+ All Categories
Home > Documents > Landmarks in Minerals Biotechnology - MINTEK · • Uranium heap bioleaching • Uranium agitated...

Landmarks in Minerals Biotechnology - MINTEK · • Uranium heap bioleaching • Uranium agitated...

Date post: 26-Mar-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
27
Council for Mineral Technology Presentation to Mintek 75 Technical Conference Landmarks in Minerals Biotechnology 04 June 2009 Petrus J. van Staden Manager, Biotechnology Division, Mintek.
Transcript

Council for Mineral Technology

Presentation to Mintek 75 Technical ConferenceLandmarks in Minerals Biotechnology

04 June 2009

Petrus J. van StadenManager, Biotechnology Division, Mintek.

Colleagues:

• John Neale, • Mariekie Gericke, • Peter Craven

• Dr Tony Pinches

• Permission of Mintek.

Acknowledgements

Minerals Biotechnology

The utilization of the biochemical processes of micro organisms in

the exploitation of mineral resources

Minerals Biotechnology

40oC

1 atm

pH = 1

Redox = 650 mV (Ag/AgCl)

30 kg O2 / d / m3

DO = 1 ppm

O2 Utilisation 40%

Establishment of Minerals Metabolising Microbes

(What’s in it for the bugs ?)

Fe2+ + ¼ O2 + H3O+ è Fe3+ + 3/2H2O ΔG = -10.6 kcal/molΔH = -24.6 kcal/mol

S + 3/2 O2 + 3/2 H2O è SO42- + 2H3O+ ΔG = -120.7 kcal/mol

ΔH = -148.5 kcal/mol

Biominingmicroorganisms

Fe2+

Fe3+

SO42- + 2H+

S0

M2+

M2+

Metal sulfide ores (MFeS2) Biomining

microorganismsFe2+

Fe3+

SO42- + 2H+

S0

M2+

M2+

M2+

M2+

Metal sulfide ores (MFeS2)

What’s in it for the bugs?

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Rio Tinto river

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

• 1895: Was shown that living matter could reduce sulfate to sulfide in sediments under anaerobic conditions. (Beijerinck, Bakteriol. Abt. 2, 1 (1895), 49-59 )

• 1947: Thiobacillus ferrooxidans was identified (Colmer A.R., Hinkle M.E. (1947). Science 106:253 - 256 ) (later reclassified as Acidithiobacillus )

• 1950's: Leach-dumps (Brierley, 2007)

• 1965: Discovery of the first iron- and sulfur oxidizing archaea (Brierley 2007)

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Burning coal dump

Hot springs

Isolation of thermophiles

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

• 1895: Was shown that living matter could reduce sulfate to sulfide in sediments under anaerobic conditions. (Beijerinck, Bakteriol. Abt. 2, 1 (1895), 49-59 )

• 1947: Thiobacillus ferrooxidans was identified (Colmer A.R., Hinkle M.E. (1947). Science 106:253 - 256 ) (later reclassified as Acidithiobacillus )

• 1950's: Leach-dumps (Brierley, 2007)

• 1965: Discovery of the first iron- and sulfur oxidizing archaea (Brierley 2007)

• 1970’s and 1980’s: Uranium market decline• 1980: Lo Aguirre, first heap bioleaching plant (Raedett In Aus Biotech, 2001)

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold (agitated tank) bioleach plant

Some Milestones (2)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Beaconsfield, Tasmania 1999

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

Some Milestones (3)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Kasese plant (Andy Carter, Wardrop)

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico

Some Milestones (3)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

COPPER BIOLEACHINGLARGE-SCALE PILOTING MEXICO: 2001-2

• 1984: MINTEK 50• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and

forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico,

• 2002: BHP Billiton / Alliance Copper commercial demonstration plant for copper-enargite concentrate by Alliance Copper, and

• 2002: GEOCOAT Thermophilic Bioleaching of Chalcopyrite Concentrates, Field Trials (Harvey, Holder. Alta 2002 Ni/Co Conference)

• 2006: High temperature heap bioleaching, transitional primary/secondary copper ore (Mintek)

Some Milestones (4)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

PILOT PLANT: 20,000-t HEAPS (x 7+)

• 1984: MINTEK 50• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced

aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico,

• 2002: BHP Billiton / Alliance Copper commercial demonstration plant for copper-enargite concentrate by Alliance Copper, and

• 2002: GEOCOAT Thermophilic Bioleaching of Chalcopyrite Concentrates, Field Trials (Harvey, Holder. Alta 2002 Ni/Co Conference)

• 2006: High temperature heap bioleaching, transitional primary/secondary copper ore (Mintek)

• 2006/7: Uranium market recovery

Some Milestones (4)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

• High temperature heap bioleaching

• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates

• Leaching of silicate-matrix minerals

• Uranium heap bioleaching

• Uranium agitated tank bioleaching

• Nano particles produced by microbes

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

2 µm 1 µm

Gold nanoparticles and nanoplates

100 nm

• High temperature heap bioleaching

• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates

• Leaching of silicate-matrix minerals

• Uranium heap bioleaching

• Uranium agitated tank bioleaching

• Nano particles produced by microbes

• Surfactants (flotation reagents, flocculants)

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

EPS

EPS-covered cells of L. ferrooxidans at/in pits on a pyrite surface (W. Sand)

Applications: Bioflotation

Bioflocculation

Biocorrosion

• High temperature heap bioleaching• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates• Leaching of silicate-matrix minerals• Uranium heap bioleaching• Uranium agitated tank bioleaching • Nano particles produced by microbes• Surfactants (flotation reagents, flocculants)• Organic acid leaching• Sulfate reduction in metals recovery and effluent disposal• Waste treatment (slags, ash, scrap)

• . . .

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Heading

www.mintek.co.za

Thank you


Recommended