+ All Categories
Home > Documents > Large-Scale Applications of Silicon Detectors in...

Large-Scale Applications of Silicon Detectors in...

Date post: 17-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
32
Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz SCIPP Large-Scale Applications of Silicon Detectors in Space Hartmut F.-W. Sadrozinski Santa Cruz Institute for Particle Physics (SCIPP)
Transcript

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP

Large-Scale Applications of Silicon Detectorsin Space

Hartmut F.-W. SadrozinskiSanta Cruz Institute for Particle Physics (SCIPP)

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Principle of Silicon Strip Detectors

25-200 µm

300-400 µm

Alat ~ 100V

n+ implant

Al SiO2

p+ implantat ground

Depletion region. Charged particletraversing region produces ~80electron/hole pairs per micron.

Readout electronics(S/N typically > 20)

holes

Reverse Bias of junction: thermal current generationScale : Band gap 1.12eV vs. kT = 1/40eVCooling needed only in ultra-low noise applications.Wafer thickness 300um = 24k e-h pairs = 0.3%RLDepletion Voltage ~ thickness2 <100V Collection Time of e-h pairs: ~30nsArea is given by wafer size: 4” & 6” => Ladders

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Evolution of Silicon Detectors

Large Area Double-sided

Hybrid Pixels

Monolythic:CCD, MAP

Si Drift

3-D

n n n

nn

p p

n

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP The Rise of the Silicon Detectors

Development of Area of SSD and # of Electronics Channels follow Moore’s Law

Larger - CMS 10M Channels, 230m2

Faster - ATLAS 22nsCheaper - CMS ~$5/cm2

0.01

0.1

1

10

100

1000

1985 1990 1995 2000 2005 201

Silicon Area [m2]

Year

CDF

ATLASGLAST

CMS

AMS-02

AMS-01

D0

BaBar

NOMAD

LEP

LPSCDFMark2

Pamela

Agile MEGA

1

10

100

1000

104

1985 1990 1995 2000 2005 2010

# of Electronics Channels [in k]

Year

CDF

ATLAS

GLAST

CMS

AMS-02

AMS-01

WIZARD

D0

BaBar

NOMAD

LEP

LPSCDFMark2 Pamela

Agile MEGA

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP The Rise of the Silicon Detectors

Edge joint and wire bonds before encapsulation

0.01

0.1

1

10

100

10 100 1000 104

Silicon Area vs. # of Electronics Channels

# of Channels [k]

CDF

ATLASGLAST

CMS

AMS-02

AMS-01 D0

BaBar

NOMAD

LEP

LPSCDF

Mark2 Pamela

Agile MEGA

Are

a[m

2 ]

Limited Resources (Power) in Space

Long Ladders possible with:Bonding and Encapsulation

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP The Rise of the Silicon Detectors

Trends in the Cost of Silicon Detectors

Cost of processing wafers reduced ~ 4x

Increased Area 4” -> 6”Better utilisation of area

Improved Qualitye.g. GLAST detectors:

<2nA/ cm2

<2*10-4 bad channels 1

10

100

1985 1990 1995 2000

Cost /Area of Single-sided Silicon Strip Detectors(double-sided factor 2.5 higher)

4"6"

Cos

t /A

rea

[ $/c

m2 ]

Year

Mark 2DC coupl.

ZEUSDC coupl.

CDFNomad

(untested)

GLAST"4"

ATLAS

GLAST6"

Wafer Size

Blank Wafer Price4 "

6 "

CMS

(Guestimates by HFWS)

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Tracking Milestones: Fixed Target

Silicon Detectors~ 5cm x5cm

Fanout-Cables

Amplifiers

That’s how it all began

Fixed Target experiments withhigh rates:

Na11 (ACCMOR)Na14E706E691

Detect heavy decaying particles through their finite decay distance

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Tracking Milestones: Vertex Detectors

The big step forward in Mark2:ASIC’s (Terry Walker et al)

Vertex Detector ParadigmASIC’s,Few thin layers,Close in.

ALEPH

Every LEP Experiment has aVertex Detectors:

Double-SidedAC-coupled

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Tracking Milestones: Highest Luminosity LHC

Temperature Range : -17oC (cooling pipe) to +16oC (ASICs)

Vertex Detector Inner DetectorChange in Paradigm:

coverage of large areaelectronics inside tracker volume

ATLAS: Silicon TrackerSimple Detectors,Optimized ElectronicsThermal management

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Tracking Milestones: Highest Luminosity LHC

Continued Paradigm Change:Outside radius : ~1.1m~1R.L. in tracking volume

Silicon has arrived:all Silicon Inner DetectorSi Area 223m2, - 6” Wafers -

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Tracking in Space: AMS

Very long ladders (65cm)Thin mechanical structuresElectronics outside trackingPrecision alignment

Tracking in Magnetic field:Minimize material

Conservative Adaptation of HEP Technology

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Photon Detection: How to Measure the Direction

Optical-X-raysNeed Focus:LensesMirrorsCollimatorsCoded MasksProximity

Photon energy (MeV)

1

0.01

0.1

10

100

1000

Mas

s at

tenu

atio

n co

effic

ient

(cm

2 g–1

)

photo-electric pair production

total

Si l icon

0.10.010.001 1 10 100 1,000 10,000

Rayleigh(coherent)

Compton

λ varies by 105!

Absorption of PhtotonsN(x) = Noe- λ x

ComptonPartial Direction

γ

calorimeter (energy measurement)

anticoincidenceshield

e+ e–

particle tracking detectors

conversion foil

Pair-ProductionDirection

Absorption coefficientλ = (7/9)/Xo

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Application: Compton Telescope AstroPhysics

Reduced Compton circles of events with electron track

Stack of Silicon detectors

MPE - NRLMEGAUse of electron directionto limit the Compton cone.

Classical Compton Event Circles

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPPGLAST Detector Concept: Pair Conversion Telescope

γ

e+ e- calorimeter (energy measurement)

particle tracking detectors

conversion foils

charged particle anticoincidence shield

1

2

Converter Thickness tConversion Probability ~ tPointing RMS ~ √t

Gamma-rays convert into e+e- pairs,are tracked and their energy measuredGamma is reconstructed from e+e- tracks

MaximizeNumber of Converters

New Paradigm:Add material into tracking volume:

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPPGLAST Gamma-Ray Large Area Space Telescope

An Astro-Particle Physics Partnership Exploring the High-Energy Universe

• Precision Si-strip Tracker (TKR)• Hodoscopic CsI Calorimeter (CAL)• Segmented Anticoincidence Detector (ACD)• Advantages of modular design• NASA, DoE, DoD, INFN/ASI, Japan, CEA, IN2P3, Sweden

Challenges of Science in Space

• Launch

• Limited Resources• Space Environment

4 x 4 Arrayof Towers

AnticoincidenceShield

CalorimeterModule

Grid

TrackerModule

GammaRay

Resolving the γ-ray sky

Design Optimized for Key Science Objectives

• Understand particle acceleration in AGN, Pulsars, & SNRs• Resolve the γ-ray sky: unidentified sources & diffuse emission• Determine the high-energy behavior of GRBs & Transients

Proven technologies and 7 years of design, development and demonstration efforts

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Criteria for large-scale Application in Space:

FlexibilityAdapt to Space EnvironmentUse Conservative Approach

ModularityClean InterfacesLow risk in Performance and Schedule

RedundancyNo single-point failures

Q/AParts SelectionProceduresEarly R&DTesting

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP The Large Area Telescope (LAT)

DAQ Electronics

Grid

Tracker

Calorimeter

ACD Thermal Blanket

•Array of 16 identical “Tower” Modules, each with a tracker (Si strips) and a calorimeter (CsI with PIN diode readout) and DAQ module.

•Surrounded by finely segmented ACD(plastic scintillator with PMT readout).

•Aluminum strong-back “Grid,” with heat pipes for transport of heat to the instrument sides.

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP GLAST LAT: International Collaboration• expertise in each science topic (theory + obs.)• experience in high-energy and space instrumentation• access to X-ray, MeV, and TeV observatories by

collaboration for multi-wavelength observations

• expertise in each science topic (theory + obs.)• experience in high-energy and space instrumentation• access to X-ray, MeV, and TeV observatories by

collaboration for multi-wavelength observations

~ 100 collaboratorsfrom 28 institutions

~ 100 collaboratorsfrom 28 institutions

Organizations with LAT Hardware Involvement

Stanford University & Stanford Linear Accelerator CenterNASA Goddard Space Flight CenterNaval Research LaboratoryUniversity of California at Santa CruzUniversity of Washington

Commissariat a l’Energie Atomique, Departement d’Astrophysique (CEA)Institut National de Physique Nuclearie et de Physique des Particules (IN2P3): Ecole Polytechnique, College de France, CENBG (Bordeaux)

Hiroshima UniversityInstitute of Space and Astronautical Science, TokyoRIKENTokyo Institute of Technology

Istituto Nazionale di Fisica Nucleare (INFN): Pisa, Trieste, Bari, Udine, Perugia, Roma

Royal Institute of Technology (KTH), Stockholm

Organizations with LAT Hardware Involvement

Stanford University & Stanford Linear Accelerator CenterNASA Goddard Space Flight CenterNaval Research LaboratoryUniversity of California at Santa CruzUniversity of Washington

Commissariat a l’Energie Atomique, Departement d’Astrophysique (CEA)Institut National de Physique Nuclearie et de Physique des Particules (IN2P3): Ecole Polytechnique, College de France, CENBG (Bordeaux)

Hiroshima UniversityInstitute of Space and Astronautical Science, TokyoRIKENTokyo Institute of Technology

Istituto Nazionale di Fisica Nucleare (INFN): Pisa, Trieste, Bari, Udine, Perugia, Roma

Royal Institute of Technology (KTH), Stockholm

TKRCALACD

CAL

TKR

TKR

CAL

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP GLAST LAT TKR

• Numbers: GLAST is modular:16 flight (+ 2 calibration towers) with 18 x-y SSD planes each4 x 4 SSD per plane ( 4 ladders with 4 SSD each)Number of SSD needed:

10368 (+ 5% spares + 5% wastage) => 11,500 • Total SSD Area: 83m2, ~1M channels, ~ 5M wire bonds• Simple mechanical assembly method:

Butt-join and wire-bond 4 SSD to “ladders”Glue 4 Ladders onto both sides of 3cm thick panels (“trays”) Attach MCM on the side of the panel via 90o interconnect Stack trays into towers

• QA:Tight specification increase reliability of SSDCharge manufacturer with all detailed testingTest important parameters before further integration step

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Overview of TKR Tower Design

• 16 towers, each with 37 cm × 37 cm of Si (78m2 in all)

• 18 x,y planes per tower– 19 “tray” structures ~3cm high

• Si planes on top and bottom• 12 with 3% W converter on bottom• 4 with 25% W converter on bottom• 2 with no converter

– Every other tray rotated by 90°, so each W foil is followed immediately by an x,yplane

• 2mm gap between x and y• Electronics on the sides of trays

– Minimize gap between towers– 9 readout modules on each of 4 sides

• Trays stack and align at their corners• The bottom tray has a flange to mount on

the grid• Carbon-fiber walls provide stiffness and

the thermal pathway to the grid

Carbon thermal

panel

Readout Cable

Electronics Module

2 mm gapCarbon-Fiber Wall

19 Carbon-Fiber Tray Panels

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP TKR Flight-Tower Design & Assembly

Cable PlantUCSC

SSD Procurement, TestingJapan, Italy, SLAC

Electronics Design, Fabrication & TestUCSC, SLAC

Tower Assembly and TestSLAC (2) Italy (16)

Tray Assembly and TestItaly

SSD Ladder AssemblyItaly

Composite Panel & ConvertersEngineering: SLAC, Hytec, and ItalyProcurement: Italy

2592

342

648

34218

Tower Structure (walls, fasteners)Engineering: SLAC, HytecProcurement: SLAC

10,368

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP TKR Interconnects

~ 1,000,000 TKR Channels~ 6,000,000 encapsulated Wire Bonds

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Prototyping of the GLAST SSD

The SSD design has been finalized and procurement is underway

11,500 SSD inlude 10% Spares

Qualify Prototypes from HPK (experience with ~5% of GLAST needs)

0.1*specs

+340

Additional Prototypes: Micron (UK), STM (Italy), CSEM (Switzerland)

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP 6” wafer of the GLAST SSD

Each wafer has a GLAST2000 SSD and a GLAST cut-off.We have established the correlation between SSD and test structure performance.

GLAST Test Structures“Baby”, 32 strips, 3.5cmMos Structures Bonding Test StructurePhoto Diodes“Skinny”,8 strips, full length,

GLAST2000 SSD8.95cm x 8.95cm

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Redundant TKR Electronics

• Serial, LVDS readout and control lines.• Two readout and control paths for every 64-channel front-end chip.• Any single chip can fail without preventing the readout of any other.• Either of the two communications cables can fail without affecting the

other. 24 64-channel amplifier-discriminator chips for each detector layer

2 readoutcontroller chipsfor each layer

Con

trol s

igna

l flo

w Control signal flow

Data flow to FPGAon DAQ TEM board.

Data flow to FPGAon DAQ TEM board.

Control signal flow

Data flow

Nine detector layers are read out on each side of each tower.

GTRC

GTFEGTFE

GTRC

GTRC

GTRC

GTRC

GTRC

9-998509A22

• Trigger output = OR of all channels in a layer.

• Upon trigger (6-fold coincidence) data are latched into a 4-event-deep buffer in each front-end chip.

• Read command moves data into the GTRC.

• Token moves data from GTRCs to TEM.

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP 2 Clean TKR Interfaces per Tower

4.1.4.3.1Silicon-Strip

Detectors

4.1.4.3.2Tray Mechanical

C-fiber panelW converters

4.1.4.3.3Tray Electronics (MCM)

F.E. ASIC; Controller ASIC; PC Board;Connector sockets; Pitch Adapter; Passive parts

4.1.4.4.1Tower Structure

C-fiber sidewallsFasteners

Spacers/pinsEMI shield

4.1.4.4.2Tower Cable Plant

Flexible multi-layer cables; Connector Plugs

Wire BondsScrews;

Adhesive tape

BiasCircuit;

Adhesive

Det

ecto

r Bia

s

Wire

Bon

ds

Nano- Connectors Machined

Cable RunsFasteners

TowerElectronics

Module

GridFlexure Mount

ThermalGasket

GLAST TrackerBlock Diagram

andInterfaces

Mechanical

ElectricalNo Inter-Tower Interfaces

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPPInstrument Performance

(Single Source F.o.M ~ Aeff /[σ(68%)]2)

FOV: 2.4 srSRD: 2.0 sr

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP TRK of the Beam Test Engineering Module

End of one readout hybrid.

BTEM Tracker Module with side panels removed.

Single BTEM Tray

The BTEM Tracker, (~1/16 of the flight instrument) for the SLAC test beam (11/99 – 1/00)

- 2.7m2 silicon, ~500 detectors, 42k channels- all detectors are in 32 cm long ladders.

Si Detectors

HPK 296 (4”), 251 (6”)

Micron 5 (6” ) Leakage I: 300 nA/detector (HPK)

Bad strips: about 1 in 5000

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Installation of the BTEM at SLACBeam Test in SLAC’s Endstation A ( Dec 1999/Jan 2000)

Silicon Tracker

CsI Calorimeter

ACD

•Test Fabrication Methods•Verify Performance

ResolutionsTriggerMC Programs

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP Beam Test at SLAC 1999/2000: e+ and γ in BTEM

High efficiency (99.9%), low noise occupancy (≈10-5)

ConversionPoint

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP GLAST LAT Project Schedule

2000 2001 2002 2003 2004 20052011

Formulation Implementation

SRR NAR M-PDR M-CDRI-PDR I-CDR Inst. Delivery Launch

Build & TestEngineering Models

Build & TestFlight Units

Inst.I&T

ScheduleReserve

Inst.-S/CI&T

Ops.

Calendar Years

SSD Procurement SSD Procurement

Ladder Production Ladder Production

Tray AssemblyTray Assembly

Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SCIPPSCIPP GLAST Development Process and StatusDate Activity Program

93-98 Conceptual study NASA SR&DDetector R&D DoE R&D

(Beam Test 1998)98 DoE Review SAGENAP

Endorsement98-00 Technology NASA ATD

Development (BTEMFull Size ModulesManufact. ProcessASIC’s, DAQ)(Beam Test 1999/00)

Fall 99 Instrument Proposal NASA AO GLAST LAT (Si TKR, CsI CAL, ACD)Endorsements, MoA

Feb 25, 00 Decision on AO GLAST-LAT selectedAug 01 Balloon Flight 2001Jan. 11, 02 PDR Baseline Review

March 2006 Launch on Delta 2

What Kind of Surprisesare awaiting us?


Recommended