+ All Categories
Home > Documents > Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave...

Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave...

Date post: 27-May-2019
Category:
Upload: truongnguyet
View: 221 times
Download: 1 times
Share this document with a friend
32
Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007
Transcript
Page 1: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

Laser Interferometer Gravitational-Wave Detectors

Peter Shawhan

Physics 798GApril 10, 2007

Page 2: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20072

Outline

► Interferometers as gravitational wave detectors

► Existing and planned detectors

► Instrumentation details (with focus on LIGO)► Vacuum system► Laser► Optical layout► Mirrors► Vibration isolation► Servo controls

► Interferometer operation

Page 3: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20073

Demonstration Interferometer

Beamsplitter

Steerablemirror

Steerablemirror

Laser pointer

Mirror

Diverginglens

Screen

Page 4: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20074

A Laser Interferometer as a Gravitational-Wave Detector

Measure difference in effective arm lengths to a fraction of a wavelength

Beam splitter

Mirror

Mirror

Photodetector

Laser

Responds to one polarization projection

Strain h = ΔL / L

Page 5: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20075

Antenna Pattern of aLaser Interferometer

Directional sensitivity depends on polarization of waves

“×” polarization “+” polarization RMS sensitivity

A broad antenna pattern⇒ More like a microphone than a telescope

Page 6: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20076

Comparison with Resonant Gravitational-Wave Detectors

Interferometers…

► can be made larger

► are not so limited by thermal noise

► are sensitive over a wider frequency band, including low frequencies

► cost more to build and operate

Page 7: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20077

Existing and Planned Detectors

300 m

600 m3 km

4 km2 km

4 km

Advanced LIGOoperational ~2015

Advanced VIRGOoperational ~2015

AIGO ?

GEO HF

LCGTCLIO 100 m

Page 8: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20078

LIGO Hanford Observatory

Located on DOE Hanford Nuclear Reservation north of Richland, Washington

Two separate interferometers (4 km and 2 km arms) coexist in the beam tubes

Page 9: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 20079

LIGO Livingston Observatory

Located in a rural area of Livingston Parish east of Baton Rouge, Louisiana

One interferometerwith 4 km arms

Page 10: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200710

GEO 600

British-German project, located among fields near Hannover, Germany

Page 11: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200711

VIRGO

French-Italian project, located near Pisa, Italy

3 km arms

Page 12: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200712

LCGT (Large-scale Cryogenic Gravitational-wave Telescope)

Planned to be constructed inside Kamioka mine

Funding being requested from Japanese government

Page 13: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200713

Current Sensitivities forGravitational-Wave Strain

Page 14: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200714

Design Requirements

Even with 4-km arms, the length change due to a gravitational wave is very small, typically ~ 10−18 – 10−17 m

Wavelength of laser light = 10−6 m

Need a more sophisticated interferometer design to reach this sensitivity

► Add partially-transmitting mirrors to form resonant optical cavities► Use feedback to lock mirror positions on resonance

Need to control noise sources► Stabilize laser frequency and intensity► Use large mirrors to reduce effect of quantum light noise► Isolate interferometer optics from environment

Page 15: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200715

LIGO Beam Tube

Stainless steel, ~1 m in diameter, welded into 2 km lengthsSerrated baffles installed inside to disperse scattered lightBaked to drive off adsorbed water vapor

Page 16: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200716

Vacuum System

4 km laser4 km antisymmphotodiode

2 km laser

Hanford shown (Livingston only has one interferometer)2 km antisymm

photodiode

Page 17: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200717

Vacuum System

Page 18: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200718

Pre-Stabilized Laser

Based on a 10-Watt Nd:YAG laser (infrared)

Uses additionalsensors and opticalcomponents tolocally stabilize thefrequency andintensity

Final stabilization uses feedback from average arm length

Page 19: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200719

LIGO / VIRGO / TAMA Optical Layout(not to scale)

Pre-Stabilized Laser

“Antisymmetric”photodiode

Modecleaner

Fabr

y-P

erot

arm

cav

ity

“Reflected”photodiode

“Pick-off”photodiode

Recyclingmirror

Input mirror

Beam splitter

Main interferometer has three additional semi-transparent mirrors to form optical cavities

Input optics stabilize laser frequency & intensity, and select fundamental mode

End mirror

Page 20: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200720

GEO 600 Optical Layout

No Fabry-Perot cavities, but dual recycling

Page 21: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200721

Mirrors

Made of high-purity fused silica

Largest mirrors are 25 cm diameter, 10 cm thick, 10.7 kg

Surfaces polished to ~1 nm rms, some with slight curvature

Coated to reflect with extremely low scattering loss (<50 ppm)

Page 22: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200722

A Mirror in situ

Page 23: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200723

Handling High Laser Power

Use multiple photodiodes to handle increased lightAnd fast shutters to protect photodiodes when lock is lost !

Compensate for radiation pressure in control software

Correct thermal lensing of mirrors by controlled heating

Under-heat Correction

Over-heat Correction

CO2Laser

Viewport Mirror

Page 24: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200724

Vibration Isolation

Optical tables are supported on “stacks”of weights & damped springs

Wire suspension used for mirrors provides additional isolation

Page 25: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200725

Active Seismic Isolation at Livingston

Hydraulic external pre-isolator (HEPI)

Signals from sensors on ground and cross-beam are blended and fed into hydraulic actuators

Provides much-needed immunity against normal daytime ground motion at Livingston

Page 26: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200726

Servo Controls

Optical cavities must be kept in resonanceNeed to control lengths to within a small fraction of a wavelength – “lock”Nearly all of the disturbance is from low-frequency ground vibrations

Use a clever scheme to sense and control all four length degreesof freedom

Modulate phase of laser light at very high frequencyDemodulate signals from photodiodesDisentangle contributions from different lengths, apply digital filtersFeed back to coil-and-magnet actuators on various mirrors

Arrange for destructive interference at “antisymmetric port”

Page 27: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200727

Length Sensing and Control

Page 28: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200728

Alignment Sensing and Control

Page 29: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200729

Feedback Basics

High frequency: servo has no effect; measure just the input disturbance

Low frequency: measure the combination of input disturbance and servo; can infer input disturbance

Page 30: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200730

Summary of Noise Sources

Page 31: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200731

2002 2003 2004 2005 2006 2007

LIGO Science Runs

S1 S2 S3 S4 S5Duty factors: (so far)

H1 59 % 74 % 69 % 80 % 73 %H2 73 % 58 % 63 % 81 % 77 %L1 43 % 37 % 22 % 74 % 62 %

?

Page 32: Laser Interferometer Gravitational-Wave Detectors · Laser Interferometer Gravitational-Wave Detectors Peter Shawhan Physics 798G April 10, 2007

U of Maryland Phys 798G, 10 April 200732

Data Collection

Shifts manned by resident “operators” and visiting “scientific monitors”


Recommended