+ All Categories
Home > Documents > Laser dependent shifting of Raman bands with ...

Laser dependent shifting of Raman bands with ...

Date post: 28-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
Laser dependent shifting of Raman bands with phthalocyanine pigments Nadim C. Scherrer 1,2 1 Bern University of Applied Sciences, Kunsttechnologisches Labor, Fellerstrasse 11, CH-3027 Bern (Switzerland) [email protected] 2 Swiss Institute for Art Research, SIK-ISEA, Zollikerstrasse 32, CH-8032 Zürich 1500 1000 500 Raman Shift (cm-1) Intensity (arbitrary units) 1543 1523 1511 1498 1473 1437 1380 1321 1287 1269 1196 1163 1084 1056 776 768 732 711 685 662 534 450 334 320 260 215 186 164 bromo- chloro CuPc PG36 514 nm 1 % 0.114 mW 1562 1539 1506 1481 1446 1389 1359 1338 1319 1304 1282 1214 1200 1188 1136 1083 979 818 772 685 643 510 368 348 333 234 164 147 PG7 514 nm 1 % 0.114 mW 1538 1505 1445 1424 1389 1361 1338 1317 1290 1282 1213 1188 1082 979 957 817 776 740 685 672 346 333 291 263 222 146 octachloro CuPc PG7 785 nm 0.1 % 0.0121 mW 1538 1506 1446 1396 1389 1360 1339 1317 1304 1292 1282 1214 1083 980 817 777 740 733 707 685 643 546 510 291 198 PG7 633 nm 1 % 0.148mW 1500 1000 Raman Shift (cm-1) Intensity (arbitrary units) 1534 1504 1443 1386 1336 1280 1210 1080 815 774 739 683 1538 1505 1444 1424 1389 1338 1302 1290 1282 1213 1082 817 776 740 685 1531 1333 1277 1206 1077 813 772 738 682 1526 1331 1272 1203 1075 812 770 737 681 1500 1000 Raman Shift (cm-1) increasing laser power spectral shift 1538 1505 1445 1392 1339 1283 1214 1083 979 819 776 739 706 685 643 1291 1538 1505 1445 1392 1339 1283 1214 1083 979 819 776 739 706 685 643 1291 1537 1505 1445 1388 1337 1291 1281 1212 1082 979 817 776 740 706 684 643 1526 1436 1380 1330 1273 1204 1076 973 813 771 736 700 681 640 1561 1537 1504 1479 1444 1387 1337 1303 1281 1211 1200 1184 1135 1079 977 817 802 772 739 686 643 509 1556 1536 1500 1477 1441 1383 1335 1278 1204 1182 1076 974 816 771 685 642 507 1553 1534 1497 1474 1439 1381 1334 1275 1203 1180 1075 973 814 770 684 641 506 1500 1000 500 Raman Shift (cm-1) 1562 1539 1506 1481 1446 1389 1338 1304 1282 1214 1200 1188 1136 1083 979 818 772 685 643 510 514 nm 633 nm PG7 785 nm 1 % 0.114 mW 5 % 0.57 mW 10 % 1.14 mW 50 % 5.7 mW 0.5 % 0.050 mW 1 % 0.103 mW 5 % 0.502 mW Hole burnt 50 % 5.015 mW 5 % 0.605 mW pinhole in 1 % 0.121 mW pinhole in 0.5 % 0.0605 mW pinhole in 0.1 % 0.0121 mW pinhole in poor or no response on 785nm excitation 1618m 1537vs / 1514s tw 1338vs 797s 1543vs / 1498vs tw 1380vs 1196s 662s 1540s 1507vs 1390s 686s 633nm PB15 PB15:1 PB15:2 PB15:3 PB15:4 PB15:6 PB16 PG36 PG7 785nm PG7 514nm PG7 633nm 1307 1216 1194 1185 1108 953 848 832 747:680 ratio 1:1 w 483 288 258 233 174w w 1216 - 1185 w w w & br 1:0.5 - w w 256 w - - - - - w w - - 1:0.75 716 w - 258 - 172 1529vs 1341s 747s 680s PB15:x 1538vs 1446m-s 1214vs 685s α CuPc 1928 β CuPc 1953 ε CuPc octachloro CuPc 1936 bromo- chloro CuPc 1959 metal free Pc 1939 514nm excitation good response on 785nm excitation Phthalocyanine pigment 1520-1545vs 660-690s-vs 1538vs 1282s 776m-s 633 nm 50 % 5.015 mW 785 nm pinhole out 0.5% 0.0605 mW 785 nm pinhole in 10% 1.21 mW 785 nm pinhole in 5% 0.605 mW 514 nm 50% 5.7 mW Excessive laserpower: visible alteration on PG7 Schweizerisches Institut für Kunstwissenschaft Institut suisse pour l‘étude de l‘art Instituto svizzero di studi d‘arte Swiss Institute for Art Research Acknowledgment for discussions: Dr. Luca Quaroni, PSI Villigen, Switzerland Dr. Ester S.B. Ferreira, SIK-ISEA, Zurich, Switzerland Dr. Stefan Zumbuehl, BUA, Bern, Switzerland Prof. Dr. Jaap Boon, Amolf, Amsterdam, Netherlands Observations Analyses of real paint samples containing PG7 with the 785nm laser lead to the observation that phthalocyanines exhibit a peculi- ar behaviour: a) spectra of the phthalocyanine PG7 acquired with 514, 633 and 785nm excitation wavelengths differ such, that they will not be matched in a reference database, unless acquired by the same laser (Fig. 1); b) increa- sing laser intensity produces a significant shift (>10cm -1 ) of the main bands of the macrocycle (C-N bond lengths); c) band shifting is reversible upon reducti- on of the laser power, despite visible alteration at the spot of analysis upon ap- plication of excessive laser power (Fig. 2); d) sharp and distinct multiple bands are reduced to broad bands with excessive laser power (Fig. 1). Due to the thermal and chemical stability of phthalocyanines, excessive laser power may not be noticed, as a spectrum will be delivered in any case. Methods A Renishaw InVia system equipped with edge filters and 3 different laser sources was applied: 785nm (Diode-type), Renishaw HP NIR785 (300 mW); 633nm (He-Ne-type), Renishaw RL633 (17mW); 514nm (Ar-type): Spectra-Physics (24 mW). Pigment references were as stated in Scherrer et al. 2009, rolled out on an SEM Al-stub. Sequential measure- ments were run with increasing and decreasing laser power on the same spot to study the shifting behaviour of selective bands. Results and discussion PG7 is responsive to various excitati- on wavelengths, yet the result is significantly different (Fig. 1-3). Increasing laser power will cause specific bands to shift to lower wavenumbers, particu- larly the most intense band at ~1530cm -1 , assigned to the main macrocycle C-N m -C stretching vibration (Fig. 1, 3). Discussing the origin of these pheno- mena, L. Quaroni (2011, pers. comm., 28 August) made the following sugge- stions: The sensitivity to wavelength, and not just to power, suggests that the effect has a photochemical origin and is not just due to heating. Similar obser- vations were made with resonance Raman studies on porphyrins: bands above 1500cm -1 and one at ~1360cm -1 were selectively affected by increasing laser power - essentially bands known to be sensitive to the electron density on the metal. The inverse relationship of wavenumber to laser power might be due to population of Pc antibonding orbitals by exciting electrons with the laser. This would lead to a shift to lower frequency of normal modes, with a large contribution from modes of the macrocycle. Exciting these electronic states would lead to a weakening of the macrocycle. Regarding the distinction of α-CuPc and β-CuPc (PB15 vs PB15:3), the attempt by Scherrer et al. (2009) must be revised. Shaibat et al. (2010) recent- ly presented their results using 633nm excitation with criteria that are likely not distinctive on real paint samples. Using constant settings with 785nm excitati- on on all variations of PB15, it turns out that the α-, β- and ε-type modifications can indeed be differentiated, based on multiple features (Figs. 2, 3). Conclusion Interestingly, substantial shifts (>10cm -1 ) of the main fre- quency seems to have been accepted in the case of phthalocyanines in the literature published. An attempt has thus been made to deliver the ‘stable’ reference state of the spectra to allow correct identification, and to search for explanations of this specific behaviour of phthalocyanines. Introduction Phthalocyanines (Pc) have been an important class of dyes and pigments since their discovery. Their chemical and physi- cal properties have attracted a wide range of research fields exploring their potential far beyond their colour. Technological applications based on their far reaching chemical and physical properties are as diverse as e.g. semi- conducting sensors, catalysts, optoelectronic devices, photodynamic the- rapy against cancer and many more (Liu et al. 2007, Shaibat et al. 2010). The widespread use of phthalocyanine pigments in artist’s paints [PG7 (1936), PG36 (1957), PB15 (1928), PB16 (1939)] has also attracted the interest to identify these on painted artwork for authentication purposes. Raman spectroscopy is an attractive technique for detection with mini- mal impact. Popular excitation wavelengths are 488nm, 514nm, 532nm, 633nm and more recently 785nm. Apart from PG36 and PB16, they all give a good response to the 785nm laser. PB15 exists in different crystal forms (α, β, γ, δ, ε) and the distinction of the alpha (1928) versus the beta (1953) modification is of particular interest as a time line. Scherrer et al. 2009 made an attempt to distinguish the modifications of PB15 that was based on the main macrocycle stretching vibration around 1529cm -1 . Strong variation of this main frequency lead to a revision of the earlier attempt. Fig. 1 Excitation wavelength and laser power dependent behaviour of octachloro Cu-phthalocyanine PG7 Fig. 2 Identification of different Pc pigments Fig. 3 Reference spectra of Pc pigments acquired with settings causing no shifting of the main macrocycle vibration. 1500 1000 500 Raman Shift (cm-1) Intensity (arbitrary units) 1618 1585 1537 1514 1451 1428 1409 1338 1314 1294 1228 1183 1157 1140 1118 1105 1082 1025 1007 797 768 723 681 592 566 541 481 228 206 184 130 metal free Pc PB16 514 nm 1 % 0.114 mW 1529 1449 1428 1343 1183 1162 1143 1108 1007 952 881 834 777 748 716 698 680 592 495 482 425 257 172 126 ε-CuPc PB15:6 785 nm 0.1 % 0.0121 mW 1610 1529 1451 1429 1371 1341 1307 1217 1194 1158 1143 1108 1007 953 848 832 781 747 719 694 680 641 594 492 483 421 288 258 233 174 128 β-CuPc PB15:4 785 nm 0.1 % 0.0121 mW 1610 1529 1451 1429 1341 1307 1216 1195 1158 1143 1108 1007 954 848 832 781 747 718 681 641 594 492 483 289 258 234 175 128 β-CuPc PB15:3 785 nm 0.1 % 0.0121 mW 1529 1451 1431 1341 1305 1213 1185 1159 1142 1108 1007 953 835 778 747 681 592 484 289 256 155 131 α-CuPc PB15:2 785 nm 0.1 % 0.0121 mW 1610 1529 1451 1429 1341 1306 1216 1194 1185 1158 1143 1108 1007 953 847 832 780 747 718 681 641 593 492 483 288 258 233 174 160 127 α-CuPc PB15:1 785 nm 0.1 % 0.0121 mW 1529 1451 1431 1340 1306 1184 1159 1142 1107 1007 952 779 747 680 592 484 256 α-CuPc PB15 785 nm 0.1 % 0.0121 mW CuPc PB15 C-N m -C str. Pyrrole exp. Sym.: B 1g Publication: Scherrer N.C., Zumbuehl S., Delavy F., Fritsch A. and Kuehnen R. (2009). Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 73 (3) 505-524. doi:10.1016/j.saa.2008.11.029 Scherrer, N.C. (2011). „Laser dependent shifting of Raman bands with phthalocyanine pigments“ presented at RAA2011, 6th international Congress on the Application of Raman Spectroscopy in Art and Archaeology, Parma, Italy, Book of abstracts, 203-204.
Transcript

Laser dependent shifting of Raman bands with phthalocyanine pigmentsNadim C. Scherrer1,2

1 Bern University of Applied Sciences, Kunsttechnologisches Labor, Fellerstrasse 11, CH-3027 Bern (Switzerland) [email protected]

2 Swiss Institute for Art Research, SIK-ISEA, Zollikerstrasse 32, CH-8032 Zürich

1500 1000 500 Raman Shift (cm-1)

Inte

nsi

ty (

arb

itrary

units

)

1543

1523 1

511

1498

1473

1437

1380

1321 1287

1269

1196

1163

1084

1056

776

768

732 711

685

662

534

450 334

320

260

215

186 164

bromo-chloroCuPc

PG36

514 nm

1 %0.114 mW

1562 1

539

1506

1481

1446

1389

1359 1

338

1319 1304

1282 1214

1200

1188

1136

1083

979

818

772

685

643 510

368

348 333

234 164

147

PG7

514 nm

1 %0.114 mW

1538

1505

1445

1424

1389

1361

1338

1317

1290 1282

1213

1188

1082

979

957

817

776

740 685

672

346

333

291

263

222

146

octachloroCuPc

PG7

785 nm

0.1 %0.0121 mW

1538

1506

1446

1396

1389

1360

1339

1317

1304

1292

1282

1214

1083

980

817

777

740

733 707

685

643

546

510

291

198

PG7

633 nm

1 %0.148mW

1500 1000 Raman Shift (cm-1)

Inte

nsi

ty (

arb

itra

ry u

nits

) 1534

1504

1443

1386

1336 1280

1210

1080

815

774

739

683

1538

1505

1444

1424

1389

1338

1302

1290

1282

1213

1082

817

776

740

685

1531

1333 1277

1206

1077

813

772

738

682

1526

1331 12

72

1203

1075

812

770 7

37

681

1500 1000 Raman Shift (cm-1)

incr

easi

ng la

ser p

ower spectral shift15

381505 1

445

1392

1339

1283

1214

1083

979

819

776

739

706

685

643

1291

1538

1505 1

445

1392

1339

1283

1214

1083

979

819

776

739

706

685

643

1291

1537

1505 1445

1388 1

337

1291

1281

1212

1082

979

817 7

76

740

706

684

643

1526

1436

1380

1330

1273

1204

1076

973

813 7

71

736

700

681

640

1561

1537

1504

1479

1444

1387

1337

1303 1281

1211

1200

1184

1135

1079

977

817

802

772

739

686

643

509

1556

1536

1500

1477

1441

1383

1335 1

278

1204

1182

1076

974 8

16

771

685

642

507

1553

1534

1497

1474

1439

1381

1334 1

275

1203

1180

1075

973

814

770

684

641

506

1500 1000 500 Raman Shift (cm-1)

1562 1

539

1506

1481

1446

1389

1338

1304 1282

1214

1200

1188

1136

1083

979

818

772

685

643 51

0

514 nm633 nmPG7 785 nm

1 %0.114 mW

5 %0.57 mW

10 %1.14 mW

50 %5.7 mW

0.5 %0.050 mW

1 %0.103 mW

5 %0.502 mW

Hole burnt50 %5.015 mW

5 %0.605 mWpinhole in

1 %0.121 mWpinhole in

0.5 %0.0605 mWpinhole in

0.1 %0.0121 mWpinhole in

poor or noresponse on

785nm excitation

1618m1537vs /1514s tw1338vs797s

1543vs /1498vs tw1380vs1196s662s

1540s1507vs1390s686s

633nm

PB15PB15:1PB15:2

PB15:3PB15:4 PB15:6

PB16PG36PG7785nm

PG7514nm

PG7633nm

1307

121611941185

1108

953

848832

747:680ratio 1:1

w

483

288258233

174w

w

1216-

1185

w

w

w & br

1:0.5

-

w

w256w

-

-

---

w

w

--

1:0.75

716

w

-258

-

172

1529vs1341s747s680sPB15:x

1538vs1446m-s1214vs685s

α CuPc1928

β CuPc1953

ε CuPc

octachloro CuPc1936

bromo-chloroCuPc1959

metal freePc

1939

514nm excitationgood response on 785nm excitation

Phthalocyanine pigment1520-1545vs660-690s-vs

1538vs1282s776m-s

633 nm

50 %5.015 mW

785 nmpinhole out

0.5%0.0605 mW

785 nmpinhole in

10%1.21 mW

785 nmpinhole in

5%0.605 mW

514 nm

50%5.7 mW

Excessive laserpower: visible alteration on PG7

Schweizerisches Institut für KunstwissenschaftInstitut suisse pour l‘étude de l‘artInstituto svizzero di studi d‘arteSwiss Institute for Art Research

Acknowledgment for discussions:Dr. Luca Quaroni, PSI Villigen, SwitzerlandDr. Ester S.B. Ferreira, SIK-ISEA, Zurich, SwitzerlandDr. Stefan Zumbuehl, BUA, Bern, SwitzerlandProf. Dr. Jaap Boon, Amolf, Amsterdam, Netherlands

Observations Analyses of real paint samples containing PG7 with the 785nm laser lead to the observation that phthalocyanines exhibit a peculi-ar behaviour: a) spectra of the phthalocyanine PG7 acquired with 514, 633 and 785nm excitation wavelengths differ such, that they will not be matched in a reference database, unless acquired by the same laser (Fig. 1); b) increa-sing laser intensity produces a significant shift (>10cm-1) of the main bands of the macrocycle (C-N bond lengths); c) band shifting is reversible upon reducti-on of the laser power, despite visible alteration at the spot of analysis upon ap-plication of excessive laser power (Fig. 2); d) sharp and distinct multiple bands are reduced to broad bands with excessive laser power (Fig. 1). Due to the thermal and chemical stability of phthalocyanines, excessive laser power may not be noticed, as a spectrum will be delivered in any case.

Methods A Renishaw InVia system equipped with edge filters and 3 different laser sources was applied: 785nm (Diode-type), Renishaw HP NIR785 (300 mW); 633nm (He-Ne-type), Renishaw RL633 (17mW); 514nm (Ar-type): Spectra-Physics (24 mW). Pigment references were as stated in Scherrer et al. 2009, rolled out on an SEM Al-stub. Sequential measure-ments were run with increasing and decreasing laser power on the same spot to study the shifting behaviour of selective bands.

Results and discussion PG7 is responsive to various excitati-on wavelengths, yet the result is significantly different (Fig. 1-3). Increasing laser power will cause specific bands to shift to lower wavenumbers, particu-larly the most intense band at ~1530cm-1, assigned to the main macrocycle C-Nm-C stretching vibration (Fig. 1, 3). Discussing the origin of these pheno-mena, L. Quaroni (2011, pers. comm., 28 August) made the following sugge-stions: The sensitivity to wavelength, and not just to power, suggests that the effect has a photochemical origin and is not just due to heating. Similar obser-vations were made with resonance Raman studies on porphyrins: bands above 1500cm-1 and one at ~1360cm-1 were selectively affected by increasing laser power - essentially bands known to be sensitive to the electron density on the metal. The inverse relationship of wavenumber to laser power might be due to population of Pc antibonding orbitals by exciting electrons with the laser. This would lead to a shift to lower frequency of normal modes, with a large contribution from modes of the macrocycle. Exciting these electronic states would lead to a weakening of the macrocycle.Regarding the distinction of α-CuPc and β-CuPc (PB15 vs PB15:3), the attempt by Scherrer et al. (2009) must be revised. Shaibat et al. (2010) recent-ly presented their results using 633nm excitation with criteria that are likely not distinctive on real paint samples. Using constant settings with 785nm excitati-on on all variations of PB15, it turns out that the α-, β- and ε-type modifications can indeed be differentiated, based on multiple features (Figs. 2, 3).

Conclusion Interestingly, substantial shifts (>10cm-1) of the main fre-quency seems to have been accepted in the case of phthalocyanines in the literature published. An attempt has thus been made to deliver the ‘stable’ reference state of the spectra to allow correct identification, and to search for explanations of this specific behaviour of phthalocyanines.

Introduction Phthalocyanines (Pc) have been an important class of dyes and pigments since their discovery. Their chemical and physi-cal properties have attracted a wide range of research fields exploring their potential far beyond their colour. Technological applications based on their far reaching chemical and physical properties are as diverse as e.g. semi-conducting sensors, catalysts, optoelectronic devices, photodynamic the-rapy against cancer and many more (Liu et al. 2007, Shaibat et al. 2010). The widespread use of phthalocyanine pigments in artist’s paints [PG7 (1936), PG36 (1957), PB15 (1928), PB16 (1939)] has also attracted the interest to identify these on painted artwork for authentication purposes. Raman spectroscopy is an attractive technique for detection with mini-mal impact. Popular excitation wavelengths are 488nm, 514nm, 532nm, 633nm and more recently 785nm. Apart from PG36 and PB16, they all give a good response to the 785nm laser. PB15 exists in different crystal forms (α, β, γ, δ, ε) and the distinction of the alpha (1928) versus the beta (1953) modification is of particular interest as a time line. Scherrer et al. 2009 made an attempt to distinguish the modifications of PB15 that was based on the main macrocycle stretching vibration around 1529cm-1. Strong variation of this main frequency lead to a revision of the earlier attempt.

Fig. 1 Excitation wavelength and laser power dependent behaviour of octachloro Cu-phthalocyanine PG7

Fig. 2 Identification of different Pc pigments

Fig. 3 Reference spectra of Pc pigmentsacquired with settings causing no shiftingof the main macrocycle vibration.

1500 1000 500 Raman Shift (cm-1)

Inte

nsi

ty (

arb

itrary

units

)

1618

1585

1537

1514

1451

1428

1409

1338

1314

1294

1228 1

183

1157

1140

1118

1105

1082

1025

1007

797

768

723

681

592

566

541

481 2

28

206

184

130

metal free Pc

PB16

514 nm

1 %0.114 mW

1529

1449

1428

1343

1183

1162

1143

1108

1007

952

881 8

34

777

748

716

698

680

592

495

482

425

257

172

126

ε-CuPc

PB15:6

785 nm

0.1 %0.0121 mW

1610

1529

1451

1429

1371

1341

1307

1217

1194

1158

1143

1108

1007

953

848

832

781

747

719

694

680

641

594

492

483

421

288

258

233

174

128

β-CuPc

PB15:4

785 nm

0.1 %0.0121 mW

1610

1529

1451

1429

1341

1307

1216

1195

1158

1143

1108

1007

954

848

832

781

747

718

681

641

594

492

483

289

258

234

175

128

β-CuPc

PB15:3

785 nm

0.1 %0.0121 mW

1529

1451

1431

1341

1305

1213

1185

1159

1142

1108

1007

953

835

778

747

681

592

484

289

256

155

131

α-CuPc

PB15:2

785 nm

0.1 %0.0121 mW

1610

1529

1451

1429

1341

1306

1216

1194

1185

1158

1143

1108

1007 953

847

832

780

747

718

681

641

593

492 4

83

288

258

233 1

74

160

127

α-CuPc

PB15:1

785 nm

0.1 %0.0121 mW

1529

1451

1431

1340

1306

1184

1159

1142

1107

1007

952

779

747

680

592

484

256

α-CuPc

PB15

785 nm

0.1 %0.0121 mW

CuPc PB15

C-Nm-C str.Pyrrole exp.Sym.: B1g

Publication:Scherrer N.C., Zumbuehl S., Delavy F., Fritsch A. and Kuehnen R. (2009). Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 73 (3) 505-524. doi:10.1016/j.saa.2008.11.029Scherrer, N.C. (2011). „Laser dependent shifting of Raman bands with phthalocyanine pigments“ presented at RAA2011, 6th international Congress on the Application of Raman Spectroscopy in Art and Archaeology, Parma, Italy, Book of abstracts, 203-204.

Recommended