+ All Categories
Home > Documents > Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV...

Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV...

Date post: 12-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
9
Laser-Driven Targetry: The Road to Clinical Applications C-M Ma, Ph.D. Department of Radiation Oncology Fox Chase Cancer Center Philadelphia, PA 19111, USA Laser beam Electron beam Laser beam Proton beam 1 mm 1 μm Laser Plasma Acceleration for Electrons and Protons Ma et al Med Phys (2006) POINT/COUNTERPOINT Proton angular distribution Proton spectrum Laser Proton Acceleration at LLNL Snavely et al Phys Rev Lett (2000) Present status of the proton generation(2004) Present status of the proton generation(2004) Present status of the proton generation(2004) Present status of the proton generation(2004) 1000 1000 1000 1000 100 100 100 100 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 17 18 19 20 21 22 Maximum Proton Energy (Mev) Laser Intensity (W/cm 2 ) LLNL LOA JAERI, Univ.Tokyo LULI VULCAN LLNL RAL CUOS ILE Osaka Ultra-short pulse lasers High energy sub-ps lasers 100fs 30fs 50fs Hiroshima 50fs CRIEPI CRIEPI 100fs Laser proton acceleration: intensity vs energy Therapeutic energy range Initial goal After upgrade 3D PIC Simulation Double Target 63MeV Quasi- Monochromatic
Transcript
Page 1: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Laser-Driven Targetry: The Road to Clinical Applications

C-M Ma, Ph.D.

Department of Radiation Oncology

Fox Chase Cancer Center

Philadelphia, PA 19111, USA

Laser beam

Electron beam

Laser beam Proton beam

1 mm 1 µm

Laser Plasma Acceleration for Electrons and Protons

Ma et al Med Phys (2006) POINT/COUNTERPOINT

Proton angular distribution Proton spectrum

Laser Proton Acceleration at LLNL

Snavely et al Phys Rev Lett (2000)

Present status of the proton generation(2004)Present status of the proton generation(2004)Present status of the proton generation(2004)Present status of the proton generation(2004)

1000100010001000

100100100100

10101010

1111

10101010 10101010 10101010 10101010 10101010 1010101017 18 19 20 21 22

Max

imu

m P

roto

n E

ner

gy

(Mev

)

Laser Intensity (W/cm2)

LLNL

LOA

JAERI, Univ.Tokyo

LULI

VULCAN

LLNL

RAL

CUOS

ILE Osaka

Ultra-short pulse lasers

High energy sub-ps lasers

100fs

30fs

50fs Hiroshima50fs

CRIEPI

CRIEPI

100fs

Laser proton acceleration: intensity vs energy

Therapeutic energy rangeInitial goal

After upgrade

3D PIC Simulation Double Target63MeV Quasi-

Monochromatic

Page 2: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Particle in cell (PIC) simulation results (Ueshima 1999b) on ion andelectron acceleration by laser irradiation on three thin targets. A laserintensity of 1021 W/cm2on the target surface is applied.

Case 1 Case 2 Case 3Energy conversion 50% 24% 31%

Ion 4% 8% 14%Electron 48% 16% 17%

Peak energy H+ 200 MeV 400 MeV 400 MeVPeak energy Al10+ 1 GeV 2 GeV 2 GeV

Peak energy electron 25 MeV 15 MeV 20 MeVAverage energy H+ 58 MeV 95 MeV 115 MeV

Average energy Al10+ 130 MeV 500 MeV 500 MeV

Theoretical Results Proton and Electron Densities (t=100 fs)

Electrons and protons expand ballistically into vacuum

E. Fourkal et al. Medical physics (2002)

Energy and Angular Distribution

E. Fourkal et al. Medical physics (2002)V. Malka et al., Med. Phys. 31, 6 June (2004)

There is a large spread in energy and angular distribution.

Particle Selection and Beam Collimation

Page 3: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Particle Selection and Beam Collimation

∑ ∫∫×=×=

4

30

30

44 i i

i

r

rIdl

r

rIdlB

πµ

πµ

Nb3Ti superconducting coils can provide I = 85 A per loop with magnetic field to 4.4 Tesla by Biot-Savart law:

Ma (2000)Movable aperture to select protons of desired energywith sharp beam penumbra

Luo et al Med Phys 2005

Combined Dose Distribution

Energy and Dose Rate

Monoenergetic Laser-driven Ion Beams

1 10104

105

106

107

Ion

s [M

eV-1 m

srd

-1]

Energy [MeV]

Page 4: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Demonstration and modelling of monoenergetic carbon ions from shortpulse driven laser acceleration.

B. Albright X-1, LANL

Experiment:30 TW LANL Trident laser using ~20 µm palladium targets.

Simulation:Hybrid code BILBO (Backside Ion Lagrangian BlowOff), parameters set to match experiment.

0 1 2 3 4 5104

105

106

107

108

109

C5+ meas. Pd22+ meas. Pd4+ meas.

C5+ simulated Pd21+ simulated

Hegelich et al., Nature 439, 441 (2006)

Monoenergetic Proton Acceleration

Courtesy of S. Bulanov

Monoenergetic proton acceleration

• Reduce dot size- better localization of dot

within homogeneous field- higher stability

• Increase laser power -for sufficient thin targets cutoff energy scales with Ecut = 230 MeV x (Plaser/1 PW)1/2

PIC-Simulation for POLARIS:

• E =150 J, τ = 150 fs, dfoc = 10µm� P ~ 1 PW

• ddot = 2,5 µm, sdot = 0,1 µm

• obtain peak at E = 173 MeVwith DE/E ~ 1%

• total proton number ~ 109

0 155 160 165 170 1750,0

0,5

1,0

prot

on c

ount

s [a

.u.]

proton energy [MeV]

Future steps to improve results:

Courtesy of R. Sauerbrey

IIIIndications of a multi-parametric scaling law

• intensity (e.g., Emax∝ I 1/2)

• foil thickness• material• pulse contrast

• focal spot size

• laser polarization

• target geometry

Experiments with foil targets at intensity 1018 - 1020

W/cm2 show that the ion energy depends on

effective plasma density, ne

effective plasma thickness l

dimensionless amplitudea=eE/meωc

model parameters

focal spot size D

fixed (p-polarized)

fixed (planar)

Page 5: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

IIIIon max. energy vs. laser energy and power

[Timo.Esirkepov et al., PRL 96, 105001, 2006]

Multistage proton acceleration

Up to 100% increase in max. proton energy with multistage stages.

Veltchev et al 2007

Treatment Optimization

Comparison of Isodose Distribution

7 field laser protons7 field IMRTFourkal et al 2003

Page 6: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Comparison of DVH

Bladder Femur

Target Rectum

Comparison of Isodose Distribution

7 field laser protons7 field IMPT(mono-E)

Comparison of DVH

Bladder Femur

Target RectumShielding for the Treatment Head

Page 7: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

Secondary Sources for Shielding Considerations

Fan et al 2007 Phys Med. Biol.

Head Leakage Measurement

0.5cm steel, 10cm polyethylen, 3cm lead

Head Leakage Dose

Leakage dose < 0.1% of treatment dose

Shielding Issues for Laser-Accelerated Protons

Electron

Low-energy proton

High-energy proton

(2) Low-energy proton shielding

(4) High-energy proton/neutron shielding

(1)Electron shielding

(5) Primary collimator shielding

(3) High-energy proton shielding

Fan et al 2007 Med Phys Biol

Page 8: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

System Design Target and beam selection system

mirror

Adjustable distance for scanning along x

Adjustable distance for scanning along y

Gantry rotation

Main laser beam line

x

y

Couch

Proton beam

System DesignMa 2000

The Cost of a Laser-Proton Unit

� The building/shielding – $0.5million × N

� The high-power laser – $2-3million

� The gantries - $1-2million × N

The cost of a carbon unit will be slightly higher!

The Laser-Proton Facility� Renovation completed in June

2005

� An off-campus facility for

experimental studies

� Laser/target chamber/shielding

installed/commissioned in Sept

2006

� Research laser-proton

accelerator license granted by

the State

Page 9: Laser -Driven Targetry : Laser Plasma Acceleration for The ...Average energy Al 10+ 130 MeV 500 MeV 500 MeV Theoretical Results Proton and Electron Densities (t=100 fs ) E le ctr ons

The FCCC Laser System The Experimental SetupThe Experimental Setup

The FCCC Laser-Proton Team� Dr. Charlie Ma Program director

� Dr. Eugene Fourkal Physicist, target and PIC studies

� Dr. Jason Li Physicist, dosimetry and treatment planning

� Dr. Iavor Veltchev Physicist, laser physics research

� Dr. James Fan Physicist, shielding calculations, Monte Carlo

� Dr. Teh Lin Physicist, laser-proton acceleration.

� Dr. Alain Guemnie Tafo RA, laser-proton acceleration experiments.

CM EF JL IV JF TL AGT

Acknowledgments

HRSA, US Dept of Health and Human ServicesStrawbridge Family Foundation

Kim Family Foundation

Varian Medical Systems


Recommended