOUBLER

VCC

400kΩ

GND

+5V

+5V

+5V

+5V

+5V

18

25

24

23

2120

1

1µF

1µF

1µF1µF

1µF

14

3

16

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

ENTA

C2-

C2+

C1-

C1+

TA1OUT

TA1IN

TA3OUT

TA3IN

8 RA1IN

10 RA1OUT

7 RA2IN

11 RA2OUT

6 RA3IN

12 RA3OUT

5 RA4IN

13

19

RA4OUT

9

27

26

22

44

31

42

29

37

35

38

34

39

33

40

32

36ENRA

ENTB

V-

V+

TB1OUT

TB1IN

TB3OUT

TB3IN

RB1IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

ENRB

400kΩ

+5V

2

15

TA2OUT

TA2IN

+5V

43

30

TB2OUT

TB2IN

400kΩ

+5V

4

17

TA4OUT

TA4IN

+5V

41

28

TB4OUT

TB4IN

441234 404142435

21 24 2625 27 2822 2319 20

8

9

10

11

12

13

14

15

16

17 29

30

31

32

33

34

35

36

37

38

TA4IN

VC

C

RA

4IN

MAX248

PLCC

TOP VIEWT A

4OU

T

T A3O

UT

T A2O

UT

T A1O

UT

T B1O

UT

T B2O

UT

T B3O

UT

T A4O

UT

RB

4IN

GN

D V+

C1+

C2+C1- V-

C2-

T B4I

N

ENTB

RB2IN

RB1IN

RB1OUT

RB2OUT

RB3OUT

RB4OUT

TB1IN

TB2IN

TB3IN

TA3IN

TA2IN

TA1IN

RA4OUT

RA3OUT

RA2OUT

RA1OUT

ENRA

RA1IN

7 39 RB3INRA2IN

6

18

RA

3IN

ENRB

ENTA

MAX248 FUNCTIONAL DESCRIPTION

8 RECEIVERS

4 A-SIDE RECEIVERS

4 B-SIDE RECEIVERS

8 TRANSMITTERS

4 A-SIDE TRANSMITTERS

4 B-SIDE TRANSMITTERS

4 CONTROL PINS

ENABLE RECEIVER A-SIDE (ENRA)

ENABLE RECEIVER B-SIDE (ENRB)

ENABLE RECEIVER A-SIDE (ENTA)

ENABLE RECEIVER B-SIDE (ENTB)

Figure 24. MAX248 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

34 ______________________________________________________________________________________

400kΩ

+10V TO -10V VOLTAGE INVERTER

+5V TO +10V VOLTAGE DOUBLER

VCC

400kΩ

400kΩ

GND

+5V

+5V

+5V

+5V

+5V

+5V

+5V

18

25

24

23

2120

1

1µF

1µF

1µF1µF

15

2

16

3

17

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

5kΩ

ENTA

C2-

C2+

C1-

C1+

TA1OUT

TA1IN

TA2OUT

TA2IN

TA3OUT

TA3IN

8 RA1IN

10 RA1OUT

7 RA2IN

11 RA2OUT

6 RA3IN

12 RA3OUT

5 RA4IN

13 RA4OUT

4 RA5IN

14

19

RA5OUT

9

27

26

22

44

30

43

29

42

28

37

35

38

34

39

33

40

32

41

31

36ENRA

ENTB

V-

V+

TB1OUT

TB1IN

TB2OUT

TB2IN

TB3OUT

TB3IN

RB1IN

RB1OUT

RB2IN

RB2OUT

RB3IN

RB3OUT

RB4IN

RB4OUT

RB5IN

RB5OUT

ENRB

441234 404142435

21 24 2625 27 2822 2319 20

8

9

10

11

12

13

14

15

16

17 29

30

31

32

33

34

35

36

37

38

VC

C

RA

4IN

RA

5IN

MAX249

PLCC

TOP VIEWT A

3OU

T

T A2O

UT

T A1O

UT

T B1O

UT

T B2O

UT

T B3O

UT

RB

4IN

RB

5IN

GN

D V+

C1+

C2+C1- V-

C2-

T B3I

N

ENTB

RB2IN

RB1IN

RB1OUT

MAX249 FUNCTIONAL DESCRIPTION

10 RECEIVERS

5 A-SIDE RECEIVERS

5 B-SIDE RECEIVERS

6 TRANSMITTERS

3 A-SIDE TRANSMITTERS

3 B-SIDE TRANSMITTERS

4 CONTROL PINS

ENABLE RECEIVER A-SIDE (ENRA)

ENABLE RECEIVER B-SIDE (ENRB)

ENABLE RECEIVER A-SIDE (ENTA)

ENABLE RECEIVER B-SIDE (ENTB)

RB2OUT

RB3OUT

RB4OUT

RB5OUT

TB1IN

TB2INTA3IN

TA2IN

TA1IN

RA4OUT

RA5OUT

RA3OUT

RA2OUT

RA1OUT

ENRA

RA1IN

7 39 RB3INRA2IN

6

18

RA

3IN

ENRB

ENTA

1µF

Figure 25. MAX249 Pin Configuration and Typical Operating Circuit

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

______________________________________________________________________________________ 35

___________________________________________Ordering Information (continued)

PART

MAX222CPN 0°C to +70°C

TEMP RANGE PIN-PACKAGE PART TEMP RANGE PIN-PACKAGE

18 Plastic DIP

MAX222CWN 0°C to +70°C 18 Wide SO

MAX222C/D 0°C to +70°C Dice*

MAX222EPN -40°C to +85°C 18 Plastic DIP

MAX222EWN -40°C to +85°C 18 Wide SO

MAX222EJN -40°C to +85°C 18 CERDIP

MAX222MJN -55°C to +125°C 18 CERDIP

MAX223CAI 0°C to +70°C 28 SSOP

MAX223CWI 0°C to +70°C 28 Wide SO

MAX223C/D 0°C to +70°C Dice*

MAX223EAI -40°C to +85°C 28 SSOP

MAX223EWI -40°C to +85°C 28 Wide SO

MAX225CWI 0°C to +70°C 28 Wide SO

MAX225EWI -40°C to +85°C 28 Wide SO

MAX230CPP 0°C to +70°C 20 Plastic DIP

MAX230CWP 0°C to +70°C 20 Wide SO

MAX230C/D 0°C to +70°C Dice*

MAX230EPP -40°C to +85°C 20 Plastic DIP

MAX230EWP -40°C to +85°C 20 Wide SO

MAX230EJP -40°C to +85°C 20 CERDIP

MAX230MJP -55°C to +125°C 20 CERDIP

MAX231CPD 0°C to +70°C 14 Plastic DIP

MAX231CWE 0°C to +70°C 16 Wide SO

MAX231CJD 0°C to +70°C 14 CERDIP

MAX231C/D 0°C to +70°C Dice*

MAX231EPD -40°C to +85°C 14 Plastic DIP

MAX231EWE -40°C to +85°C 16 Wide SO

MAX231EJD -40°C to +85°C 14 CERDIP

MAX231MJD -55°C to +125°C 14 CERDIP

MAX232CPE 0°C to +70°C 16 Plastic DIP

MAX232CSE 0°C to +70°C 16 Narrow SO

MAX232CWE 0°C to +70°C 16 Wide SO

MAX232C/D 0°C to +70°C Dice*

MAX232EPE -40°C to +85°C 16 Plastic DIP

MAX232ESE -40°C to +85°C 16 Narrow SO

MAX232EWE -40°C to +85°C 16 Wide SO

MAX232EJE -40°C to +85°C 16 CERDIP

MAX232MJE -55°C to +125°C 16 CERDIP

MAX232MLP -55°C to +125°C 20 LCC

MAX232ACPE 0°C to +70°C 16 Plastic DIP

MAX232ACSE 0°C to +70°C 16 Narrow SO

MAX232ACWE 0°C to +70°C 16 Wide SO

MAX232AC/D

MAX232AEPE -40°C to +85°C 16 Plastic DIP

MAX232AESE

0°C to +70°C Dice*

-40°C to +85°C 16 Narrow SO

MAX232AEWE -40°C to +85°C 16 Wide SO

MAX232AEJE -40°C to +85°C 16 CERDIP

MAX232AMJE -55°C to +125°C 16 CERDIP

MAX232AMLP -55°C to +125°C 20 LCC

MAX233CPP 0°C to +70°C 20 Plastic DIP

MAX233EPP -40°C to +85°C 20 Plastic DIP

MAX233ACPP 0°C to +70°C 20 Plastic DIP

MAX233ACWP 0°C to +70°C 20 Wide SO

MAX233AEPP -40°C to +85°C 20 Plastic DIP

MAX233AEWP -40°C to +85°C 20 Wide SO

MAX234CPE 0°C to +70°C 16 Plastic DIP

MAX234CWE 0°C to +70°C 16 Wide SO

MAX234C/D 0°C to +70°C Dice*

MAX234EPE -40°C to +85°C 16 Plastic DIP

MAX234EWE -40°C to +85°C 16 Wide SO

MAX234EJE -40°C to +85°C 16 CERDIP

MAX234MJE -55°C to +125°C 16 CERDIP

MAX235CPG 0°C to +70°C 24 Wide Plastic DIP

MAX235EPG -40°C to +85°C 24 Wide Plastic DIP

MAX235EDG -40°C to +85°C 24 Ceramic SB

MAX235MDG -55°C to +125°C 24 Ceramic SB

MAX236CNG 0°C to +70°C 24 Narrow Plastic DIP

MAX236CWG 0°C to +70°C 24 Wide SO

MAX236C/D 0°C to +70°C Dice*

MAX236ENG -40°C to +85°C 24 Narrow Plastic DIP

MAX236EWG -40°C to +85°C 24 Wide SO

MAX236ERG -40°C to +85°C 24 Narrow CERDIP

MAX236MRG -55°C to +125°C 24 Narrow CERDIP

MAX237CNG 0°C to +70°C 24 Narrow Plastic DIP

MAX237CWG 0°C to +70°C 24 Wide SO

MAX237C/D 0°C to +70°C Dice*

MAX237ENG -40°C to +85°C 24 Narrow Plastic DIP

MAX237EWG -40°C to +85°C 24 Wide SO

MAX237ERG -40°C to +85°C 24 Narrow CERDIP

MAX237MRG -55°C to +125°C 24 Narrow CERDIP

MAX238CNG 0°C to +70°C 24 Narrow Plastic DIP

MAX238CWG 0°C to +70°C 24 Wide SO

MAX238C/D 0°C to +70°C Dice*

MAX238ENG -40°C to +85°C 24 Narrow Plastic DIP

* Contact factory for dice specifications.

MA

X2

20

–M

AX

24

9

+5V-Powered, Multichannel RS-232Drivers/Receivers

___________________________________________Ordering Information (continued)

* Contact factory for dice specifications.

18 CERDIP-55°C to +125°CMAX242MJN

18 CERDIP-40°C to +85°CMAX242EJN

18 Wide SO-40°C to +85°CMAX242EWN

18 Plastic DIP-40°C to +85°CMAX242EPN

Dice*0°C to +70°CMAX242C/D

18 Wide SO0°C to +70°CMAX242CWN

18 Plastic DIP0°C to +70°CMAX242CPN

20 SSOP0°C to +70°CMAX242CAP

28 Wide SO-40°C to +85°CMAX241EWI

28 SSOP-40°C to +85°CMAX241EAI

Dice*0°C to +70°CMAX241C/D

28 Wide SO0°C to +70°CMAX241CWI

28 SSOP0°C to +70°CMAX241CAI

Dice*0°C to +70°CMAX240C/D

44 Plastic FP0°C to +70°CMAX240CMH

24 Narrow CERDIP-55°C to +125°CMAX239MRG

24 Narrow CERDIP-40°C to +85°CMAX239ERG

24 Wide SO-40°C to +85°CMAX239EWG

24 Narrow Plastic DIP-40°C to +85°CMAX239ENG

Dice*0°C to +70°CMAX239C/D

24 Wide SO0°C to +70°CMAX239CWG

24 Narrow Plastic DIP0°C to +70°CMAX239CNG

24 Narrow CERDIP-55°C to +125°C

24 Wide SO

PIN-PACKAGETEMP RANGE

-40°C to +85°C

MAX238MRG

24 Narrow CERDIP-40°C to +85°CMAX238ERG

MAX238EWG

PART PIN-PACKAGETEMP RANGEPART

44 PLCC-40°C to +85°CMAX249EQH

44 PLCC0°C to +70°CMAX249CQH

44 PLCC-40°C to +85°CMAX248EQH

Dice*0°C to +70°CMAX248C/D

44 PLCC0°C to +70°CMAX248CQH

40 Plastic DIP-40°C to +85°CMAX247EPL

Dice*0°C to +70°CMAX247C/D

40 Plastic DIP0°C to +70°CMAX247CPL

40 Plastic DIP-40°C to +85°CMAX246EPL

Dice*0°C to +70°CMAX246C/D

40 Plastic DIP0°C to +70°CMAX246CPL

40 Plastic DIP-40°C to +85°CMAX245EPL

Dice*0°C to +70°CMAX245C/D

40 Plastic DIP0°C to +70°CMAX245CPL

44 PLCC-40°C to +85°CMAX244EQH

Dice*0°C to +70°CMAX244C/D

44 PLCC0°C to +70°CMAX244CQH

16 CERDIP-55°C to +125°CMAX243MJE

16 CERDIP-40°C to +85°CMAX243EJE

16 Wide SO-40°C to +85°CMAX243EWE

16 Narrow SO-40°C to +85°CMAX243ESE

16 Plastic DIP-40°C to +85°CMAX243EPE

Dice*0°C to +70°CMAX243C/D

16 Wide SO0°C to +70°C

16 Plastic DIP0°C to +70°C

MAX243CWE

16 Narrow SO0°C to +70°CMAX243CSE

MAX243CPE

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

36 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Package InformationFor the latest package outline information, go to

www.maxim-ic.com/packages.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.


Recommended