+ All Categories
Home > Documents > Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized...

Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized...

Date post: 07-Jul-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
21
Introduction Wave Scattering Pulse Compression Wave Propagation Summary Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical Sciences Princeton University Invited Talk, 59th APS DPP October 23, 2017 Yuan Shi, PPPL Laser-Plasma Magnetized
Transcript
Page 1: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Laser-Plasma Interactions inMagnetized Environment

Yuan Shi

Princeton Plasma Physics LaboratoryDepartment of Astrophysical Sciences

Princeton University

Invited Talk, 59th APS DPPOctober 23, 2017

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 2: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Acknowledgment

• Ph.D. Advidors : Nathaniel J. Fisch and Hong Qin

• Collaborator : Qing Jia

• Discussions : Ilya Y. Dodin, Daniel E. Ruiz, and Jian Zheng

• Funding : NNSA Grant No. DE-NA0002948AFOSR Grant No. FA9550-15-1-0391DOE Grant No. DEAC02-09CH11466

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 3: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Strong Magnetic Field Technologies

Why Magnetized? Strong Magnetic Fields Become Available

Flux Compression

• B ∼ 10 MG

• Seed fields compressedby imploding targets

• New phenomena?

Capacitor-Coil

• B ∼ 10 MG

• Technology for largecurrents/strong fields

• New applications?

Surface Current

• B ∼ 1 GG

• B-field generated nearablated surfaces

• New regimes?

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 4: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Opportunities With Strong Fields

New Challenges/Opportunities With Strong Fields

New Phenomena

• Laser scattering due tomagnetized resonances

• Coherent scatteringenhanced/suppressed atspecial angle/frequency

New Applications

• Pulse compressionimproved by B-fields

• Expand operationwindow to higherfrequency/intensity

New Regimes

• Relativistic-quantumregime near x-ray pulsars

• Simulate pulsarmagnetosphere in futureexperiments?

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 5: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Opportunities With Strong Fields

OutlineIntroduction

Strong Magnetic Field TechnologiesOpportunities With Strong Fields

Wave ScatteringCoherent Nonlinear InteractionsAngular Dependences

Pulse CompressionThree-Wave InteractionsUpper-Hybrid Mediation

Wave PropagationParameter RegimesRelativistic Quantum Modifications

Summary

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 6: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Coherent Nonlinear Interactions

Scattering Anisotropic in Magnetized Plasmas (PRE 96, 023204)

I Multiple lasers exchange energy viamagnetic resonances in implosions

I How much collective scattering?Simplest case: resonant triplets

k1 = k2 + k3

ω1 = ω2 + ω3

Classical Baseline: Cold Fluids∂tns = −∇ · (nsvs)

∂tvs = −vs · ∇vs +esms

(E + vs ×B0+B︷︸︸︷B )

∂tB = −∇× E

∂tE = c2∇× B− 1

ε0

∑esnsvs

Perturbative Solution to 2nd Order

∑k∈K2

Quasimodes︷ ︸︸ ︷DkE (2)

k e iθk + i∑k∈K1

Envelop Advection︷ ︸︸ ︷ωkHkd

kt(1)E

(1)k e iθk

=i

2

∑s,q,q′∈K1

e i(θq+θq′ )Ssq,q′ ← Scattering

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 7: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Coherent Nonlinear Interactions

Solution to Fluid Equations ⇒ Reduced Model for Laser Scattering

Three-Waves Envelop Equations

dk1t a1 = − Γ

ω1a2a3

dk2t a2 =

Γ

ω2a3a1

dk3t a3 =

Γ

ω3a1a2

Coupling Coefficient Γ

We obtain simple formula for Γ in themost general geometry with B0

Γ =∑s

Zsω2psΘs

r

4Ms(u1u2u3)1/2

Why Coupling Coefficient Important?

• Determined evolution of pulses

• Example: backscattering of lasers

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 8: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Angular Dependences

Key Parameter in Reduced Model: Coupling CoefficientExample: Perpendicular Pump Laser Angle-Dependent Scattering Strength

• Upper-hybrid-like waves (u) favor exactbackscattering, k3 effect dominants

• Lower-hybrid-like waves (l) favor ⊥scattering, e− and i+ scatterings exactcancel at special angles

• Alfven-like waves (b) favor backward,but suppress exact backscattering

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 9: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Three-Wave Interactions

Application: Laser Pulse Compression (PRE 95, 023211)

Limitations of Existing Techniques

• Chirped Pulse Amplification:Works in optical regime ∼ 1 eVUnfocused intensity ∼ 1014W/cm2

• Raman/Brillouin Compressions:Vulnerable to density fluctuationsFrequency up to soft x-ray ∼ 100 eVUnfocused intensity . 1018W/cm2

Magnetized Pulse Compression• Mediated by magnetized resonances

• Less sensitive to density fluctuations

• Works for higher frequency/intensity

Example: Upper-Hybrid Mediation

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 10: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Upper-Hybrid Mediation

Magnetic Fields Relax Limiting Effects

Limiting Effects

• Instabilities: phasemixing, modulationalfiliamentationinstability, wakefield

• Damping: collisional,collisionless

• Engineering: plasmadensity non-uniformity

⇒ Pulse compression onlyoperable in T -n window

Compress KrFI1 = 1013 W/cm2

ω0~ = 5 eV

B0 = 5 MG

Compress x-rayI1 = 1018 W/cm2

ω0~ = 250 eV

B0 = 1.5 GG

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 11: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Upper-Hybrid Mediation

Magnetic Fields Improve Pulse Compression

Pump Laser Parameter Space Expand Range of Applicability

• Enable compressing pump lasers ofhigher frequency ⇐ Reduced damping

• Enable amplification of seed pulses tohigher intensity ⇐ Reduced instability

Increase Engineering Flexibility

• Higher controllability: externalmagnetic fields easier to control thaninternal plasma density

• Further optimization: extra degree offreedom, select fraction of density tobe replaced by magnetic fields

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 12: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Upper-Hybrid Mediation

Numeric Validations Using 1D PIC (PoP 24, 093103. Qing Jia Poster: PP11.00007)

Optical Regime: 1 µm Laser

• Scan magnetic field, fixed ω3

Pump: 1.0µm, I10 = 3.5× 1014W/cm2

Seed : 1.1µm, I20 = 1.8× 1013W/cm2

• Slower growth, longer amplification⇒ Higher output intensity

X-Ray Regime: 10 nm Laser

• Scan magnetic field, fixed ω3

Pump: 10 nm, I10 = 1.4× 1018W/cm2

Seed : 11 nm, I20 = 1.4× 1018W/cm2

• Slower growth rate, smaller damping⇒ Faster effective growth

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 13: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Parameter Regimes

Relativistic-Quantum Regime ⇐ Strong Fields

Example: X-Ray Pulsars B ∼ 1012 G

• Cyclotron absorptions ~Ωe > kBT

• Anharmonic ⇐ Relativistic shifts

I Relativistic important: E & mec2

I Quantum important: ε∗ & kBT ,Up

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 14: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Relativistic Quantum Modifications

New Physics in Old Problem: Wave Propagation (PRA 94, 012124)

How We Compute RQ Effects?

I Toy Model: Scalar-QED Plasma

L = −1

4FµνF

µν ← EM Fields

+ (Dµφ)∗(Dµφ)−m2φ∗φ︸ ︷︷ ︸Charged Bosons

I Wave effective action ⇐ path integral

Γ = −1

4FµνFµν︸ ︷︷ ︸

Vacuum

+ AµΣµν2 Aν︸ ︷︷ ︸

Linear ResponseΣµν2 =Σµν2,bk+Σµν2,vac

+o(e2)

I Response tensors ⇐ Feynman rules

Wave Dispersion Relation Modified

• Propagation ⊥ B0 in cold e− gas

• Resonance ω5 can appear at 4Ωe

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 15: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Relativistic Quantum Modifications

Relativistic-Quantum Effects Observable in Experiments?

Modifications Magnified Near Cutoffs

• Propagation ‖ B0 in e-i plasma

• R-cutoff shifted more than L-cutoff

Example:ωpe

Ωe= 0.7, Ωe~

mec2 = 0.1, mime

= 3

Corrections to Faraday Rotation

• Different dependence on ω

• Large error for strong B small ne

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 16: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Summary: What We Already Know

I Laser Scattering: New Phenomena

• Scattering is anisotropic due to magnetic fields• Scattering is enhanced/suppressed at special angles⇒ Possible to arrange beam geometry to optimize laser-plasma coupling

I Laser Amplification: New Applications

• Magnetic resonances mediate pulse compression• Magnetized mediations require less density, reduce instability/damping⇒ Possible to compress higher frequency pumps, producing more intense pulses

I Laser Propagation: New Regimes

• Dispersion relation modified by relativistic quantum effects• Corrections to Faraday rotation and cyclotron resonances in strong fields⇒ Possible to extract pulsar magnetosphere profiles from x-ray spectra?

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 17: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

Open Questions: What’s Next?

Theory

• Spin, thermal, inhomogeneity, higher-order effects

• Retrieval plasma profile from spectra of x-ray pulsar

Simulation• Reduced model for laser scattering

• Faithful collision module for PIC

• Schemes for simulating relativistic quantumplasmas in strong fields (e.g. lattice-QED)

Experiments

• Measure Faraday rotation, UV/X-ray transmission

• Compare spectral retrieval with measurements

• Demonstrate magnetized pulse compressions

. . . . . .

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 18: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Introduction Wave Scattering Pulse Compression Wave Propagation Summary

References

U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg et al., Phys. Rev. E 70, 026401 (2004).

O. V. Gotchev, P.Y. Chang, J. P. Knauer, D. D. Meyerhofer et al., Phys. Rev. Lett. 103, 215004 (2009).

V. T. Tikhonchuk, M. Bailly-Grandvaux, J. J. Santos, and A. Poy, Phys. Rev. E 96, 023202 (2017).

V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999).

Y. Shi, N. J. Fisch, and H. Qin, Phys. Rev. A 94, 012124 (2016).

Y. Shi, H. Qin, and N. J. Fisch, Phys. Rev. E 95, 023211 (2017).

Y. Shi, H. Qin, and N. J. Fisch, Phys. Rev. E 96, 023204 (2017).

Q. Jia, Y. Shi, H. Qin, and N. J. Fisch, Phys. Plasmas 24, 093103 (2017).

W. A. Heindl, W. Coburn, D. E. Gruber et al., AIP Conf. Proc. 510, 173 (2000).

Questions/Comments/Collaborations Welcome!

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 19: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Relativistic-Quantum Regime: Energy Scales

Energy Scales of Plasma

• Thermal energy kBT

• Fermi energy εF

• Plasmon energy εp = ωp~• Gyro energy εg = Ω~

Energy Scales of Fields

• Electric field energy εE =√eEc~

• Magnetic field energy εB =√eBc2~

• Photon energy εγ = ωγ~• Ponderomotive energy Up

I Relativistic effects important when

E & mec2

where E is any energy scale ofplasma or field.

I Quantum effects important when

ε∗ & kBT ,Up

where ε∗ is any nonthermal energyscale of plasma or field.

I Example: in pulsar magnetosphere,both relativistic and quantum effectsimportant ⇒ Need new theory

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 20: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Model Relativistic Quantum Plasmas: Quantum Electrodynamics

I Toy model: scalar-QED for spin-0bosonic plasmas couple to EM fields

L = −1

4FµνF

µν ← EM Fields

+ (Dµφ)∗(Dµφ)−m2φ∗φ︸ ︷︷ ︸Charged Bosons

I Wave effective action ⇐ path integral

Γ = −1

4FµνFµν︸ ︷︷ ︸

Vacuum

+ AµΣµν2 Aν︸ ︷︷ ︸

Linear ResponseΣµν2 =Σµν2,bk+Σµν2,vac

+o(e2)

I Response tensors ⇐ Feynman rules

• Background plasma response

Σµν2,bk(x , x ′) = µ ν

x

+ µ νx x ′

• Vacuum polarization response

Σµν2,vac(x , x ′) = µ ν

x

+ µ νx x ′

Yuan Shi, PPPL Laser-Plasma Magnetized

Page 21: Laser-Plasma Interactions in Magnetized Environment · Laser-Plasma Interactions in Magnetized Environment Yuan Shi Princeton Plasma Physics Laboratory Department of Astrophysical

Key Parameter in Reduced Model: Coupling Coefficient

Angular Dependence

• Coupling coefficient between twotransverse lasers

ΓT =∑s

Zsω2ps

4Ms

ck3

ω3

k3 · Fs,3k3

u1/23

• Scattering mediated by magnetizedplasma resonance (ω3, k3)

k3 · Fs,3k3 = γ2s,3(1− β2

s,3 cos2 θ3)

u3 = 1 +∑s

ω2ps

ω23

γ4s,3β

2s,3 sin2 θ3

Example: Parallel Pump Laser

• Cyclotron waves enhance ⊥ suppress ‖

Yuan Shi, PPPL Laser-Plasma Magnetized


Recommended