+ All Categories
Home > Documents > Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom...

Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom...

Date post: 23-Mar-2020
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
20
ECE 656: Electrothermal Transport in Semiconductors Fall 2015 Landauer Approach: Examples Professor Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA 10/8/15
Transcript
Page 1: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Lundstrom ECE-656 F15

ECE 656: Electrothermal Transport in Semiconductors Fall 2015 Landauer Approach:

Examples

Professor Mark Lundstrom

Electrical and Computer Engineering

Purdue University West Lafayette, IN USA

10/8/15

Page 2: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Low-field transport in metallic CNT

Lundstrom ECE-656 F15

Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett., 84, 2941-2944, 2000.

G1D =

ΔIΔV

=22 µA1.0 V

= 22 µS

1L mµ≈

What is the mean-free-path for backscattering?

Page 3: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Low-field transport in metallic CNT

Lundstrom ECE-656 F15

G1D = 4q2

hλ EF( )

λ EF( ) + L

Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett., 84, 2941-2944, 2000.

G1D =

ΔIΔV

=22 µA1.0 V

= 22 µS

1L mµ≈

λ EF( ) ≈167 nm << L

GB = gv

2q2

h= 154 µS

gV = 2( )

Page 4: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

1D current

Lundstrom ECE-656 F15

Ix = −gv

2q2

hT (E) − ∂ f0

∂E⎛⎝⎜

⎞⎠⎟ dE

ε1

∫⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪VD ≈ −gv

2q2

hT EF( )V

Ix ≈ gv2q2λ EF( )

h−VL

⎛⎝⎜

⎞⎠⎟

Ix ≈ gv

2q2

hλ EF( )E x⎡⎣ ⎤⎦

T EF( ) = λ(EF )

λ(EF )+ L≈ λ(EF )

L (diffusive)

In 1D, the diffusive current is the quantum conductance times the volt drop across one mean-free-path.

Page 5: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Graphene

Lundstrom ECE-656 F15 5

CNTBands 2.0 (nanoHUB.org)

T = 10KB = 0

L ≈ 5000 nmtox = 300 nm

k

E k( )

f1 E( )gV = 2 EF

E k( ) = ±!υFk

υF ≈ 1×108 cm/s

D(E) =

2 Eπ!2υF

2

M (E) =

W 2 Eπ!υF

υ k( ) = υF

Fig. 30 in A. H. Castro, et al.,“The electronic properties of graphene,” Rev. of Mod. Phys., 81, 109, 2009.

Page 6: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Graphene

Lundstrom ECE-656 F15 6

VG V( )→

↑GS

mS

Fig. 30 in A. H. Castro, et al.,“The electronic properties of graphene,” Rev. of Mod. Phys., 81, 109, 2009.

T = 10KB = 0

1 µm σ S ≈ 3.0 mS

nS ≈ 7.1×1012 cm-2

L ≈ 5000 nmtox = 300 nm

1) How close to the ballistic conductance?

2) What is the mfp?

Page 7: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

7

analysis

Lundstrom ECE-656 F15

G2D =2q2

hλ EF( )L

M EF( ) = σ SWL

GB =2q2

hM EF( )

nS EF( ) = 1

πEF

!υF

⎛⎝⎜

⎞⎠⎟

2

→ EF = 0.3 eV

M (EF ) =W 2EF π!υF

For more about the conductance of graphene, see: “Low-bias transport in graphene,” by M.S. Lundstrom and D. Berdebes, NCN@Purdue 2009 Summer School, nanoHUB.org

λ 0.3 eV( ) ≈ 130 nm

σ S meas( ) = λ L( )σ S ball( )

σ S meas( ) ≈ σ S ball( ) 40

Page 8: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Mobility of graphene

Lundstrom ECE-656 F15 8

G2D =2q2

hλ EF( )L

M EF( ) = nS qµnWL

nS EF( ) = 1

πEF

!υF

⎛⎝⎜

⎞⎠⎟

2

M (E) =W 2EF π!υF

λ(E) = π2υFτ EF( )

µn =2qh

λ EF( )M EF( ) WnS

µn =qτ EF( )EF υF

2( )

Page 9: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Example: MFP in a MOSFET

Lundstrom ECE-656 F15 9

Question: Do we expect this device to be closer to ballistic or to diffusive?

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

RCH ≈ 215Ω-µm

µn ≈ 260 cm2 V-s

nS ≈ 6.7 ×1012 cm-2

L ≈ 60 nm

Page 10: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

MFP from mobility

Lundstrom ECE-656 F15

RCH ≈ 215Ω-µm

µn ≈ 260 cm2 V-s

nS ≈ 6.7 ×1012 cm-2

L ≈ 60 nm Dn =

kBTq

µn

(near-equilibrium, MB statistics)

Dn =

υTλ0

2(near-equilibrium, MB statistics, constant mfp)

λ0 =

2 kBT q( )υT

µn

υT =

2kBTπm* = 1.2×107 cm/s

λ0 ≈ 11 nm << L

diffusive

Page 11: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Apparent mfp

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

2260 cm V-snµ ≈

13 -21 10 cmSn ≈ ×

60 nmL ≈

λ0 ≈11 nm

1λapp

= 1λ0

+ 1L

λapp = 9.3 nm

Page 12: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Apparent mobility

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

2260 cm V-snµ ≈

13 -21 10 cmSn ≈ ×

60 nmL ≈

λ0 ≈11 nm

λapp = 9.3 nm

Dn =

υTλ0

2 µn =

υTλ0

2 kBT q( ) µapp =

υTλapp

2 kBT q( ) = 215 cm2 V-s( )

Page 13: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Ballistic mobility

Lundstrom ECE-656 F15

µB ≈

υT L2

1kBT q

≈1400 cm2 V-s

µapp =

1µn

+ 1µB

⎛⎝⎜

⎞⎠⎟

−1

µapp =

υTλapp

2 kBT q( )

µapp =

υT

2 kBT q( )1

λapp

⎝⎜

⎠⎟

−1

µapp =

υT

2 kBT q( )1λ0

+ 1L

⎛⎝⎜

⎞⎠⎟

−1

1µapp

=2 kBT q( )υTλ0

+2 kBT q( )

υT L⎛

⎝⎜

⎠⎟

1µapp

= 1µn

+ 1µB

⎛⎝⎜

⎞⎠⎟

µB =

υT L2 kBT q( )

Page 14: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

L = 40 nm HEMT

Lundstrom ECE-656 F15

0 200 nmλ ≈

210,000 cm V-snµ ≈

0

2T

nDυ λ=

7*

2 2.7 10 cm/sBT

k Tm

υπ

= = ×

( )*00.041m m=

D. H. Kim and J. A. del Alamo, "Lateral and Vertical Scaling of In0.7Ga0.3As HEMTs for Post-Si-CMOS Logic Applications," IEEE TED, 55, pp. 2546-2553, 2008.

λ0 >> L ballistic

Page 15: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Transverse modes

Lundstrom ECE-656 F15 15

Question: How many transverse modes are there in a 1 micron wide FET?

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

Page 16: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Modes in a 2D resistor

Lundstrom ECE-656 F15 16

x

yz W t

M EF( ) = gVW

2m* EF − EC( )π!

M EF( ) = gV

W kF

π

depends on bandstructure!

!2kF2

2m* = EF − EC( ) How is M related to the sheet carrier density?

Page 17: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Sheet carrier density at T = 0 K

Lundstrom ECE-656 F15 17

nS =πkF

2

2π( )2× 2→ kF = 2πnS

nS = gvπkF

2

2π( )2× 2→ kF = 2πnS gv

Page 18: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Transverse modes

Lundstrom ECE-656 F15 18

Question: How many transverse modes are there in a MOSFET?

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

M 2D EF( ) =WgV

2m* EF − ε1( )π!

M 2D kF( ) = gV WλF 2( ) = gV

W kFπ

M 2D kF( ) =W 2gvnSπ

kF = 2πnS gv

Page 19: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Sheet carrier density at T = 0 K

Lundstrom ECE-656 F15 19

x

yz W t

M EF( ) = gV

W kF

π

M EF( ) =W

2gV nS

πdepends only on nS

nS = gV

kF2

Page 20: Landauer Approach: Examples17-2_Examples.pdf · Low-field transport in metallic CNT Lundstrom ECE-656 F15 Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport

Example: How many modes in a MOSFET?

Lundstrom ECE-656 F15 20

x

yz W t

nS = 1013 cm-2

M EF( ) = 36

for a rough estimate, assume TL = 0 K

M EF( ) =W

2gV nS

π W = 2L = 100 nm


Recommended