+ All Categories
Home > Documents > Large Eddy Simulation (LES) - Chalmerslada/slides/slides_les_helsinki.pdf · LES VS. RANS LES can...

Large Eddy Simulation (LES) - Chalmerslada/slides/slides_les_helsinki.pdf · LES VS. RANS LES can...

Date post: 03-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
160
L ARGE E DDY S IMULATION (LES) Lars Davidson, www.tfd.chalmers.se/˜lada Chalmers University of Technology Gothenburg, Sweden
Transcript
  • LARGE EDDY SIMULATION (LES)

    Lars Davidson, www.tfd.chalmers.se/˜lada

    Chalmers University of Technology

    Gothenburg, Sweden

  • THREE-DAY CFD COURSE AT CHALMERS

    ◮This lecture is a condensed version of the course

    Unsteady Simulations for Industrial Flows: LES, DES, hybrid

    LES-RANS and URANS

    5-7 November 2012 at Chalmers, Gothenburg, Sweden

    Max 16 participants

    50% lectures and 50% workshops in front of a PC

    For info, see http://www.tfd.chalmers.se/˜lada/cfdkurs/cfdkurs.html

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 2 / 1

  • LECTURE NOTES

    The slides are partly based on the course material at

    (click here)

    http://www.tfd.chalmers.se/˜lada/

    comp turb model/lecture notes.html

    This course is part of the MSc programme Applied Mechanics at

    Chalmers. For Fluid courses, click here

    http://www.tfd.chalmers.se/˜lada/

    msc/msc-programme.html

    The MSc programme is presented here

    http://www.chalmers.se/en/education/programmes/maste

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 3 / 1

    http://www.tfd.chalmers.se/~lada/comp_turb_model/lecture_notes.htmlhttp://www.tfd.chalmers.se/~lada/msc/msc-programme.htmlhttp://www.chalmers.se/en/education/programmes/masters-info/Pages/Applied-Mechanics.aspx

  • LARGE EDDY SIMULATIONS

    GS

    SGS

    SGS

    In LES, large (Grid) Scales (GS) are resolved and the small

    (Sub-Grid) Scales (SGS) are modelled.

    LES is suitable for bluff body flows where the flow is governed by

    large turbulent scales

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 4 / 1

  • BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[14]Krajnović & Davidson (AIAA J., 2002)

    Snapshots of large turbulent scales illustrated by Q = −∂ūi∂xj

    ∂ūj∂xi

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 5 / 1

  • BLUFF-BODY FLOW: FLOW AROUND A BUS[15]

    Krajnović & Davidson (JFE, 2003)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 6 / 1

  • BLUFF-BODY FLOW: FLOW AROUND A CAR[16]Krajnović & Davidson (JFE, 2005)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 7 / 1

  • BLUFF-BODY FLOW: FLOW AROUND A TRAIN[12]

    Hem

    ida

    &K

    rajn

    ović

    ,2006

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 8 / 1

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 9 / 1

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 9 / 1

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 9 / 1

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    Is it reasonable to require a turbulence model to fix this?

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 9 / 1

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    Is it reasonable to require a turbulence model to fix this?

    Isn’t it better to RESOLVE the large fluctuations?

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 9 / 1

  • TIME AVERAGING AND FILTERING

    RANS: time average. This is called Reynolds time averaging:

    〈Φ〉 =1

    2T

    ∫ T

    −T

    Φ(t)dt , Φ = 〈Φ〉+Φ′

    In LES we filter (volume average) the equations. In 1D we get:

    Φ̄(x , t) =

    1

    ∆x

    ∫ x+0.5∆x

    x−0.5∆xΦ(ξ, t)dξ

    Φ = Φ̄ + Φ′′

    (1)

    no filter one filter

    2 2.5 3 3.5 40.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    u,

    x

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 10 / 1

  • EQUATIONS

    The filtering is defined by the discretization (nothing is done)

    The filtered Navier-Stokes (N-S) eqns, i.e. the LES eqns, read

    ∂ūi∂t

    +∂

    ∂xj

    (

    ūi ūj)

    = −1

    ρ

    ∂p̄

    ∂xi+ ν

    ∂2ūi∂xj∂xj

    −∂τij∂xj

    ,∂ūi∂xi

    = 0 (2)

    where the subgrid stresses are given by

    τij = uiuj − ūi ūj

    Contrary to Reynolds time averaging where 〈u′i 〉 = 0, we have here

    u′′i 6= 0 ū i 6= ūi

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 11 / 1

  • FILTERING: HOW IS EQ. 2 OBTAINED?

    The N-S eqns are filtered (=discretized) using Eq. 1

    The pressure gradient term, for example, reads

    ∂p

    ∂xi=

    1

    V

    V

    ∂p

    ∂xidV

    Now we want to move the derivative out of the integral. It is

    allowed if V is constant.

    The filtering volume, V=grid cell which is not constant

    Fortunately, the error is proportional to V 2, i.e. it is 2nd-order error

    ∂p

    ∂xi=

    ∂xi

    (

    1

    V

    V

    pdV

    )

    +O(

    V 2)

    =∂

    ∂xi(p̄) +O

    (

    V 2)

    All linear terms are treated in the same way.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 12 / 1

  • NON-LINEAR TERM

    First we filter the term and move the derivative out of the integral

    ∂uiuj∂xj

    =∂

    ∂xj

    (

    1

    V

    V

    uiujdV

    )

    +O(

    V 2)

    =∂

    ∂xj(uiuj) +O

    (

    V 2)

    We have∂

    ∂xjuiuj ; we want

    ∂xjūi ūj

    Let’s add want we want (on both LHS ans RHS) and subtract want

    we don’t want

    This is how we end up with the convective term and the SGS term

    in Eq. 2, i.e. −∂τij∂xj

    = −∂

    ∂xj(uiuj − ūi ūj)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 13 / 1

  • LARGE EDDY SIMULATIONS

    GS

    SGS

    SGS

    Large scales (GS) are resolved; small scales (SGS) are modelled.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 14 / 1

  • ENERGY SPECTRUM

    The limit (cut-off) between GS and SGS is supposed to take place in

    the inertial subrange (II)

    I

    II

    III

    κ

    E(κ) cut-off

    I: large scales

    II: inertial subrange, −5/3-range

    III: dissipation subrange

    GS SGS

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 15 / 1

  • SUBGRID MODEL

    We need a subgrid model for the SGS turbulent scales

    The simplest model is the Smagorinsky model [23]:

    τij −1

    3δijτkk = −2νsgss̄ij

    νsgs = (CS∆)2√

    2s̄ij s̄ij ≡ (CS∆)2 |s̄|

    s̄ij =1

    2

    (

    ∂ūi∂xj

    +∂ūj∂xi

    )

    , ∆ = (∆VIJK )1/3

    (3)

    A damping function fµ is added to ensure that νsgs ⇒ 0 as y ⇒ 0

    fµ = 1 − exp(−y+/26)

    A more convenient way to dampen the SGS viscosity near the wall

    is

    ∆ = min{

    (∆VIJK )1/3 , κy

    }

    where y is the distance to the nearest wall.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 16 / 1

  • SMAGORINSKY MODEL VS. MIXING-LENGTH MODEL

    • The eddy viscosity in the mixing length model reads inboundary-layer flow [13, 22]

    νt = ℓ2

    ∂U

    ∂y

    .

    • Generalized to three dimensions, we have

    νt = ℓ2

    [(

    ∂Ui∂xj

    +∂Uj∂xi

    )

    ∂Ui∂xj

    ]1/2

    = ℓ2(

    2SijSij)1/2

    ≡ ℓ2|S|.

    • In the Smagorinsky model the SGS length scale ℓ = CS∆ i.e.

    νsgs = (CS∆)2|s̄|

    which is the same as Eq. 3

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 17 / 1

  • ENERGY PATHE(κ)

    E(κ) ∝ κ−5/3

    κ

    inertial rangeεsgs ≃ 〈

    νsgs ∂u ′

    i∂xj

    ∂u ′i∂x

    j

    ε

    dissipating range

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 18 / 1

  • LES VS. RANS

    LES can handle many flows which RANS (Reynolds Averaged Navier

    Stokes) cannot; the reason is that in LES large, turbulent scales are

    resolved. Examples are:

    o Flows with large separation

    o Bluff-body flows (e.g. flow around a car); the wake often includes

    large, unsteady, turbulent structures

    o Transition

    • In RANS all turbulent scales are modelled ⇒ inaccurate

    • In LES only small, isotropic turbulent scales are modelled ⇒ accurateLES is very much more expensive than RANS.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 19 / 1

  • FINITE VOLUME RANS AND LES CODES.

    RANS LES

    Domain 2D or 3D always 3D

    Time domain steady or unsteady always unsteady

    Space discretization 2nd order upwind central differencing

    Time discretization 1st order 2nd order (e.g. C-N)

    Turbulence model ≥ two-equations zero- or one-eq

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 20 / 1

  • TIME AVERAGING IN LES

    t1: Start time averaging

    t2: Stop time averaging

    tt1: start t2: end

    v̄1

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 21 / 1

  • NEAR-WALL RESOLUTION

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 22 / 1

  • NEAR-WALL RESOLUTION

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 22 / 1

  • NEAR-WALL RESOLUTION

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 22 / 1

  • NEAR-WALL RESOLUTION

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    The object is to develop a near-wall treatment which models the

    streaks (URANS) ⇒ much larger ∆x and ∆z

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 22 / 1

  • NEAR-WALL RESOLUTION

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    The object is to develop a near-wall treatment which models the

    streaks (URANS) ⇒ much larger ∆x and ∆z

    In the presentation we use Hybrid LES-RANS for which the grid

    requirements are much smaller than for LES

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 22 / 1

  • NEAR-WALL RESOLUTION CONT’D

    In RANS when using

    wall-functions,

    30 < y+ < 100 for thewall-adjacent cells

    x

    y wall

    y+

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 23 / 1

  • NEAR-WALL RESOLUTION CONT’D

    In RANS when using

    wall-functions,

    30 < y+ < 100 for thewall-adjacent cells

    In LES, ∆z+ ≃ 30

    x

    y wall

    y+

    x

    z

    ∆z+

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 23 / 1

  • NEAR-WALL RESOLUTION CONT’D

    In RANS when using

    wall-functions,

    30 < y+ < 100 for thewall-adjacent cells

    In LES, ∆z+ ≃ 30EVERYWHERE

    x

    y wall

    y+

    x

    z

    ∆z+

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 23 / 1

  • NEAR-WALL RESOLUTION CONT’D

    In RANS when using

    wall-functions,

    30 < y+ < 100 for thewall-adjacent cells

    In LES, ∆z+ ≃ 30EVERYWHERE

    AND ∆x+ ≃ 100,∆y+min ≃ 1

    x

    y wall

    y+

    x

    z

    ∆z+

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 23 / 1

  • NEAR-WALL TREATMENT

    from Hinze (1975)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 24 / 1

  • NEAR-WALL TREATMENT

    0 1 2 3 4 5 6

    Z

    0

    0.5

    1

    1.5

    x

    z

    Fluctuating streamwise velocity at y+ = 5. DNS of channel flow.

    We find that the structures in the spanwise direction are very

    small which requires a very fine mesh in z direction.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 25 / 1

  • ZONAL PANS MODEL

    L. Davidson

    A New Approach of Zonal Hybrid RANS-LES Based on a

    Two-equation k − ε Model [7]ETMM9, Thessaloniki, 7-9 June 2012

    Financed by the EU project

    ATAAC (Advanced Turbulence Simulation for Aerodynamic Application

    Challenges)

    DLR, Airbus UK, Alenia, ANSYS, Beijing Tsinghua University, CFS

    Engineering, Chalmers, Dassault Aviation, EADS, Eurocopter

    Deutschland, FOI, Imperial College, IMFT, LFK, NLR, NTS, Numeca,

    ONERA, Rolls-Royce Deutschland, TU Berlin, TU Darmstadt, UniMAN

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 26 / 1

  • PANS LOW REYNOLDS NUMBER MODEL [17]

    ∂k

    ∂t+

    ∂(kUj )

    ∂xj=

    ∂xj

    [(

    ν +νtσku

    )

    ∂k

    ∂xj

    ]

    + (Pk − ε)

    ∂ε

    ∂t+

    ∂(εUj)

    ∂xj=

    ∂xj

    [(

    ν +νtσεu

    )

    ∂ε

    ∂xj

    ]

    + Cε1Pkε

    k− C∗ε2

    ε2

    k

    νt = Cµfµk2

    ε,C∗ε2 = Cε1 +

    fkfε(Cε2f2 − Cε1), σku ≡ σk

    f 2kfε, σεu ≡ σε

    f 2kfε

    Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

    f2 =

    [

    1 − exp(

    −y∗

    3.1

    )

    ]2 {

    1 − 0.3exp

    [

    −( Rt

    6.5

    )2]}

    fµ =

    [

    1 − exp(

    −y∗

    14

    )

    ]2{

    1 +5

    R3/4t

    exp

    [

    −( Rt

    200

    )2]

    }

    Baseline model: fk = 0.4. Range of 0.2 < fk < 0.6 is evaluated

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 27 / 1

  • PANS LOW REYNOLDS NUMBER MODEL [17]

    ∂k

    ∂t+

    ∂(kUj )

    ∂xj=

    ∂xj

    [(

    ν +νtσku

    )

    ∂k

    ∂xj

    ]

    + (Pk − ε)

    ∂ε

    ∂t+

    ∂(εUj)

    ∂xj=

    ∂xj

    [(

    ν +νtσεu

    )

    ∂ε

    ∂xj

    ]

    + Cε1Pkε

    k− C∗ε2

    ε2

    k

    νt = Cµfµk2

    ε,C∗ε2 = Cε1 +

    fkfε(Cε2f2 − Cε1), σku ≡ σk

    f 2kfε, σεu ≡ σε

    f 2kfε

    Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

    f2 =

    [

    1 − exp(

    −y∗

    3.1

    )

    ]2 {

    1 − 0.3exp

    [

    −( Rt

    6.5

    )2]}

    fµ =

    [

    1 − exp(

    −y∗

    14

    )

    ]2{

    1 +5

    R3/4t

    exp

    [

    −( Rt

    200

    )2]

    }

    Baseline model: fk = 0.4. Range of 0.2 < fk < 0.6 is evaluated

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 27 / 1

  • PANS LOW REYNOLDS NUMBER MODEL [17]

    ∂k

    ∂t+

    ∂(kUj)

    ∂xj=

    ∂xj

    [(

    ν +νtσku

    )

    ∂k

    ∂xj

    ]

    + (Pk − ε)

    ∂ε

    ∂t+

    ∂(εUj)

    ∂xj=

    ∂xj

    [(

    ν +νtσεu

    )

    ∂ε

    ∂xj

    ]

    + Cε1Pkε

    k− C∗ε2

    ε2

    k

    νt = Cµfµk2

    ε,C∗ε2 = 1.5 +

    fkfε(1.9 − 1.5), σku ≡ σk

    f 2kfε, σεu ≡ σε

    f 2kfε

    Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

    f2 =

    [

    1 − exp(

    −y∗

    3.1

    )

    ]2 {

    1 − 0.3exp

    [

    −( Rt

    6.5

    )2]}

    fµ =

    [

    1 − exp(

    −y∗

    14

    )

    ]2{

    1 +5

    R3/4t

    exp

    [

    −( Rt

    200

    )2]

    }

    Baseline model: fk = 0.4. Range of 0.2 < fk < 0.6 is evaluated

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 27 / 1

  • CHANNEL FLOW: ZONAL RANS-LES

    x

    y

    ku,int , εu,int

    wall

    yint

    LES, fk < 1

    RANS, fk = 1.0

    Interface: how to treat k and ε over the interface? They should bereduced from their RANS values to suitable LES values

    The usual convection and diffusion across the interface is cut off,

    and new “interface boundary” conditions are prescribed

    ku,int = fkkRANSNothing is done for ε

    xmax = 3.2 (64 cells), zmax = 1.6 (64 cells), y dir: 80 − 128 cells

    CDS in entire region

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 28 / 1

  • (Nx × Nz) = (64 × 64). y+int = 500

    1 100 1000 300000

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 0.05 0.1 0.15 0.2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    y〈u

    ′v′〉+

    Reτ = 4 000 Reτ = 8 000 Reτ = 16 000;Reτ = 32 000.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 29 / 1

  • INTERFACE LOCATION. Reτ = 8 000.

    1 100 1000 80000

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 500 1000 1500 2000-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    y+〈u

    ′v′〉+

    y+ = 130 y+ = 500 y+ = 980

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 30 / 1

  • EFFECT OF fk . Reτ = 16 000. y+int = 500

    1 100 1000 100000

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 0.05 0.1 0.15 0.2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    y〈u

    ′v′〉+

    fk = 0.2 fk = 0.3 fk = 0.5 fk = 0.6

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 31 / 1

  • EFFECT OF RESOLUTION: VELOCITY

    1 100 1000 300000

    5

    10

    15

    20

    25

    30

    (Nx × Nz) = (32 × 32)

    y+

    U+

    1 100 1000 300000

    5

    10

    15

    20

    25

    30

    (Nx × Nz) = (128 × 128)

    y+U

    +

    Reτ = 4 000 Reτ = 8 000 Reτ = 16 000;Reτ = 32 000.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 32 / 1

  • EFFECT OF RESOLUTION: RESOLVED SHEAR STRESS

    0 0.05 0.1 0.15 0.2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    (Nx × Nz) = (32 × 32)

    y

    〈u′v′〉+

    0 0.05 0.1 0.15 0.2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    (Nx × Nz) = (128 × 128)

    y〈u

    ′v′〉+

    Reτ = 4 000 Reτ = 8 000 Reτ = 16 000;Reτ = 32 000.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 33 / 1

  • EFFECT OF RESOLUTION: TURBULENT VISCOSITY

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 4000

    ν t/(

    uτδ)

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 8000

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 16 000

    y

    ν t/(

    uτδ)

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 32 000

    y(Nx × Nz) = 64 × 64 32 × 32 128 × 128

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 34 / 1

  • EFFECT OF RESOLUTION: TURBULENT VISCOSITY

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 4000

    ν t/(

    uτδ)

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 8000

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 16 000

    y

    ν t/(

    uτδ)

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015Reτ = 32 000

    y(Nx × Nz) = 64 × 64 32 × 32 128 × 128

    Grid

    indep

    ende

    nttur

    bulen

    t visc

    osity

    !

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 34 / 1

  • SGS MODELS BASED ON GRID SIZE

    When the grid is refined, νt gets smaller

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 35 / 1

  • SGS MODELS BASED ON GRID SIZE

    When the grid is refined, νt gets smallerE

    εsgs

    κ

    Pk ,res

    κc

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 35 / 1

  • SGS MODELS BASED ON GRID SIZE

    When the grid is refined, νt gets smallerE

    εsgs,∆εsgs,0.5∆

    κ

    Pk ,res

    κc 2κc

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 35 / 1

  • SGS MODELS BASED ON GRID SIZE

    When the grid is refined, νt gets smaller

    E

    εsgs,∆εsgs,0.5∆

    κ

    Pk ,res

    κc 2κc

    εsgs,∆ = εsgs,0.5∆

    εsgs = 2〈νt s̄ij s̄ij〉 − 〈τ12,t〉∂〈ū〉

    ∂y

    Grid refinement ⇒ must beaccompanied with larger s̄ij s̄ij

    ⇒ s̄ij s̄ij must take place athigher wavenumbers

    if not ⇒ grid dependent

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 35 / 1

  • POWER DENSITY SPECTRA OF ν0.5t∂w̄ ′

    ∂z

    0 20 40 60 80 1000

    0.005

    0.01

    0.015

    0.02

    E(

    ν t(∂

    w̄′/∂

    z)2)

    κz

    One-eq ksgs model

    0 20 40 60 80 1000

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    κz

    Zonal PANS

    (Nx × Nz) = 64 × 64 32 × 32 128 × 128

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 36 / 1

  • SGS DISSIPATION VS. WAVENUMBER

    Energy spectra of the SGS dissipation show that the peak takes

    place at surprisingly low wavenumber (length scale corresponding

    to 10 cells or more).

    κcκ

    E(κ)

    εsgs

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 37 / 1

  • SGS DISSIPATION VS. WAVENUMBER

    Energy spectra of the SGS dissipation show that the peak takes

    place at surprisingly low wavenumber (length scale corresponding

    to 10 cells or more).

    κcκ

    E(κ)

    εsgs

    εsgs,κ

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 37 / 1

  • SGS DISSIPATION, Reτ = 8000

    SGS dissipation in the ū′i ū′

    i/2 eq, εsgs = 2〈νt s̄ij s̄ij〉 − 〈τ12,t〉∂〈ū〉

    ∂y

    0.1 0.15 0.2 0.25 0.30

    5

    10

    15

    y

    ε sg

    s

    One-eq ksgs model

    0.1 0.15 0.2 0.25 0.30

    5

    10

    15

    y

    ε sg

    s

    Zonal PANS

    (Nx × Nz) = 64 × 64 32 × 32 128 × 128

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 38 / 1

  • LOCAL EQUILIBRIUM. Reτ = 4000, Nx ×Nz = 64 × 64.

    0 0.1 0.2 0.3 0.4 0.5 0.60

    0.1

    0.2

    0.3

    0.4

    0 0.1 0.2 0.3 0.4 0.5 0.60

    2E-3

    4E-3

    0 0.1 0.2 0.3 0.4 0.5 0.60

    2E-3

    4E-3

    y

    k equation

    0 0.1 0.2 0.3 0.4 0.5 0.60

    0.01

    0.02

    0.03

    0 0.1 0.2 0.3 0.4 0.5 0.60

    2E-4

    4E-4

    0 0.1 0.2 0.3 0.4 0.5 0.60

    2E-4

    4E-4

    ε equation

    y〈Pk 〉

    +

    〈ε〉+〈Cε1Pk/ε〉

    +

    〈Cε2ε2/k〉+

    Left vertical axes: URANS region; right vertical axes: LES region.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 39 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    How can both the k eq. and ε be in local equilibrium??

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 40 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    How can both the k eq. and ε be in local equilibrium??

    If

    〈Pk 〉 = 〈ε〉

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 40 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    How can both the k eq. and ε be in local equilibrium??

    If

    〈Pk 〉 = 〈ε〉

    then

    C1〈ε〉

    〈k〉〈Pk 〉6=C

    2

    〈ε〉2

    〈k〉,because C1 6= C

    2

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 40 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    How can both the k eq. and ε be in local equilibrium??

    If

    〈Pk 〉 = 〈ε〉

    then

    C1〈ε〉

    〈k〉〈Pk 〉6=C

    2

    〈ε〉2

    〈k〉,because C1 6= C

    2

    However, the previous slide shows

    C1

    〈 ε

    kPk

    = C∗2

    ε2

    k

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 40 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    How can both the k eq. and ε be in local equilibrium??

    If

    〈Pk 〉 = 〈ε〉

    then

    C1〈ε〉

    〈k〉〈Pk 〉6=C

    2

    〈ε〉2

    〈k〉,because C1 6= C

    2

    However, the previous slide shows

    C1

    〈 ε

    kPk

    = C∗2

    ε2

    k

    Answer: when time-averaging 〈ab〉 6= 〈a〉〈b〉

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 40 / 1

  • LOCAL EQUILIBRIUM IN ε EQUATION.

    The answer is because of time averaging (〈ab〉 < 〈a〉〈b〉, (seebelow)

    0 0.1 0.2 0.3 0.4 0.5 0.61

    1.05

    1.1

    1.15

    1.2

    y

    〈εPk/k〉

    〈ε〉〈Pk 〉/〈k〉

    〈ε2/k〉

    〈ε2〉/〈k〉

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 41 / 1

  • RESOLVED AND MODELLED TURBULENT KINETIC

    ENERGY.

    0 0.1 0.2 0.3 0.40

    1

    2

    3

    4

    5

    6

    7

    8Resolved

    y

    〈kre

    s〉

    0 0.1 0.2 0.3 0.40

    1

    2

    3

    4

    5

    6

    7

    8

    Modelled: bottom; total: top

    y〈k〉,

    〈kre

    s+

    k〉

    Reτ = 4 000 Reτ = 8 000 Reτ = 16 000;Reτ = 32 000.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 42 / 1

  • CONCLUDING REMARKS

    LRN PANS works well as zonal LES-RANS model for very high

    Reτ (> 32 000)

    The model gives grid independent results

    The location of the interface is not important (it should not be too

    close to the wall)

    Values of 0.2 < fk < 0.5 have little impact on the results

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 43 / 1

  • HYBRID LES-RANS

    Near walls: a RANS one-eq. k or a k − ω model.In core region: a LES one-eq. kSGS model.

    y

    x

    Interface

    wall

    wall

    URANS

    URANS

    LES

    y+ml

    • Location of interface either pre-defined or automatically computed

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 44 / 1

  • MOMENTUM EQUATIONS

    • The Navier-Stokes, time-averaged in the near-wall regions andfiltered in the core region, reads

    ∂ūi∂t

    +∂

    ∂xj

    (

    ūi ūj)

    = −1

    ρ

    ∂p̄

    ∂xi+

    ∂xj

    [

    (ν + νT )∂ūi∂xj

    ]

    νT = νt , y ≤ yml

    νT = νsgs, y ≥ yml

    • The equation above: URANS or LES? Same boundary conditions ⇒same solution!

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 45 / 1

  • TURBULENCE MODEL

    • Use one-equation model in both URANS region and LES region.

    ∂kT∂t

    +∂

    ∂xj(ūjkT ) =

    ∂xj

    [

    (ν + νT )∂kT∂xj

    ]

    + PkT − Cεk

    3/2T

    PkT = 2νT S̄ij S̄ij , νT = Ckℓk1/2T

    LES-region: kT = ksgs, νT = νsgs, ℓ = ∆ = (δV )1/3

    URANS-region: kT = k , νT = νt ,ℓ ≡ ℓRANS = 2.5n[1 − exp(−Ak

    1/2y/ν)], Chen-Patel model (AIAAJ. 1988)

    Location of interface can be defined by min(0.65∆, y),∆ = max(∆x ,∆y ,∆z)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 46 / 1

  • DIFFUSER[9]

    Instantaneous inlet data from channel DNS used.

    Domain: −8 ≤ x ≤ 48, 0 ≤ yinlet ≤ 1, 0 ≤ z ≤ 4.

    xmax = 40 gave return flow at the outlet

    Grid: 258 × 66 × 32.

    Re = UinH/ν = 18 000, angle 10o

    The grid is much too coarse for LES (in the inlet region

    ∆z+ ≃ 170)

    Matching plane fixed at yml at the inlet. In the diffuser it is located

    along the 2D instantaneous streamline corresponding to yml .

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 47 / 1

  • DIFFUSER GEOMETRY. Re = 18 000, ANGLE 10oH = 2δ

    7.9H

    21H

    29H

    4H

    4.7H

    periodicb.c.

    convective outlet b.c.

    no-slip b.c.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 48 / 1

  • DIFFUSER: RESULTS WITH LES• Velocities. Markers: experiments by Buice & Eaton (1997)

    x = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47Hwww.tfd.chalmers.se/˜lada Helsinki 4 October 2012 49 / 1

  • DIFFUSER: RESULTS WITH RANS-LESx = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47H

    forcing; no forcingwww.tfd.chalmers.se/˜lada Helsinki 4 October 2012 50 / 1

  • SHEAR STRESSES (×2 IN LOWER HALF)x = 3H 6 13 19 23H

    x/H = 26 33 40 47H

    resolved; modelledwww.tfd.chalmers.se/˜lada Helsinki 4 October 2012 51 / 1

  • RANS-LES: νt/νx = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47H

    forcing; no forcing

    At x = 24H, νT ,max/ν ≃ 450

    At x = −7H νT ,max/ν ≃ 11

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 52 / 1

  • k − ω MODEL SST-DES

    DES [24]: Detached Eddy Simulation

    SST [18, 19]: A combination of the k − ε and the k − ω model

    ∂k

    ∂t+

    ∂xj(ūjk) =

    ∂xj

    [(

    ν +νtσk

    )

    ∂k

    ∂xj

    ]

    + Pk − β∗kω

    ∂ω

    ∂t+

    ∂xj(ūjω) =

    ∂xj

    [(

    ν +νtσω

    )

    ∂ω

    ∂xj

    ]

    + αPkνt

    − βω2+ . . .

    The dissipation term in the k equation is modified as [19, 25]

    β∗kω → β∗kωFDES , FDES = max

    {

    Lt

    CDES∆,1

    }

    ∆ = max {∆x1,∆x2,∆x3} , Lt =k1/2

    β∗ω

    ⇒ RANS near walls and LES away from walls

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 53 / 1

  • RESOLUTION

    For the near-wall region, we know how fine the mesh should be in

    terms of viscous units (see Slide 22)

    An appropriate resolution for the fully turbulent part of the

    boundary layer is δ/∆x ≃ 10 − 20 and δ/∆z ≃ 20 − 40

    This may be relevant also for jets and shear layers

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 54 / 1

  • HOW TO ESTIMATE RESOLUTION IN GENERAL? [4, 5]

    Energy spectra (both in spanwise direction and time)

    Two-point correlations

    Ratio of SGS turbulent kinetic energy 〈ksgs〉 to resolved0.5〈u′u′ + v ′v ′ + w ′w ′〉

    Ratio of SGS shear stress 〈τsgs,12〉 to resolved 〈u′v ′〉

    Ratio of SGS viscosity, 〈νsgs〉 to molecular, ν

    Energy spectra of SGS dissipation

    Comparison of SGS dissipation due to ∂u′i/∂xj and ∂〈ūi〉/∂xj

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 55 / 1

  • CHANNEL FLOW, Reτ = 4000, y+ = 440

    100

    101

    102

    10-4

    10-3

    10-2

    10-1

    Ew

    w(k

    z)

    κz = 2π(kz − 1)/zmax

    Energy spectra

    0 0.1 0.2 0.3 0.4-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Bw

    w(ẑ)/

    w2 rm

    s

    ẑ = z − z0

    Two-point correlations

    (∆x ,∆z) 0.5∆x 0.5∆z ◦ 2∆x ; +: 2∆z

    The (∆x ,∆z) mesh is (δ/∆x , δ/∆z) = (10,20)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 56 / 1

  • CHANNEL FLOW, Reτ = 4000, y+ = 440

    100

    101

    102

    10-4

    10-3

    10-2

    10-1

    Ew

    w(k

    z)

    κz = 2π(kz − 1)/zmax

    Energy spectra

    0 0.1 0.2 0.3 0.4-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Bw

    w(ẑ)/

    w2 rm

    s

    ẑ = z − z0

    Two-point correlations

    (∆x ,∆z) 0.5∆x 0.5∆z ◦ 2∆x ; +: 2∆z

    The (∆x ,∆z) mesh is (δ/∆x , δ/∆z) = (10,20)

    Two-point correlation is better

    Shows that 2∆z and 2∆x (two-point corr in x) are too coarse.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 56 / 1

  • CHANNEL FLOW, Reτ = 4000, y+ = 440

    0 1000 2000 3000 40000

    1

    2

    3

    4

    5

    6

    kre

    s

    y+

    kres = (u′2 + v ′2 + w ′2)/2

    0 1000 2000 3000 40000.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    γ

    y+

    γ = kres+kres

    Pope [20] suggests γ > 0.8 indicates well resolved flow

    (∆x ,∆z) 0.5∆x 0.5∆z ◦ 2∆x ; +: 2∆z

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 57 / 1

  • CHANNEL FLOW, Reτ = 4000, y+ = 440

    0 1000 2000 3000 40000

    1

    2

    3

    4

    5

    6

    kre

    s

    y+

    kres = (u′2 + v ′2 + w ′2)/2

    0 1000 2000 3000 40000.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    γ

    y+

    γ = kres+kres

    Pope [20] suggests γ > 0.8 indicates well resolved flow

    (∆x ,∆z) 0.5∆x 0.5∆z ◦ 2∆x ; +: 2∆z

    Pope criterion does not work here

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 57 / 1

  • SGS VS. MOLECULAR VISCOSITY [5]

    0 1 2 3 40

    0.2

    0.4

    0.6

    0.8

    1

    y/H

    〈νsgs〉/ν0 2 4 6 8 10 12

    -4

    -3

    -2

    -1

    0

    1

    y/H

    〈νsgs〉/ν

    Nz = 32; Nz = 64; Nz = 128.

    x = −H

    x = 20H

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 58 / 1

  • SGS VS. RESOLVED SHEAR STRESSES

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    y/H

    〈τsgs,12〉/〈u′v ′〉

    0 0.01 0.02 0.03 0.04 0.05

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    y/H

    〈τsgs,12〉/〈u′v ′〉

    Nz = 32; Nz = 64; Nz = 128.

    x = −H

    x = 20H

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 59 / 1

  • THE PANS MODEL

    The PANS model is a modified k − ε model

    It can operate both in RANS mode and LES mode

    In the present work a low-Reynolds turbulence version of the

    PANS is used

    A method how to implement embedded LES is proposed

    It is evaluated for channel flow and hump flow

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 60 / 1

  • Embedded LES Using PANS [10, 11]

    Lars Davidson1 and Shia-Hui Peng1,2

    Davidson& Peng

    1Department of Applied Mechanics

    Chalmers University of Technology, SE-412 96 Gothenburg, SWEDEN2FOI, Swedish Defence Research Agency, SE-164 90, Stockholm,

    SWEDEN

  • PANS LOW REYNOLDS NUMBER MODEL [17]

    ∂ku∂t

    +∂(kuUj)

    ∂xj=

    ∂xj

    [(

    ν +νuσku

    )

    ∂ku∂xj

    ]

    + (Pu − εu)

    ∂εu∂t

    +∂(εuUj)

    ∂xj=

    ∂xj

    [(

    ν +νuσεu

    )

    ∂εu∂xj

    ]

    + Cε1Puεuku

    − C∗ε2ε2uku

    νu = Cµfµk2uεu

    ,C∗ε2 = Cε1 +fkfε(Cε2f2 − Cε1), σku ≡ σk

    f 2kfε, σεu ≡ σε

    f 2kfε

    Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

    f2 =

    [

    1 − exp(

    −y∗

    3.1

    )

    ]2 {

    1 − 0.3exp

    [

    −( Rt

    6.5

    )2]}

    fµ =

    [

    1 − exp(

    −y∗

    14

    )

    ]2{

    1 +5

    R3/4t

    exp

    [

    −( Rt

    200

    )2]

    }

    Baseline model: fk = 0.4. Range of 0.2 < fk < 0.6 is evaluated

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 62 / 1

  • CHANNEL FLOW: DOMAIN

    d

    x

    y

    δ 2.2δ

    LES, fk < 1RANS, fk = 1.0

    Interface

    Interface: Synthetic turbulent fluctuations are introduced as

    additional convective fluxes in the momentum equations and the

    continuity equation

    fk = 0.4 is the baseline value for LES [17]

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 63 / 1

  • INLET FLUCTUATIONS

    0 0.5 1 1.5 20

    0.5

    1

    1.5

    2

    y

    〈u′v ′〉, v2rms, w2rms, u

    2rms/u

    0 0.1 0.2 0.3 0.4 0.5

    0

    0.2

    0.4

    0.6

    0.8

    1

    w′w

    ′tw

    o-p

    oin

    tco

    rr

    Anisotropic synthetic fluctuations, u′, v ′, w ′,

    Integral length scale L ≃ 0.13 (see 2-p point correlation)

    Asymmetric time filter (U ′)m = a(U ′)m−1 + b(u′)m witha = 0.954,b = (1 − a2)1/2 gives a time integral scale T = 0.015(∆t = 0.00063)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 64 / 1

  • INTERFACE CONDITIONS FOR ku AND εu

    For ku & εu we prescribe “inlet” boundary conditions at theinterface.

    First, the usual convective and diffusive fluxes at the interface are

    set to zero

    Next, new convective fluxes are added. Which “inlet” valuesshould be used at the interface?

    ◮ ku,int = fk kRANS(x = 0.5δ), εu,int = C3/4µ k

    3/2u,int/ℓsgs, ℓsgs = Cs∆,

    ∆ = V 1/3

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 65 / 1

  • INTERFACE CONDITIONS FOR ku AND εu

    For ku & εu we prescribe “inlet” boundary conditions at theinterface.

    First, the usual convective and diffusive fluxes at the interface are

    set to zero

    Next, new convective fluxes are added. Which “inlet” valuesshould be used at the interface?

    ◮ ku,int = fk kRANS(x = 0.5δ), εu,int = C3/4µ k

    3/2u,int/ℓsgs, ℓsgs = Cs∆,

    ∆ = V 1/3

    ◮ Baseline Cs = 0.07; different Cs values are tested

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 65 / 1

  • CHANNEL FLOW: VELOCITY AND SHEAR STRESSES

    100

    101

    102

    0

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 0.5 1 1.5 2

    -1

    -0.5

    0

    0.5

    1

    y+〈u

    ′v′〉+

    x/δ = 0.19 x/δ = 1.25 x/δ = 3

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 66 / 1

  • CHANNEL FLOW: STRESSES AND PEAK VALUES VS. x

    0 200 400 600 8000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    y/δ

    reso

    lve

    dstr

    esse

    s

    x/δ = 3

    0 0.5 1 1.5 2 2.5 3 3.50

    2

    4

    0 0.5 1 1.5 2 2.5 3 3.50

    50

    100

    x

    〈u′u′〉+ m

    ax

    〈νu/ν

    〉 ma

    x

    〈u′u′〉+ 〈u′u′〉+max (left)〈v ′v ′〉+ 〈νu〉

    +max (right)

    〈w ′w ′〉+

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 67 / 1

  • CHANNEL FLOW: DIFFERENT Cs VALUE FOR εinterface

    ku,int = fkkRANS

    εu,int = C3/4µ k

    3/2u,int/ℓsgs, ℓsgs = Cs∆

    100

    101

    102

    0

    5

    10

    15

    20

    25

    30

    y+

    U+

    x/δ = 3

    0 0.5 1 1.5 2

    -1

    -0.5

    0

    0.5

    1

    y+

    〈u′v′〉+

    Cs = 0.07 Cs = 0.1 Cs = 0.2

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 68 / 1

  • CHANNEL FLOW: DIFFERENT Cs VALUE FOR εinterface

    0 0.2 0.4 0.6 0.8 10

    1

    2

    3

    4

    5

    6

    y+

    〈νu〉/ν

    x/δ = 3

    0 1 2 3 40.85

    0.9

    0.95

    1

    1.05

    x/δuτ

    Cs = 0.07 Cs = 0.1 Cs = 0.2

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 69 / 1

  • CHANNEL FLOW: DIFFERENT fk VALUES

    100

    101

    102

    0

    5

    10

    15

    20

    y+

    U+

    x/δ = 3

    0 0.5 1 1.5 2

    -1

    -0.5

    0

    0.5

    1

    y+〈u

    ′v′〉+

    fk = 0.4 fk = 0.2 fk = 0.6

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 70 / 1

  • CHANNEL FLOW: DIFFERENT fk VALUES

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    y+

    〈νu〉/ν

    x/δ = 3

    0 1 2 3 40.85

    0.9

    0.95

    1

    1.05

    x/δuτ

    fk = 0.4 fk = 0.2 fk = 0.6

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 71 / 1

  • HUMP FLOWxI/c = 0.6 RS

    NTS 2D RANS PANS

    Inlet, Separation xS/c = 0.65; reattachment xR/c = 1.1

    Rec = 936 000Uijc

    ν (Uin = c = ρ = 1, ν = 1/Rec

    H/c = 0.91, h/c = 0.128, x/c = [0.6,4.2]

    Mesh: 312 × 120 × 64, Zmax = 0.2c (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 72 / 1

  • BASELINE INLET FLUCTUATIONS

    -1 0 1 2 3 4 5 6

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    y/c

    〈u′v ′〉, v2rms, w2rms, u

    2rms/u

    0 0.02 0.04 0.06 0.08 0.1

    0

    0.2

    0.4

    0.6

    0.8

    1

    w′w

    ′tw

    o-p

    oin

    tco

    rr

    Integral length scale L ≃ 0.04 (see 2-p point correlation)

    Asymmetric time filter (U ′)m = a(U ′)m−1 + b(u′)m witha = 0.954,b = (1 − a2)1/2 gives a time integral scale T = 0.038

    ∆t = 0.002. 7500 + 7500 time steps (100 hours one core)

    Fluctuations multiplied by

    fbl = max {0.5 [1 − tanh(y − ybl − ywall)/b] ,0.02}, ybl = 0.2,b = 0.01.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 73 / 1

  • PRESSURE: AMPLITUDES OF INLET FLUCT

    0.5 1 1.5 20

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    x/c

    −C

    p

    baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 74 / 1

  • SKIN FRICTION: AMPLITUDES OF INLET FLUCT

    0 0.5 1 1.5-2

    0

    2

    4

    6

    8

    10x 10

    -3

    x/c

    Cf

    0.6 0.8 1 1.2 1.4 1.6

    -2

    -1

    0

    1

    2

    3x 10

    -3

    x/c

    zoom

    baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 75 / 1

  • VELOCITIES: AMPLITUDES OF INLET FLUCT

    0 0.2 0.4 0.6 0.8 1 1.20.1

    0.15

    0.2

    0.25

    x/c = 65y

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 80

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 100

    U/Ub

    y

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 110

    U/Ubbaseline 1.5× (baseline) 0.5× (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 76 / 1

  • VELOCITIES: AMPLITUDES OF INLET FLUCT

    0 0.2 0.4 0.6 0.8 1 1.20

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 120

    U/Ub

    y

    0 0.2 0.4 0.6 0.8 1 1.20

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 130

    U/Ub

    baseline 1.5× (baseline) 0.5× (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 77 / 1

  • RESOLVED AND MODELLED (< 0) SHEAR STRESSES

    -5 0 5 10 15

    x 10-3

    0.1

    0.15

    0.2

    0.25

    x/c = 0.65y

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 0.80

    0 0.01 0.02 0.03 0.040

    0.05

    0.1

    0.15

    0.2x/c = 1.00

    〈τ12,u〉, 〈−u′v ′〉/U2b

    y

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.10

    〈τ12,u〉, 〈−u′v ′〉/U2b

    baseline 1.5× (baseline) 0.5× (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 78 / 1

  • SHEAR STRESSES: AMPLITUDES OF INLET FLUCT

    Resolved and Modelled (< 0) Shear stresses

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.20

    〈τ12,u〉, 〈−u′v ′〉/U2b

    y

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.30

    〈τ12,u〉, 〈−u′v ′〉/U2b

    baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 79 / 1

  • TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

    0 5 10 15 200.1

    0.12

    0.14

    0.16

    0.18

    0.2x/c = 0.65

    y

    0 20 40 60 80 100 1200

    0.05

    0.1

    0.15

    0.2x/c = 0.80

    0 20 40 60 80 100 1200

    0.05

    0.1

    0.15

    0.2x/c = 1.00

    〈νt〉/ν

    y

    0 20 40 60 80 100 1200

    0.05

    0.1

    0.15

    0.2x/c = 1.10

    〈νt〉/νbaseline 1.5× (baseline) 0.5× (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 80 / 1

  • TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

    0 20 40 60 80 100 1200

    0.05

    0.1

    0.15

    0.2x/c = 1.20

    〈νt〉/ν

    y

    0 20 40 60 80 100 1200

    0.05

    0.1

    0.15

    0.2x/c = 1.30

    〈νt〉/ν

    baseline 1.5× (baseline) 0.5× (baseline)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 81 / 1

  • PRESSURE: fk = 0.5; NO INLET FLUCT; Nk = 128

    0.5 1 1.5 20

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    x/c

    −C

    p

    Nk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 82 / 1

  • SKIN FRICTION: fk = 0.5; NO INLET FLUCT; Nk = 128

    0 0.5 1 1.5-2

    0

    2

    4

    6

    8

    10x 10

    -3

    x/c

    Cf

    0.6 0.8 1 1.2 1.4 1.6

    -2

    -1

    0

    1

    2

    3x 10

    -3

    x/c

    zoom

    Nk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 83 / 1

  • VELOCITIES: fk = 0.5; NO INLET FLUCT; Nk = 128

    0 0.2 0.4 0.6 0.8 1 1.20.1

    0.15

    0.2

    0.25

    x/c = 65y

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 80

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 100

    U/Ub

    y

    0 0.5 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 110

    U/UbNk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 84 / 1

  • VELOCITIES: fk = 0.5; NO INLET FLUCT; Nk = 128

    0 0.2 0.4 0.6 0.8 1 1.20

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 120

    U/Ub

    y

    0 0.2 0.4 0.6 0.8 1 1.20

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 130

    U/Ub

    Nk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 85 / 1

  • RESOLVED AND MODELLED (< 0) SHEAR STRESSES

    -5 0 5

    x 10-3

    0.1

    0.15

    0.2

    0.25

    x/c = 0.65y

    0 0.01 0.02 0.03 0.040

    0.05

    0.1

    0.15

    0.2

    0.25

    x/c = 0.80

    0 0.01 0.02 0.03 0.040

    0.05

    0.1

    0.15

    0.2x/c = 1.00

    〈τ12,u〉, 〈−u′v ′〉/U2b

    y

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.10

    〈τ12,u〉, 〈−u′v ′〉/U2b

    Nk = 128 no inlet fluct fk = 0.5www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 86 / 1

  • SHEAR STRESSES: fk = 0.5; NO INLET FLUCT; Nk = 128

    Resolved and Modelled (< 0) Shear stresses

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.20

    〈τ12,u〉, 〈−u′v ′〉/U2b

    y

    0 0.01 0.02 0.030

    0.05

    0.1

    0.15

    0.2x/c = 1.30

    〈τ12,u〉, 〈−u′v ′〉/U2b

    Nk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 87 / 1

  • TURB VISCOSITY: fk = 0.5; NO INLET FLUCT; Nk = 128

    0 5 10 15 200.1

    0.12

    0.14

    0.16

    0.18

    0.2x/c = 0.65

    y

    0 50 100 150 200 2500

    0.05

    0.1

    0.15

    0.2x/c = 0.80

    0 50 100 150 200 2500

    0.05

    0.1

    0.15

    0.2x/c = 1.00

    〈νt〉/ν

    y

    0 50 100 150 200 2500

    0.05

    0.1

    0.15

    0.2x/c = 1.10

    〈νt〉/νNk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 88 / 1

  • TURB VISCOSITY: fk = 0.5; NO INLET FLUCT; Nk = 128

    0 50 100 150 200 2500

    0.05

    0.1

    0.15

    0.2x/c = 1.20

    〈νt〉/ν

    y

    0 50 100 150 200 2500

    0.05

    0.1

    0.15

    0.2x/c = 1.30

    〈νt〉/ν

    Nk = 128 no inlet fluct fk = 0.5

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 89 / 1

  • CONCLUDING REMARKS

    LRN PANS has been shown to work well as an embedded LES

    method

    Channel flow: At two δ downstream the interface, the resolvedturbulence in good agreement with DNS data and the wall friction

    velocity has reached 99% of its fully developed value.

    Channel flow: The treatment of the modelled ku and εu across theinterface is important.

    LRN PANS predicts the hump flow well but the recover rate sligtly

    too slow

    Hump flow: large (small) inlet fluctuations gives a smaller (larger)

    recirculation

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 90 / 1

  • PANS: CONCLUDING REMARKS

    Embedded LES with k − ε PANS and Synthetic b.c.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 91 / 1

  • PANS: CONCLUDING REMARKS

    Embedded LES with k − ε PANS and Synthetic b.c.

    Channel flow

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 91 / 1

  • PANS: CONCLUDING REMARKS

    Embedded LES with k − ε PANS and Synthetic b.c.

    Channel flow◮ Isotropic fluctuations work well for channel flow

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 91 / 1

  • PANS: CONCLUDING REMARKS

    Embedded LES with k − ε PANS and Synthetic b.c.

    Channel flow◮ Isotropic fluctuations work well for channel flow◮ Strong dependence on interface ku & εu values

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 91 / 1

  • PANS: CONCLUDING REMARKS

    Embedded LES with k − ε PANS and Synthetic b.c.

    Channel flow◮ Isotropic fluctuations work well for channel flow◮ Strong dependence on interface ku & εu values◮ No strong dependence on amplitude, L or T of fluctuations

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 91 / 1

  • PANS: CONCLUDING REMARKS CONT’D

    Hump flow

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 92 / 1

  • PANS: CONCLUDING REMARKS CONT’D

    Hump flow◮ PANS & synthetic inlet b.c. with fk everywhere gives good results

    except Cf (error > 50%)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 92 / 1

  • PANS: CONCLUDING REMARKS CONT’D

    Hump flow◮ PANS & synthetic inlet b.c. with fk everywhere gives good results

    except Cf (error > 50%)◮ With embedded isotropic fluctuations, interface must be located far

    upstream

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 92 / 1

  • PANS: CONCLUDING REMARKS CONT’D

    Hump flow◮ PANS & synthetic inlet b.c. with fk everywhere gives good results

    except Cf (error > 50%)◮ With embedded isotropic fluctuations, interface must be located far

    upstream◮ With embedded anisotropic fluctuations, good results are obtained,

    still poor Cf

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 92 / 1

  • PANS: CONCLUDING REMARKS CONT’D

    Hump flow◮ PANS & synthetic inlet b.c. with fk everywhere gives good results

    except Cf (error > 50%)◮ With embedded isotropic fluctuations, interface must be located far

    upstream◮ With embedded anisotropic fluctuations, good results are obtained,

    still poor Cf◮ On-going work . . .

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 92 / 1

  • Large Eddy Simulation of Heat Transfer in Boundary layer and

    Backstep Flow Using PANS [6]

    Lars Davidson

    THMT-12, Palermo, Sept 2012

  • PANS LOW REYNOLDS NUMBER MODEL [17]

    ∂ku∂t

    +∂(kuUj)

    ∂xj=

    ∂xj

    [(

    ν +νuσku

    )

    ∂ku∂xj

    ]

    + (Pu − εu)

    ∂εu∂t

    +∂(εuUj)

    ∂xj=

    ∂xj

    [(

    ν +νuσεu

    )

    ∂εu∂xj

    ]

    + Cε1Puεuku

    − C∗ε2ε2uku

    νu = Cµfµk2uεu

    ,C∗ε2 = Cε1 +fkfε(Cε2f2 − Cε1), σku ≡ σk

    f 2kfε, σεu ≡ σε

    f 2kfε

    Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

    f2 =

    [

    1 − exp(

    −y∗

    3.1

    )

    ]2 {

    1 − 0.3exp

    [

    −( Rt

    6.5

    )2]}

    fµ =

    [

    1 − exp(

    −y∗

    14

    )

    ]2{

    1 +5

    R3/4t

    exp

    [

    −( Rt

    200

    )2]

    }

    Baseline model: fk = 0.4.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 94 / 1

  • NUMERICAL METHOD

    Incompressible finite volume method

    Pressure-velocity coupling treated with fractional step

    Differencing scheme for momentum eqns:◮ 95% 2nd order central and 5% 2nd order upwind differencing

    scheme (baseline) OR◮ 100% 2nd order central differencing

    Hybrid 1st order upwind/2nd order central scheme k & ε eqns.

    2nd -order Crank-Nicholson for time discretization

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 95 / 1

  • BOUNDARY LAYER FLOW: DOMAIN

    x

    y

    L

    H

    δinlet

    Inlet: δinlet = 1 (covered by 45 cells), Reθ = 3 600, Uin = ρ = 1.Stretching 1.12 up to y/δ ≃ 1.

    Domain: L/δin = 3.2, H/δin = 15.6, Zmax = 1.5δinResolution: ∆z+in ≃ 27, ∆x

    +

    in ≃ 54

    Grid: 66 × 96 × 64 (x , y , z)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 96 / 1

  • ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

    Prescribe an homogeneous Reynolds tensor, uiuj (here from

    DNS)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 97 / 1

  • ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

    (u′

    1u′

    1)λ

    x1,λ

    (u′2 u

    ′2 )λ

    x2,λu′1,λu

    2,λ = 0

    Prescribe an homogeneous Reynolds tensor, uiuj (here from

    DNS)

    isotropic fluctuations in principal directions, (u′1u′

    1)λ = (u′

    2u′

    2)λ,u′1,λu

    2,λ = 0

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 97 / 1

  • ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

    (u′

    1u′

    1〉λ

    x1,λ

    (u′2 u

    ′2 〉λ

    x2,λu′1,λu

    2,λ = 0

    Prescribe an homogeneous Reynolds tensor, uiuj (here from

    DNS)

    isotropic fluctuations in principal directions, (u′1u′

    1)λ = (u′

    2u′

    2)λ,u′1,λu

    2,λ = 0

    re-scale the normal components, (u′1u′

    1)λ > (u′

    2u′

    2)λ,u′1,λu

    2,λ = 0

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 97 / 1

  • ANISOTROPIC SYNTHETIC FLUCTUATIONS: II

    u′1u′

    1 > u′

    2u′

    2

    x1

    u′2 u

    ′2

    x2

    u′1u′

    2 6= 0

    Transform from (x1,λ, x2,λ) to (x1, x2)

    u′21u′22

    = 23,u′21u′23

    = 5 from (u′1u′

    1)peak in DNS channel flow, Reτ = 500

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 98 / 1

  • INLET CONDITIONS FOR ku AND εu AS IN [10]

    A pre-cursor RANS simulation using the AKN model (i.e. PANS

    with fk = 1) is carried out. At Reθ = 3 600, URANS, VRANS, kRANSare taken.

    ūin = URANS + u′

    synt , v̄in = VRANS + v′

    synt , w̄in = w′

    synt

    Anisotropic synthetic fluctuations are used. The fluctuations are

    scaled with ku/ku,max .

    ku,in = fkkRANS , εu,in = C3/4µ k

    3/2u,in/ℓsgs, ℓsgs = Cs∆, ∆ = V

    1/3,

    Cs = 0.05

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 99 / 1

  • INLET TURB. FLUCTUATION, TWO-POINT CORRELATIONS

    -2 0 2 4 60

    200

    400

    600

    800

    1000

    stresses

    y/H

    0 0.1 0.2 0.3 0.4 0.5

    0

    0.2

    0.4

    0.6

    0.8

    1

    ẑ/δ, ẑ/HB

    ww(ẑ)

    Two-point correlation

    u+2rms, v+2rms,

    w+2rms〈u′v ′〉+ ◦: inlet; x = 3δin

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 100 / 1

  • BOUNDARY LAYER: VELOCITY AND SKIN FRICTION

    1 10 50 10000

    5

    10

    15

    20

    25

    y+

    U+

    100%CDS

    0 0.5 1 1.5 2 2.5 3

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    x 10-3

    x

    Cf

    x = δin; x = 2δin;x = 3δin; �: DNS [21]

    100% CDS; 100%CDS, Uin from AKN; 25%larger inlet fluct.; 25% largerinlet fluct., Cs = 0.07; markers:0.37 (log10Rex)

    −2.584 (+: AKN; ◦:DNS)

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 101 / 1

  • REYNOLDS STRESSES

    -1 0 1 2 30

    500

    1000

    1500

    y+

    〈u′v ′〉 〈u′u′〉-1 0 1 2 3

    0

    500

    1000

    1500

    y+

    〈u′v ′〉 〈v ′v ′〉, 〈w ′w ′〉, 〈u′u′〉

    x = δin; x = 2δin;x = 3δin.

    x = 3δin; Markers: DNS [21]

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 102 / 1

  • BACKWARD FACING STEP: DOMAIN

    4.05H 21H

    4H

    H x

    y

    qw

    ReH = 28 000 Experiments by Vogel & Eaton [26]

    Mean inlet profiles from RANS (same as in boundary layer)

    Grid: 336 × 120 in x × y plane. Zmax = 1.6H, Nk = 64, ∆z+

    in = 31.

    Anisotropic synthetic fluctuations, u′, v ′,w ′ (same as for boundarylayer flow); no fluctuations for t ′

    Constant heat flux, qw , on lower wall.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 103 / 1

  • BACKSTEP FLOW. SKIN FRICTION AND STANTON

    NUMBER

    -5 0 5 10 15 20-2

    -1

    0

    1

    2

    3

    4x 10

    -3

    x/H

    Cf

    0 5 10 151

    1.5

    2

    2.5

    3

    3.5

    4x 10

    -3

    x/HS

    t

    PANS; PANS, 50% smaller inlet fluctuations;WALE; •: PANS, no inlet fluctuations; : 2D RANS; ◦,•:

    experiments [26].

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 104 / 1

  • BACKSTEP FLOW: VELOCITIES.

    0 0.2 0.4 0.6 0.8 11

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    〈ū〉/Uin

    x = −1.13H

    -0.2 0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    2.5

    〈ū〉/Uin

    x = 3.2H

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    2.5

    〈ū〉/Uin

    x = 14.86H

    PANS; PANS, 50% smaller inlet fluctuations;WALE;

    •: PANS, no inlet fluctuations; : 2D RANS; ◦: experiments [26].

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 105 / 1

  • BACKSTEP FLOW: RESOLVED STREAMWISE STRESS.

    0 0.05 0.1 0.151

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    urms/Uin

    y/H

    x = −1.13H

    0 0.05 0.1 0.15 0.20

    0.5

    1

    1.5

    2

    2.5

    urms/Uin

    x = 3.2H

    0 0.05 0.1 0.150

    0.5

    1

    1.5

    2

    2.5

    urms/Uin

    x = 14.86H

    PANS; PANS, 50% smaller inlet fluctuations;WALE;

    •: PANS, no inlet fluctuations; : 2D RANS; ◦: experiments [26].

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 106 / 1

  • BACKSTEP FLOW: TURBULENT VISCOSITIES.

    0 2 4 6 81

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    νu/ν

    y/H

    x = −1.13H

    0 5 10 15 200

    0.5

    1

    1.5

    2

    2.5

    νu/ν

    x = 3.2H

    0 5 10 150

    0.5

    1

    1.5

    2

    2.5

    νu/ν

    x = 14.86H

    PANS; PANS, 50% smaller inlet fluctuations;WALE;

    •: PANS, no inlet fluctuations; : 2D RANS/10;

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 107 / 1

  • FORWARD/BACKWARD FLOW

    Fraction of time, γ, when the flow along the bottom wall is in thedownstream direction.

    0 2 4 6 8 10 12 140

    0.2

    0.4

    0.6

    0.8

    1

    x/H

    γ

    PANS; PANS, 50% smaller inlet fluctuations;WALE;

    •: PANS, no inlet fluctuations; ◦: experiments [26].www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 108 / 1

  • SHEAR STRESSES. x = 3.2H

    -5 0 5 10 15

    x 10-4

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -5 0 5 10 15

    x 10-4

    0

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    2〈νt s̄12〉; ν∂〈ū〉

    ∂y; −〈〈u′v ′〉〉; ◦: 2〈νt s̄12〉− 〈〈u

    ′v ′〉〉.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 109 / 1

  • SHEAR STRESSES. x = 14.86

    0 0.2 0.4 0.6 0.8 1

    x 10-3

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    0 0.2 0.4 0.6 0.8 1

    x 10-3

    0

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    2〈νt s̄12〉; ν∂〈ū〉

    ∂y; −〈〈u′v ′〉〉; ◦: 2〈νt s̄12〉− 〈〈u

    ′v ′〉〉.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 110 / 1

  • TERMS IN THE 〈ū〉 EQUATION. x = 3.2H

    -0.06 -0.04 -0.02 0 0.02 0.04 0.060

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -0.06 -0.04 -0.02 0 0.02 0.04 0.060

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    ∂y(2〈νt s̄12〉); ν

    ∂2〈ū〉

    ∂y2; −

    ∂〈ū〉〈ū〉

    ∂x; +: −

    ∂〈ū〉〈v̄〉

    ∂y;

    ⋆: −∂〈p̄〉

    ∂x, △: −

    ∂〈〈u′v ′〉〉

    ∂y.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 111 / 1

  • TERMS IN THE 〈ū〉 EQUATION. x = 14.86H

    -0.06 -0.04 -0.02 0 0.02 0.04 0.060

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -0.06 -0.04 -0.02 0 0.02 0.04 0.060

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    ∂y(2〈νt s̄12〉); ν

    ∂2〈ū〉

    ∂y2; −

    ∂〈ū〉〈ū〉

    ∂x; +: −

    ∂〈ū〉〈v̄〉

    ∂y;

    ⋆: −∂〈p̄〉

    ∂x, △: −

    ∂〈〈u′v ′〉〉

    ∂y.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 112 / 1

  • HEAT FLUXES. x = 3.2H

    -1 -0.8 -0.6 -0.4 -0.2 00

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -1 -0.8 -0.6 -0.4 -0.2 00

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    νtσt

    ∂T̄

    ∂y

    σℓ

    ∂〈T̄ 〉

    ∂y; −〈vθ〉. ◦:

    νtσt

    ∂T̄

    ∂y

    − 〈vθ〉.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 113 / 1

  • HEAT FLUXES. x = 14.86H

    -1 -0.8 -0.6 -0.4 -0.2 00

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -1 -0.8 -0.6 -0.4 -0.2 00

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    νtσt

    ∂T̄

    ∂y

    σℓ

    ∂〈T̄ 〉

    ∂y; −〈vθ〉. ◦:

    νtσt

    ∂T̄

    ∂y

    − 〈vθ〉.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 114 / 1

  • TERMS IN THE 〈T̄ 〉 EQUATION. x = 3.2H

    -100 -50 0 50 1000

    0.02

    0.04

    0.06

    0.08

    0.1

    y

    PANS

    -100 -50 0 50 1000

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    ∂y

    (

    νtσt

    ∂〈T̄ 〉

    ∂y

    )

    σℓ

    ∂2〈T̄ 〉

    ∂y2; −

    ∂〈ū〉〈T̄ 〉

    ∂x; +:

    −∂〈v̄〉〈T̄ 〉

    ∂y; △: −

    ∂〈vθ〉

    ∂y.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 115 / 1

  • TERMS IN THE 〈T̄ 〉 EQUATION. x = 14.86H

    -50 0 500

    0.02

    0.04

    0.06

    0.08

    0.1

    y/H

    PANS

    -50 0 500

    0.02

    0.04

    0.06

    0.08

    0.1RANS

    ∂y

    (

    νtσt

    ∂〈T̄ 〉

    ∂y

    )

    σℓ

    ∂2〈T̄ 〉

    ∂y2; −

    ∂〈ū〉〈T̄ 〉

    ∂x; +:

    −∂〈v̄〉〈T̄ 〉

    ∂y; △: −

    ∂〈vθ〉

    ∂y.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 116 / 1

  • CONCLUDING REMARKS

    Developing boundary layer◮ Synthetic fluctuations give fully developed conditions after a couple

    of boundary layer thicknesses◮ 5% upwinding dampens resolved fluctuations; can be compensated

    by 25% larger inlet fluctuations

    Backstep flow◮ Very good agreement with experiments◮ 2D RANS predicts turbulent diffusion surprisingly well◮ Synthetic inlet fluctuations give an improved Stanton number;

    otherwise small effect in the reciculation region◮ LRN PANS and WALE equally good◮ 5% upwinding has a negligble effect in the recirculation region

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 117 / 1

  • REFERENCES I

    [1] ABE, K., KONDOH, T., AND NAGANO, Y.

    A new turbulence model for predicting fluid flow and heat transfer

    in separating and reattaching flows - 1. Flow field calculations.

    Int. J. Heat Mass Transfer 37 (1994), 139–151.

    [2] BILLSON, M.

    Computational Techniques for Turbulence Generated Noise.

    PhD thesis, Dept. of Thermo and Fluid Dynamics, Chalmers

    University of Technology, Göteborg, Sweden, 2004.

    [3] BILLSON, M., ERIKSSON, L.-E., AND DAVIDSON, L.

    Modeling of synthetic anisotropic turbulence and its sound

    emission.

    The 10th AIAA/CEAS Aeroacoustics Conference, AIAA

    2004-2857, Manchester, United Kindom, 2004.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 118 / 1

  • REFERENCES II

    [4] DAVIDSON, L.

    Large eddy simulations: how to evaluate resolution.

    International Journal of Heat and Fluid Flow 30, 5 (2009),

    1016–1025.

    [5] DAVIDSON, L.

    How to estimate the resolution of an LES of recirculating flow.

    In ERCOFTAC (2010), M. V. Salvetti, B. Geurts, J. Meyers, and

    P. Sagaut, Eds., vol. 16 of Quality and Reliability of Large-Eddy

    Simulations II, Springer, pp. 269–286.

    [6] DAVIDSON, L.

    Large eddy simulation of heat transfer in boundary layer and

    backstep flow using pans (to be presented).

    In Turbulence, Heat and Mass Transfer, THMT-12 (Palermo,

    Sicily/Italy, 2012).

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 119 / 1

  • REFERENCES III

    [7] DAVIDSON, L.

    A new approach of zonal hybrid RANS-LES based on a

    two-equation k − ε model.In ETMM9: International ERCOFTAC Symposium on Turbulence

    Modelling and Measurements (Thessaloniki, Greece, 2012).

    [8] DAVIDSON, L., AND BILLSON, M.

    Hybrid LES/RANS using synthesized turbulence for forcing at the

    interface.

    International Journal of Heat and Fluid Flow 27, 6 (2006),

    1028–1042.

    [9] DAVIDSON, L., AND DAHLSTRÖM, S.

    Hybrid LES-RANS: An approach to make LES applicable at high

    Reynolds number.

    International Journal of Computational Fluid Dynamics 19, 6

    (2005), 415–427.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 120 / 1

  • REFERENCES IV

    [10] DAVIDSON, L., AND PENG, S.-H.

    Emdedded LES with PANS.

    In 6th AIAA Theoretical Fluid Mechanics Conference, AIAA paper

    2011-3108 (27-30 June, Honolulu, Hawaii, 2011).

    [11] DAVIDSON, L., AND PENG, S.-H.

    Embedded LES using PANS applied to channel flow and hump

    flow (to appear).

    AIAA Journal (2013).

    [12] HEMIDA, H., AND KRAJNOVIĆ, S.

    LES study of the impact of the wake structures on the

    aerodynamics of a simplified ICE2 train subjected to a side wind.

    In Fourth International Conference on Computational Fluid

    Dynamics (ICCFD4) (10-14 July, Ghent, Belgium, 2006).

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 121 / 1

  • REFERENCES V

    [13] HINZE, J.

    Turbulence, 2nd ed.

    McGraw-Hill, New York, 1975.

    [14] KRAJNOVIĆ, S., AND DAVIDSON, L.

    Large eddy simulation of the flow around a bluff body.

    AIAA Journal 40, 5 (2002), 927–936.

    [15] KRAJNOVIĆ, S., AND DAVIDSON, L.

    Numerical study of the flow around the bus-shaped body.

    Journal of Fluids Engineering 125 (2003), 500–509.

    [16] KRAJNOVIĆ, S., AND DAVIDSON, L.

    Flow around a simplified car. part II: Understanding the flow.

    Journal of Fluids Engineering 127, 5 (2005), 919–928.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 122 / 1

  • REFERENCES VI

    [17] MA, J., PENG, S.-H., DAVIDSON, L., AND WANG, F.

    A low Reynolds number variant of Partially-Averaged

    Navier-Stokes model for turbulence.

    International Journal of Heat and Fluid Flow 32 (2011), 652–669.

    [18] MENTER, F.

    Two-equation eddy-viscosity turbulence models for engineering

    applications.

    AIAA Journal 32 (1994), 1598–1605.

    [19] MENTER, F., KUNTZ, M., AND LANGTRY, R.

    Ten years of industrial experience of the SST turbulence model.

    In Turbulence Heat and Mass Transfer 4 (New York, Wallingford

    (UK), 2003), K. Hanjalić, Y. Nagano, and M. Tummers, Eds.,

    begell house, inc., pp. 624–632.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 123 / 1

  • REFERENCES VII

    [20] POPE, S.

    Turbulent Flow.

    Cambridge University Press, Cambridge, UK, 2001.

    [21] SCHLATTER, P., AND ORLU, R.

    Assessment of direct numerical simulation data of turbulent

    boundary layers.

    Journal of Fluid Mechanics 659 (2010), 116–126.

    [22] SCHLICHTING, H.

    Boundary-Layer Theory, 7 ed.

    McGraw-Hill, New York, 1979.

    [23] SMAGORINSKY, J.

    General circulation experiments with the primitive equations.

    Monthly Weather Review 91 (1963), 99–165.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 124 / 1

  • REFERENCES VIII

    [24] SPALART, P., JOU, W.-H., STRELETS, M., AND ALLMARAS, S.

    Comments on the feasability of LES for wings and on a hybrid

    RANS/LES approach.

    In Advances in LES/DNS, First Int. conf. on DNS/LES (Louisiana

    Tech University, 1997), C. Liu and Z. Liu, Eds., Greyden Press.

    [25] STRELETS, M.

    Detached eddy simulation of massively separated flows.

    AIAA paper 2001–0879, Reno, NV, 2001.

    [26] VOGEL, J., AND EATON, J.

    Combined heat transfer and fluid dynamic measurements

    downstream a backward-facing step.

    Journal of Heat Transfer 107 (1985), 922–929.

    www.tfd.chalmers.se/˜lada Helsinki 4 October 2012 125 / 1


Recommended