+ All Categories
Home > Documents > Leach Behavior of High-Level Borosilicate Glasses under ...

Leach Behavior of High-Level Borosilicate Glasses under ...

Date post: 22-Feb-2022
Category:
Upload: others
View: 16 times
Download: 0 times
Share this document with a friend
106
KAERI/AH-483/98 KR9800586 Leach Behavior of High-Level Borosilicate Glasses under Deep Geological Environment 1998. 2 29-41
Transcript

KAERI/AH-483/98 KR9800586

Leach Behavior of High-Level BorosilicateGlasses under Deep Geological Environment

1998. 2

2 9 - 4 1

1998. 2.

O]

* ! £ • • § •

Eh,

— 1 -

ABSTRACT

This report presents an overview of the activities in high-level

radioactive waste glass which is considered as the most practicable form

of waste, and also is intended to be use in the disposal of national

high-level radioactive waste in future.

Leach theory of waste glass and the leach effects of ground water,

metal barrier, buffer materials and rocks on the waste glass were

reviewed.

The leach of waste glass was affected by various factors such as

composition, pH and Eh of ground water, temperature, pressure, radiation

and humic acid. The crystallization, crack, weathering and the formation

of altered phases of waste glass which is expected to occur in real

disposal site were reviewed. The results of leaching in laboratory and

in-situ were compared. The behaviors of radioactive elements leached

from waste glass and the use of basalt glass for the long-term natural

analogue of waste glass were also written in this report.

The appraisal of durability of borosilicate waste glass as a waste

media was performed from the known results of leach test and

international in-situ tests were introduced.

- n -

1

4. ^ X T ^ 0 ! ] ^ - ^ 41 # 46

b. —r^l'::ir T3.^-— "n nf 75

80

T^r ^;1- -r/ J=L -gJ QQ

NEXT PAQE(S)left BLANK

3.

Table 1. Compositions of borosilicate waste glasses. 5

Table 2. Effects of waste glass components on processingand product performance. ; 6

Table 3. Representative cooling rates and temperature rangesused in simulated canister cooling heat treatment. 9

Table 4. Solubility of rare-earth elements in glass, mass

percentage fraction of LnxOy. 9

Table 5. Experimentally determined reaction rates at 90 *C. 22

Table 6. Allowed release rates of Np, Pu and Am isotopes

from canistered DWPF glass. 25

Table 7. Variables affecting nuclear waste glass leaching. 31

Table 8. Factors that affect alteration of commercial and

waste glasses. 44Table 9. Compositions of Ballidon Tests (wt.%). 57

Table 10. Characterization of 1 & 2 year Ballidon samples(pineapple slices), (SEM, XES, WAXD and SIMSanalyses). : 58

Table 11. Comparison of mass losses (in g • m"2) for someof the main glasses in various experimentalconditions. 62

Table 12. Conditions for the Round Robin Test 64

_ v -

Table 13. SRL waste glass compositions buried in Stripa ofSweden. : 68

Table 14. Interactions between the components of the wastepackage and the waste form (borosilicate glass) inthe nuclear waste repository. 71

Table 15. Typical compositions of natural analogue glassesin wt.%. 73

- vi -

• «

Figure 1. Schematic diagram of multibarrier package. 3

Figure 2. The accommodation of various active wasteelements into a borosilicate glass. 7

Figure 3. Effect of glass composition on the interactionof glass and water - MCC-1 tests. 11

Figure 4. Compositional correlations of MET waste forms. 13

Figure 5. Proposed 3-stage corrosion process for wasteglasses. 15

Figure 6. Schematic of the DWPF canistered waste showingnominal physical characteristics and relevant glasscompositions. — 19

Figure 7. Schematic showing qualitative behavior of glasscorrosion vs. time. 21

Figure 8. Logarithm of the retention factors for actinidesreleased from R7T7 glass at 90 °C: (o)U, (n)237Np,( o ) 2 3 ^ , (•)239Pu, and (A)241Am. 23

Figure 9. Schematic diagram of TAV test device. 27

Figure 10. Analytical tools used to investigate METwaste glasses. 29

Figure 11. Schematics of the interrelationship of variouscomponents, reactions and reaction, productsduring glass dissolution. 32

- v j i -

Figure 12. Leachability of SRS waste glass as a functionof pH. 35

Figure 13. Deionized and deaerated leachant trends for Naand Si concentrations in gamma-irradiated (1.75x 106 rad/h) vs. nonirradiated static leach testswith PNL 76-68 glass, (a) 50 °C, (b) 70 V, and(c) 90 r trends. 41

Figure 14. Normalized mass loss from R7T7 glass. 50

Figure 15. Comparative results of moist clay test at 90 t:,soxhlet tests at 100 °C and static tests in purewater. 51

Figure 16. Weight losses of PNC reference glasses leached in

various media at 98 °C. 52

Figure 17. Boron depth profile, SIMS PO500, 364 days, 98 °C. 53

Figure 18. SEM observation of in-situ corroded glasses;

(a) SON68 (5y, 16 °C), (b) SON68 (2y, 90 °C),

(c) SM513 (5y 170 °C). 63

Figure 19. Autoclave (dimensions in mm). 65

Figure 20. In-situ testing of SRS waste glass in granite

(Stripa) and salt (WIPP). • 69Figure 21. Boron concentrations in solution in granite and

clay media. 70

Figure 22. Hydrotalcite crystals formed on the (a) R7T7 and(b) basaltic glasses ; (c) TEM micrograph showingthe plate-like morphology of hydrotalcite (R7T7);(d). electron micro- diffraction pattern obtained in

V U l -

the previous particle (2.64 and 1.53 A). 74

Figure 23. Distribution of uranium redox states. 76

Figure 24. Leach rates of metal ions from high iron glass

in pH 7 buffered. 79

- IX -

I.

1996\1S. -

. 1995\1 12

2,381

J3.^, 2010^

29,000

; International Atomic Energy

Agency)fe 2000^^1 o ] s . ^ <$ 200,000

1- ^ 25-30 %

1950^1^

^, 7fli4tq-oHA-1 A]^-§H ^ 7 | | ^ ^|7fl^^.S. ©}a)

©i

^g-fl-^-n-e) (borosilicate glass),

synroc(synthetic rock)[2, 3], phosphate glass, high silica glass, glass

ceramics, FUETAPCFormed Under Elevated Temperature And Pressures)

- 1 -

>l5l«]:

^ ^ - ^ s ] Marcoule4 La Hague 1978^1 °fl

£Efl, A^JE,

Si). -ir 2:A}

- 2 -

tRock

— Backfill— Overpack- CanisterWaste Glass

Figure 1. Schematic diagram of multibarrier package.

_ o

II.

1. ^ ^

5} 20 %3 ^

1,050-1,150

8].

^ . 1 ^ [4],

(network formers), i r^^] (intermediates), ^^^ll(modifiers)S-

] MOx(M:metal, O:oxygen)

90 Kcal/mole *]>&, 60-90 Kcal/mole, 60 Kcal/mole^l*[$]

«V(metastable) # ^ ^ S . S

4 . uL^-^ll- canister^

500 °C) © l ^ H , w o Up^^o)

514. ^AHf-ejjn.s^ioi ^-^-e)^-^ 700-750

- 4 -

Table 1. Compositions of borosilicate waste glasses

(unit : wt.%)

SiO2

B2O3

Na2O

ZnO

CaO

K2O

T1O2

AI2O3

CuO,Li2O,BaO

P205,Ni0,Cr203

Waste

76-68(U.S.A.)

40.0

9.5

7.5

5.0

2.0

-

3.0

-

-

-

-

33.0

ABS-39(Sweden)

48.5

19.1

12.9

-

-

-

-

3.1

-

-

-

16.4

POS77(Japan)

47.5

13.5

2.0

1.0

1.0

1.0

-

2.5

3.0

-

-

28.5

98-20(Germany)

40.2

10.8

21.9

-

2.2

-

3.3

1.1

-

-

-

20.5

XVQ61)

R7T7

(France)45.5

14.0

9.9

2.5

4.0

-

-

4.9

2.0

5.4

1.2

12.1

UK 209

(U.K.)

51.4

11.2

8.4

-

-

-

-

-

4.0

-

-

25.0

Table 2. Effects of waste glass components on processing and

product performance

Component

SiO2

B2O3

Na2O

Li2O

CaO

MgO

TiO2

ZrO2, La2O3

A12O3

FeaOs

U3O8

NiO

MnO2

Processing

[ncrease viscosity greatly

Reduce waste solubility

Reduce viscosity

[ncrease waste solubility

Reduce viscosity & resistivity

Increase waste solubility

Same as Na2O, but greater

effect

Increase tendency to devitrify

Increase then reduce viscosity

& waste solubility

Same as CaO

Reduce tendency to devitrify

Reduce viscosity slightly

Increase then reduce waste

solubility

Increase tendency to devitrify

Reduce waste solubility

Increase viscosity tendency to

devitrify

Reduce viscosity, hard to

dissolve

Reduce tendency to devitrify

Hard to dissolve

Hard to dissolve

Product

[ncrease durability

Low amounts increase, large

amounts reduce durability

Reduce durability

Reduce durability, but less

than Na2O

Increase then reduce durabi

-lity

Same as CaO

Increase durability

Increase durability greatly

Increase durability

Increase durability

Reduce durability

Reduce durability

Increase durability

- 6 -

• SI. B

o o# Na, LI

ir Fission Products

•>!< Corrosion Products

•»• Actinldes

Figure 2. The accommodation of various active waste elements intoa borosilicate glass.

— 7 —

SUt)-[io]. ZLe] 14 -§--8-^ JL^^ l l - canister^ ^ ^

20 w

700 °C<>1H 1000

soxhlet ^ * 1 S

«lH*>5!|t|-[l2]. ^ ] # ^ ^ Sr, Ba, Mo, B, Cr, Fe, Na, Cs ^ i *

?l Al^-°11^ Sr, Ba, Mo,

(Sr, Ba, RE)MoO4^ (RE)BSiO5

(integrity)^-

(capacity)^ °§^^ ^ 3 .

^ ^ -S-«BS|7l 4=1^ ^"^

-i- ^7H?ife. ^^=01 5^4. RUI

-8-8-ja

, Jantzen ^ ^ ^ i h ^ <&o) z^c.^ Fe2O3, RuO2

^ ^ > ^ ^ ^ [ 1 7 ] , Jain ^ ^ -

1.4 41

CeO2» ^^^J-fe &#, La, Nd, S m ^ NaxCayLnz

(SiO4)6O2 (Ln=La, Nd, Sm)^

l - S.4°\]

- 8 -

Table 3. Representative cooling rates and temperature ranges usedin simulated canister cooling heat treatment

Temperature range, °C

1000 - 720

720 - 690

690 - 500

500 - 400

Cooling rate, °C/h

-70

-7.5

-15.8

-7.7

Table 4. Solubility of rare-earth elements in glass, masspercentage fraction of LnxOy

Nuclide

LaCeNdSm

Composites (wt.%)

Phosphate

1.5 - 1.72.0 - 2.32.5 - 2.63.7 - 3.8

Borosilicate

8 - 1 31.5 - 4.2

9 - 1 410 - 15

- 9 -

10 %

780

^ ] 17 wt.%

70 Wt.%» ^ 4 * M ^o>°> * ^

Aj-«_e)7]- -yo^ul-t ^ s . ^ ZnO > MgO > CaO >

PbO > BaO ^.S-3. ^ ^ ^ 4 .

65 Wt.%^H ^ 7

> f-^o] 12 wt.%

45 wt.%o] ^.5).^7f 25 wt.%?!

, 45 wt.%

apatite ^.^°] ^"^SIAJ 1 ^ . Time-Temperature- Transformation diagram

45 wt.% ^ ^

-i- 45 wt.%

^Sj-^l-froimXKfree energy of

hydration)^- ۥ

t|-[22]. MCC-1

-8-Sj# * ^ , Waste Isolation Pilot Plant(WIPP)^

- 1 0 -

1000.

"el

CO

o

-a

a£o

100.

10

0.1

XX

EA glass

*

^

Projected range forDWPF glasses

O Waste Glasses

• Antique Glasses

X Medieval Glasses

• Natural Glasses

D Commercial Glasses

Jasalu

•Tcktiles

l "tD

Pyrex

Sjodu

LibyanDesert

Silica

-200 -150 -100 -50 0 50Free Energy orHydration (kcul/kg glass)

100

Figure 3. Effect of glass composition on the interaction of glass andwater (MCC-1) tests. All glasses were immersed indeionized water (ratio of surface area of glass to volumeof water, SA/V, equals 10 m"1), for 28 days at 90°C. Plotincludes both radioactive and non-radioactive glasses.

-n-

JLSj-^l ^Ajoj] ^ ^ ^ t } - . Hanford Waste Vitrification Plant (HWVP)^l

Composition Variability Study

41[23], J Z ^ ^ l ^ S ^ ^ 4 ^ - 1 ^ A M, 41 # 1 - ,

database^ ^ 4 [ 2 4 , 25].

Materials Interface Interactions Tests (MET) l *] ^ 307}

71

7}

2.

2.1

1 2 -

[85, 15. 0)

GLASS FORMERS

[60, 40, 0] [60, 15, 25]

GO

I MIIT Wastft' Forms & Svslerns

8 SOL 165/28% TDS9 HWVP-HW39

1 0 CATHOLIC U1 1 PNL 76-6812 MCCARM-113 JAERI-Z-20

AECL AS

AVB/SAN 60

TRUW WG 124

BASALT

SON 68-18

HMI PAMLEA

BNFL WG 1 4 SRL 131/35% TDS15 AECLGC MODIFIERS INTERMEDIA! CS

Figure 4. Compositional correlations of MIIT waste forms.

^ : tt&3\. go]

a)

b)

-Si-OM + H20 — > -Si-OH + M+ + OH"

-Si-O-Si- + OH" — > -Si-OH + -Si-O-

-Si-O- + H20 — > -Si-OH •+ OH"

# <+S|-<+S|-M-§r l : ^ pH 7-10

tt, Fe,

-8-«fl

42}-

Savannah River Laboratory(SRLHH

pH

- 1 4 -

HydratedBulk Glass Gel Layer

soHydrated

Liquid LeachantH*

Na OH

pH increases

Stage 1; interdiffusional Process

HydratedBulk Glass Gel Layer

•H,O

Liquid Leachant

Stage 2; Matrix D isso lu t ion

/Precip i tatedHydrated

Bulk Glass Gel LayerLayer

- H 4 S O 4

;;,H4SiO4 Liquid Leachant

H2O

N3 OH"

HT

OH

Stage 3; Surface Layer Formation

Figure 5. Proposed 3-stage corrosion process for wasteglasses.

- 1 5 -

7\

state)°fl>H

, 30].

dissolution: R = K(CS - Co)

diffusion: R = DA(CO - C)

K :

D :

C, Co, Cs : H4Si04 71

I = qL

q :

L : H ^

R = dL/dt o lHS

KCs(l - C/Cs)dL/dt = (1)

1 +

- 16-

0 = qK/D

C/Cs :

C/Cs =

SA :

V :

c»l t=0

(1 + $

a = SA/V (1/CS)

(In (1-ffD) + PL = -aKCst (2)

= 0

L + (£/2) L2 = KCst (3)

SLX}[31, 32],

n 71 canister^ fl-

- 1 7 -

canister

F =

R : J

W :

SA :

R • SA

W

^ - S (g/m2/yr)

canister^ #

(m2)

(g)

R • SA

(RF)i (RF); W

ll[35],

^: canister*!)

-18-

CDI

Free volume

61 cm

DWPF nominal fill heightequivalent to 85% by volume

about 1700 kg of glass

Dished bottom

-H

DWPF design basis waste glasscomposition (wt.%).

Component

SiO2

3,0,

AI2O3

Fe:,O3

Na2O

K2O

Li2O

u;,o8CaO

MgO

MnOTiO2

NiO

Blend

50.2

8.0

4.010.4

8.7

3.9

4.42.1

1.0

1.4

2.0

0.90.9

SRL 202

49.0

8.0

3.811.4

8.93.7

4.7

1.91.2

1.3

2.0

0.90.82

Figure 6. Schematic of the DWPF canistered waste showing nominalphysical characteristics and relevant glass compositions.

96

. Stage o]

Stage

. Stage 3 ^

S34(feedback effect)^

tfl [37], canister^ alumino-silicates^ ^:^r

^ 90

Scheetz

- 2 0 -

g

SO O3

OCC

Reaction Progress / Time

Figure 7. Schematic showing qualitative behavior of glass corrosionvs. time.

- 2 1

Table 5. Experimentally determined reaction rates at 90°C(g/m2/day)

Glass/Leachant

Static tests

PNL 76-68/DIW

SRL 165/DIW

EMS-11/DIWJSS-A/DIW

PNL 76-68/DIW

SRL 131/DIWSRL 131/J-13

SRL 131/J-13

SRL 131/J-13

SRL 202/J-13

SRL 202/J-13

SRL 202/J-13R7T7/DIW

R7T7/Volvic

R7T7/DIW

R7T7/Volvic

R7T7/Volvic

R7T7/Volvic

R7T7/Volvic

S/V (m"1)

2000

2000

200010

10

1010

2000

20,000

10

2000

20,00050

50

400

400

2000

8000

20,000

Forward rate

1.6

0.80

0.0831.5

1.8

3.00.14

0.24

0.84

0.10

0.025

0.04

Saturation rate

0.08

0.024

0.00160.0025

0.0075

0.03

0.021

0.053

0.0016

0.00250.0083

0.0133

0.0045

0.025

0.0006

0.0006

<0.0001

- 2 2 -

ItoCOI

g

0

A A A

<yo

CD

o

O

i

• i

0

. 1

•oQ

-J 1 1 L^J-

l I • f

o

0

r i i ! _ . ! _

i i i l

• .o -

-i i i i

0 100 200 300

Reaction Time, days

400

Figure 8. Logarithm of the retention factors for actinides released from R7T7• glass at 90"C(data from [reference 22]): (O)U, ( Q ^ N p , (O)238Pu,

(•)239Pu, and (A)241Am.

F = [2.5 x 10"3 g / V • d] [96 m l [365 d/yr] / [1.7 x 10b g]

= 5.2 x 10"5 yr"1

(RF)il- ^-5}T$. U 4 Npfe- 5.2 x 10~6 yr"1, Pu^- Am

1.6 x 10~6, 1.6 x 10"7 y r " 1 ^ ^ ^ 4 . J i* r^^ -

?1 ^ ^ ^ ^ J - s ^ - B l ^ ^ ^ 1 ^(0.04 g/m 2 -d) l -

Np, Pu, Am^l ^ # ^ £ 7 } 4 4 8.3 x 10"5, 2.6 x 10"5, 2.6 x 10~6 yr"1!-

, 61 ^ S -

^(inventory) <41

L, -g-

[LEACH-2]5i-

- 2 4 -

Table 6. Allowed release rates of Np, Pu and Am isotopes from canistered DWPF glass

ito

Isotopea

U-233U-234U-235U-236U-238Np-237Pu-238Pu-239pu-240Pu-241Pu-242Am-241

Am-242mAm-243

1000-yr

postclosure

inventory13 (Ci)

6.9E-55.7E-11.7E-41.4E-31.0E-22.0E-25.5E-11.3E+18.1E06.2E-61.2E-21.4E+11.5E-45.3E-3

10,000-yr

postclosureinventory (Ci)

9.2E-45.5E-12.7E-42.8E-31.0E-22.2E-2

-9.7E03.1E03.0E-61.2E-21.0E-5

-5.3E-3

NRC release

rate limit per

year (Ci)4.2E-75.7E-64.2E-74.2E-74.2E-74.2E-75.5E-61.3E-48.1E-54.2E-44.2E-71.4E-74.2E-74.2E-7

Allowed fractional

release rate (yr"1)at 1000 yr

6.1E-31E-5

2.5E-33.0E-44.2E-52.1E-51E-51E-51E-5

6.8E-23.5E-51E-5

2.8E-37.9E-5

Allowed fractional

release rate (yr"1)

at 10,000 yr4.6E-41.0E-51.6E-31.5E-44.2E-52.0E-5

11.3E-52.6E-51.4E-13.5E-5

11

7.9E-5aRadionuclides with a release that must be controlled at 1 part in 100,000 of their own 1,000-yr postclosure

inventory are underlined.bE indicates exponential notation.

Crank -Nicholson implicit methods.

S H^1 7fllH [PHREEQE],

, 44].

2.2

^ ^ ^ ^ fl^^ Chalk Ri

) , 1971\i IAEAfe a

tfl, ZL#^ ^6] A]~g-^}^ ISOClnternational Standards Organization)

23-100 °C

autoclave* ^}-§-«H ^#°^^1 ^rS.1- ^ ^ # ^ - 7>

. Pacific Northwest Laboratory (PNL)-^ Materials

Characterization Center(MCCHH fe JLs\-%] ^ # s l S ^ ^ - ^ ^ - S . MCC-1

[30], PCT(Product Consistency Test)[31] ^-i- 7fl^§>^cf. MCC-1

momoUtic ^M4r

- 2 6 -

Sampling line

Leachatesamplingvalvoi

Leachantsamplingvalve

LEACHING VESSEL

.Glass specimen

Environmental material

Peripheral heater

PRECONDITIONING VESSEL

Environmental material

Platinum proboAir

Water

Pump

Figure 9. Schematic diagram of TAV testdevice.

- 2 7 -

100-200 mesh^i 3.Q*\} &^ *}-%-*}^}, C02

H2O

Infrared Reflection Spectroscopy(IRRS), Tunneling Electron

Microscopy(TEM), Scanning Electron Microscopy(SEM), Auger Electron

Spectroscopy(AES), Secondary Ion Mass Spectrometry (SIMS), X-ray

Diffractometry(XRD), Rutherford Backscattering Spectroscopy(RBS),

Electron Spectroscopy for Chemical Analysis(ESCA), Electron Probe

Micro-Analysis(EPMA), Ion Scattering Spectroscopy(ISS), Mossbauer

Spectroscopy, Raman Spectroscopy, Analytical Electron Microscopy

(AEM), Extended X-ray Absorption Fine Structure(EXAFS), Ultraviolet-

Visible-Near Infrared wavelength (UV-VIS-NIR) spectroscopy,

- 2 8 -

ItoCD

I

SEM/EDX

SolutionAnalyses

RCP. AA. DCPl

IRRS

RBS

AES/ESCA

tc

o

SIMS(static)

I5 20A

V,

SEM9

'* ' ' 4'y w\* Precipitated Layers *' ^^^^ ^ JL' t T

WAXD

Interaction Zones

Buli. Waste Glass

SIMS(dynamic)

'is.PrecipitatedLayers

InteractionZones

Figure 10. Analytical tools used to investigate MIIT waste glasses.

AA(Atomic Absorption), ICPdnductively Coupled

Plasma) spectroscopy, a~, y —£! ^ l ^ 1 ^ , INAAdnstrumental Neutron

Activation Analysis), IDMS (Isotope Dilution Mass Spectrometry),

sa-

3.

Clark ^ ^ ^ ^ ^ ^

A]^O^ "a^l^ofl « HlS^S*l-5il4[48]. DOE l Environmental

Restoration and Waste Management (EM) S

(^•*1, Yucca Mountain ^ ^ - ^ ^ -g-^H SiS

3.1

]. Canadian Nuclear Waste

Management Program^]*\T= ^ ^ -

^^[51] , Cecillet 3 # ^ fl-^^i7> JL^-s)^ JL^-^1]^ -g-

150, 250 °C°1H

- 3 0 -

Table 7. Variables affecting nuclear waste glass leaching

1. Environmental factors

- Temperature- Pressure- Expose time- Relative humidity- Solution pH- Radiation damage- Solution composition- Presence of inhibitor in the leaching solution

2. Physical factors- Weathering vs. aqueous leaching- Dynamic vs. static leaching- Exposed surface area to solution volume ratio (SA/V)- Bulk vs. powered glass vs. glass fibers

3. Specimen state- Glass composition- Thermal history; Degree of annealing, Phase separation,

% crystallization- Prior leaching exposure history- Surface features; Roughness, Surface composition- Homogeneity of glass- Surface treatments- Stress

- 3 1 -

Solid•llor»t>onproducU

•oMiondate

R«poiiioiyrock

-halilo.conallilo,polyhtliia....

Figure 11. Schematics of the interrelationship of various components,reactions and reaction products during glass dissolution.

- 3 2 -

1/1000

0.02313}- 0.0315* £-TT J-134 GR-4 *)§}^r ^ 6.984

calcite, hydroxyapatite^

Mg~Si

17171

Q = ktff

Q :

k :

a

- 3 3 -

^54

Power Reactor and Nuclear Fuel Development Co.(PNCH*l-c-

A S ^ ^ - ^ , 5[- <y- x)-s}+, ^^°}*L7} ^7}^. ^ ^ - ^ » o

soxhlet ^ ^ ^ ^ ^ ^ ^ - ^ ^ ^ l ^ A]i§]-^4[58]. ZL oif 3.$]

. 5E?h Np-i: i^-§1-fe Nevada Test

Site (NTS)

3.2

3711 iH1^4. pH #

MgCM

^ S pH 5 -

^-^ pH

- 3 4 -

0.03

oUJ

<

V)

0.01

0 0

AClORANGE

0ESIRA81E RANGE OF pH FOR I

GROUNOWATERS DURING STORAGE

6pH

10 11

Figure 12. Leachability of SRS waste glass as a function of pH.

- 3 5 -

41 # 3 1 ^ ^#^4 pH i 44 ^ 1 44\J4. PH i~

• ^

, pH

7> 8~10

110 ^ 190 °C^ 4 ^ 1 - i - °l-g-«H ^ ^ pH< l R7T7

1 mM

^7f l§H CaMoO47>

MO7]- rfcSS]^ ^

i- 1 ^ « H , pH 6.

Pacific Northwest Laboratory(PNL)$\ West Valley Demonstration Project

[11].

^ ^ S - S . Eh^ ^ ^ 4 " 37)1

- Sf-§>JL 9XG.E-3- canister

44

- 3 6 -

U, Np, Pu

34 1-^ - #ol]

Pu^- CraA

3.3

Lurtz

95, 110-125, 200 "C

Ar+5%H2

canister°fl

4-g-fi] Arrhenius

Dissolution rate = A e~Ea/RT

A :

Ea :

R :

T :

80 kj/mole

-§-5fl7]-

# ^ 100

7J

kj/mole^-

- 3 7 -

- 8 S -

(K-t* ft ft

•[69 ' 8 9 ] - t i ^ i ^ ^ TT-fci I&U M ^ toHd -br?r?y to

^^)3;noipdoutp ^ ^ ^ ^ [ 3 [ o ' I t a ^ & t s ^ [a

"5Halo HROT [cl-#fe to^feTT ^kl|p-l*lo T-m 0002

to(SOOZ)lfe-t?TTta^

(9Uin{0A ;UBl{0B9|/SSB^S JO

'[99]-titfS

[99 '

OSS

OSZ 'OST ^-ferl: ft^[Y#^r k l b ^ ^ ^ ^ l o ^ teO. OSZ ^ S OST -[9S]

l o * « a 06

- 6 6 -

82 '

'a

^01x^9-9

9'S

|n -f-

01 -fera 06 '

ZJLAH

tol>-& '[89]

029 '

HTfo

^ 7 } &£4[73, 74].

, PNL 76-68

. 90 1

SRL165

, 77].

, 69].

McVay ^ ^ 7 ^(^Co, 2.4 X106

SA/V

pHt

- 4 0 -

(b)

oX

_J

"o

g62OO

11

1JO -

50

/

/ / ,

TIME (days)

(c)

TIME (days)

iFigure 13. Deionized and deaerated leachanttrends for Na and Si concentrations ingamma-irradiated (1.75 x 106 radAi) vs.nonirradiatcd static leach tests with PNL76-68 glass, (a) 50 TC trends, (b) 70 ttrends, and (c) 90 *C trends. Testratio at 10 m - i

3.6

Am

-fh

critical flocculation concentration(CFC)

fA]d|| ^ ^ § } ^ +2, +3,

+67} € ^ # ^ +47]- ^ i i l i q - -fM^-i-i- ^^*>7l ^rf. 4 ^ 1 Fe, Zn,

La f-5] # ^ ^ ^AVO] ^ ^ . nfliicf #0]] -g-*fl£]7l 4=1 «>£, Zr^

1 ^5.7}- 8 ppm<y

^Ad claywater°ll 3iJ

ul -n-7] -^•^.ol^.-g- ^

Pu(IV)-Sl ^r-ilr^l^rOlT-l-

M * < * * J L s N s L ^

fe ^ ^ - t - ci^l^l SJSJ:C

* *

Eu,

H83]

r €::

Am,

^1°1 #5.'

Pul W

Al, B^l 4]

!, Portland

#•§- ^ 7 M ? m

Cementl- ^^B

aj-Tiq- 7131 q-1

"r An

clay

El-U-^

water°ll

1 3*41i 11 O -5-1- 1—o" * l

1 #5*-$.

3.7 -B-Bial^M

- 4 2 -

r, SA/V

Yucca Mountain *l

canister^ ^ ^ ^ ^ ^ nfl (tfl7fl canister^ 10%^

c a n i s t e r ^

tJ-[87].

[88, 89].

Gong ^ ^ J I J H a ^ ^ 2 ^ ^ ^ 4 > ^ ^->a-i- "71 ^^-c^ SON68-a-

200 °C

- 4 3 -

Table 8. Factors that affect alteration of commercial and waste glasses

Materials8

CompositionHomogeneityPhases and impuritiesWaste Products1*

Manufacturing8

Materials processingMeltingCasting (SS canister)13

Seal/Interim storage15

Thermal history

Physical statea

Amorphous orcrystalline

CompositionHomogeneityPhases, impurities

and theirdistributions

Surface condition(roughness, flaws,charge)

Prior corrosion

history

Use or storage environmentTimeTemperatureAtmosphereMoisture contentEnvironmental cycling(e.g.,wet/dry, freeze/thaw)pH, Ehb

Geology13

Engineered barrier13

Radiation15

SA/VExternal stressesSolution compositionFlow ratePresence of microbesSolution saturation

'These control the glass characteristicsbApplies only to waste glasses

4 22, 91, 241, 908, 1013, 102111 *)J}Q] 3 W f l 4 ^ AA 0.5, 4, 6, 10,

26, <35 jm^\ *rv\)7\ £ $ 3 S l ^ , ^ . ^ l S ^ l ^ analdme, tobermorite,

apatite, weeksite ^ 4 £ £ : ^ 8 ° 1 , =L ifl- eflfe- Ag2Te03, (Ca,Sr)Mo3O9

(OH)2 ^ %%<>)

••gr smectite ^ 3 M ^- ^•^•^ ^ ^ o j j l , B^^^r y ^ S 0 ^ ^ smectite

(montmorillonite) ^

#(Zn, Cr, Fe, Ni, MnH

smectite(iron silicate and potassium iron alumina-

silicate), weeksite (uranium silicate), zeolite(calcium potassium alumino-

siUcate), tobermorite (calcium silicate) ^ 4 ^^rf!- •^e|7'}7r ^

uranium silicates^- smectite?]-^

3711

- 4 5 -

4.

4.1

X14.

7l^-(thermosyphon pore)#

near fields

^ 1 ^ 7ov Alloy 825

304L i ^ i e i i ^ 7j-oi

Fe, Na, Si,

Inagaki

magnetite^

7>«l-sat|-. Z i-o] magnetite

w ] - ^ ,

FeSiO3 1^i4 FeSi3O3(OH)8

- 4 6 -

©I ^-g- Particle Induced X-ray Emission

Spectrometry^ RBS5.

uj-

pH 7.4^1 -8-3#*l3!Hr(J-13), 90 °C, SAA^=100 m"1

SRP -B-elJl^-^^1 ^#^1^0] 316 iEj5fl^

<>1 ^ 3 g/m2oll ^

0.3, 0.01 g/m2

^^^ canisterM- overpack I l ^ i *}•%• 7}^ ^ - ^ # ^ - SRL

YQ65/TDS) jlSr^l^r ^ ^ 1 ^ ^-^f l^o] JL§±*\)<>]

•^ ^A}s|- cf. n t ^ wf^l-i- I f ^ l S *H 90

^ al^-Sl) SiS-a- ^ - ^ - ^ ^ 1 ^ , SEM, EDS, FT-IRRSS. ^^^^fec-fl , SRL

YalS|-Sfl^ -<b]o)l 3Q4L ^Ejefl^ 7^ Ti(TiCode-12), Pb, Cu(A216) ^£ r

€• ^ ^ * ^^1 ^fe 5J*.£ i4^^^[99] . ZLel 14 cf^. l-^oll^fe. Pb, Cu,

Ti-i-

- 4 7 -

pH7} 9.

fe- ^e.s.t °1 pH

l pH 9.5

, 55],

4.2

ilit

^SCsmectite, illite, bentonite, sand)7} ^%}v\ ^^7} ^ S ^ | porous

medium^] ^^ r^Ti i^ ^£51 ^ - # ^ X^ofl £;Sf- | 6_S*1 -g-^^

xl^A]7l7l nfl^-ol^-ji ^^-§1-JL SU4C1O2, 103].

# Np3f Pu-S-S ^Jtl ^fl-^-n-s]*- smectite, illite,

- 4 8 -

K, £efl, $##, Boom clay, French salt4

thfr^r clay water^ ^-f Ca^

r smectite^l

soxhlet ^

«HC/SA)7>

^ ^ C/SA7]- 3 E

«17> 1:200^1 ^ - f 3 1 ^ 1 ^ %t°] 3.7])

. 98

«171- 1:200*1-

3, 0.3 //mS.

-49 -

NL(rn) 10-3 g.cm-2 •ita•

Smectite 4aSmectite NaBcntonitcSmectite 239PuBidistillcd wat

Figure 14. Normalized mass loss from R7T7 glass.

- 5 0 -

Iat

Smectite

Activated bentorute FB2

Time (months)

Figure 15. Comparative results of moist clay test at 90 °C, soxhlet tests at 100 °C andstatic tests in pure water (mass loss results in mg).

10"3

1 - 3 -CNJ

Eo

10

10"

10-

P0500B/W= 1/200

/

__o—o—a A

o

P0500D W.

P0798D.W.

P07988/W =

P05008/W =

11

11

-

10° 10' 102 103

Leach Time (days)

10*

Figure 16. Weight losses of PNC reference glasses leached invarious media at 98 °C.

- 5 2 -

Depth (//m)

ienCOI

200 300 400 500

Sputtering Time (min)

Figure 17. Boron depth profile, SIMS. PO500, 364 days, 98 t .

600

[106]. ZLS]I4 ^ ^ ^ S l R7T7

4i(retention

A]~g- 7>^^<>1 J l ^ s ] ^ Portland ^ ]^m

K a . ^ Np, Am*

Cs, Sr^r ^flSt+olSi,

pHl- ^<^ -fre)s| ^ - i ) ^ 3711 ^7H^ l fe ^ ^ ° 1 5a4[107, 108]

Zl ^-g-

4.3

SRS

o|

[109].

1)^^11^ : S)-7j-o> ^ ^ - 3 t ^ o . s Swedich Nuclear Fuel Safety Devision of

Nuclear Fuel Supply Co.4 Florida^^-^^ ^-^«S^SAi 1982^^l^fl i4fl

Stripa - b l>H A]^5]-ZL SI4.

Studiecentrum Voor Kernenergie/Center

D'Etude de L'Energie Nucleaire(SCK/CEN)4 SRL^^l ^ - ^ ^ ^ S . ^ 1986

^z] Boom c l ay^ i

-8--8-3?

- 5 4 -

^ f l ^ ^|-g- 1986\i

. MIITe}- l-e)fe WIPP/SRL £

^ 5 ) ^ 9007B o ] ^ ^ JIS)-^ A]s.t 5007fl S]

, canister ^ ^ r overpack

3007fl ofl sfl^^l-fe ^ ^ 1 S ^ * 2000711

4.3.1 ^

^^I'ffl Stripa

^ ^ ^£(moist clay) ^ 7 l i A ^ H I ^ A } ^ 3 1 ^ ^ ^ Np, Pu,

AmAS J

t)-.

^ , 90 °C«1]Ai 2\i*«?H -e-#^ Np, Am, Pu^r A A 75,

90, 99 %7> isMIM^S-^-E-i lcm ° 1 ^ 1 fti^sa^

Np, Am, Pu^i ^o^oi^fe. zj-zj- of 2, 8, 45-240^1 ?3t*

- 5 5 -

95%

Ordinary Portland C e m e n t * *}-%-•&

Tc, Np, Pu, AmS] -g-*fl

# A | ^ ^U#£ Pu^

, 0.01% o)*}nVoj

Argonne National Laboratory

irfl

SRL SRL

. SRL

-Ei(a9)

SRL SMSS depth

profiled

calcium carbonate, magnesium manganese iron silicate hydroxide, silicon

oxide, calcium silicate, magnesium iron oxide ^

^ H&*m ^ ^ 4 f ( « o ) ^ 1 r Ca, Mg, Fe, S

^ , or^Aife Ca, Ba, Cs, Sr ^-°] ^ ^ ^ 1 5 3 ^ ^ , o]^. &$<£0.2.^1% -§-

# ^ Ca, Ba3f ul^]5.^-Ei -g-#^ Cs, Sr^-S

•56-

Table 9. Compositions for Ballidon Tests (wt.%)

\\

\\

SiCfeAI2O3

CaOFe^sFeOMgOMnO2

Na2O .Li2O

NiOCr2O3

B2O3

ZrO2

TiO2

K2O

Cs2O

CaNO3

SrOSr(NO2)2

UO2

P2O5

Nd2O3

La2O3

BaOPbOCeO2

MOO3

ZnO

Na2CO4

CoalZiolteSums

Pineapple slices165/TDS

54.104.101.5012.30

0.802.9010.304.700.90

6.801.20

0.10

0.10

99.90

131/35%TDS

39.303.301.2016.30

1.004.3012.003.402.00

9.600.400.80

0.10

0.10

0.20

1 1

1.10.20.33.5

100.1

ARM-1

46.505.592.23

6.675.08

11.301.803.21

1.16

0.45

0.655.96

0.66

1.511.871.46

98.90

Basalt

51.3417.686.0315.81

3.840.334.42

99.50

TNXTNX/PHP

43.003.681.4113.150.001,212.489.333.040.940.249.790.040.07

0.07

0.01

0.16

0.050.010.19

0.12

89.04

cores

TNX/165/TDS

46.643.851.5012.340.000.692.7410.254.410.790.026.380.070.06

0.05

0.11

0.23

0.110.030.19

0.27

91.16

Glass CubesFrit131

52.060.350.030.06

1.690.1613.305.120.100.0314.370.460.950.10

0.50

0.27

95.18

Obsidian

83.55

1.59

5.840.280.121.64

0.040.060.935.76

0.10

0.05

100.0

Pyrex

81.002.00

4.00

13.00

100.0

Silica

93.020.390.650.88

0.140.170.03

0.080.060.77

0.01

0.01

0.03

0.05

96.28

Lmtanumbasalt

46.2112.067.81

14.153.900.312.40

0.130.020.040.022.100.43

0.04

0.45

90.13

SRL-131

44.664.260.848.892.401.443.2113.594.100.98

10.580.362.02

0.06

0.05

0.36

97.80

SRL-165

Black_frit

53.14.501.748.512.300.692.059.975.170.99

7.300.67

0.08

97.13

-57

Table 10. Characterization of 1 & 2 year Ballidon samples (pineapple slices), (SEM, XES, WAXD and SIMSanalyses)

00I

Samples

165/TDS

131/35%TDS

ARM-1

Basalt

1 year

SEM/XESAverage

precipitationlayer( a)

~2M

~2n

~2M

Interactionzone(/?)

<lM

<lu

SIMSInteraction

zone(0)

0.2//

0.6//

0.6//

0.6//

WAXD

Structure/Phases

Glassy

Glassy

Glassy

Glassy

2 years

SEM/XESAverage

precipitationlayer( a)

~2/i

~2//

~2//

~2M

Interactionzone(0)

<lf*

<lM

<lfi

<lf

WAXD

Structure/Phases

Magnesium manganese ironsilicate hydroxide

Silicon oxideCalcium carbonateMagnesium manganese iron

silicate hydroxideSilicon oxideCalcium carbonateMagnesium manganese iron

silicate hydroxideSilicon oxideCalcium carbonateCalcium silicateMagnesium iron oxide

137Cs,

Cs, Mg, Sr

Ba-i-

Yucca Mountain^ -§-3 #01

"Tc, ^Np, 238U,

90, 183^2: ^ #

PNL

304L ^ e f l i 7ov^

o.^, 90 °C*\}*\ 30,

pH

8.78-9.12S

ss., pH

B, Mo, Tc

U, NP,

T c ^ ^ ^ l - ^ l 2.3 g/m2S.A^ 7}^

Tc^ 5-10 %$\ ^ # 1 - 1 :

Mofe Tc^ 85 %, Np

7]*\ -§-#£1^

4.3.2

Boom clay

- 5 9 -

Boom clay7} JL2±x\}°] ^#<^1 nl^fe <g^§- 2z*}tf-7) 4)*H 47flsj

71- Al l-o) x| | fe*l | MlaflSM ^-i^-Sa^-^, 404 90

AM-, 90 r ^ l ^ i ^#^c>] lOwfl c| ^S i :4 . ^ M 150

7} ^#^«^1 #^1)1- ^ - f ^ # ^ ^ 1 ^ 1/50S.

, 134Cs,

[110] t}€- ^ 4

Boom clay&}-

Boom clay, 90

SAN60, SM58^Aife 3LS)-^sl ifl^-^ ^ ^ ^ ^ A M - , SM58, SM

513, SON58, SON68<^|Ai^ ^#a^«HlAi cf^- ^ ^ 5 f ^ o ]

- 6 0 -

Boom clay

16, 90, 170 TC*IM 4 4 5, 2,

# X l H ^Bl-ifl^4[115]. 16

0.02-0.08 / imS 4X1 M ^ t f ^ , ^ £H*IHfe- ^ 100*1] ^ H

Boom clay ^

a a s ] S t ^7}§H clay waters.. 90 "C^l^i

^ ^ ^ 4 Pamela/DWK

^ # ^ ^ SiO2

7}

4.3.3

Round Ribon Project°lH

^r ^ l^-SSfH) ZL A l^ s^ i^ : S12S} H 19«=fl i4El-vfl^cl-[ii8, 119].

Harwell ^ ^ Tc, Np, Pu, Am|- ^ t l -frell- ol-8-t

#o] -g-^jiti. 3H^u | - ^j-oj-ofl ^ ^ ^^-^q-fe #•§-

Tsukamotoi

- 6 1 -

Table 11. Comparison of mass losses (in g • m~2) for some of the main glasses invarious experimental conditions

toI

SON68

SM58

SM513

SAN60

In-situ16 °C, 5y

-3

0.3

3

-16

In-situ90 °C, 2y

370

640

165

102

Laboratory90 °C, 2y

280

500

/

50

In-situ170 °C, 5y

2435

disin-tegrated

175

1065

Laboratory170 °C, 2y

320

1500

/

300

(a)

(b)

(c)

Figure 18. SEM observation of in-situ corroded glasses; (a) SON68(5y, 16 t ) , (b) SON68 (2y, 90 °C), (c) SM513 (5y 170 °C).

- 6 3 -

Table 12. Conditions for the Round Robin Test

1.2.3.

4.5.6.7.

8.

Temperature : 90 °CPressure : 1 bar (or higher)Waste form composition particle size :

SON68 (R7T7) glass. 150-250 m + a coupon* (25x25x3 mm)Duration :Repeated t

3*, 7*, 14, 28, 56, 91, 182, 364 days and longer*.ests : 28, 91 and 364 days

Blank tests (no glass) : 28, 91, 182 and 364 daysSolids

Salt

Clay

Granite

SolutionsSaltClayGranite

Glass 2 g powder + coupon*Backfill 200 cm3 saltRock

Glass 2 g powder + coupon*Backfill 92 g smectite clay, 92 g sandRock 182 g3 Boom clay from Mo I

Glass 2 g powder + coupon*Backfill 5 cm smectite clay

95 cm3 sandRock 100 cm3 granite

NaCl, CaSO4, KC1, MgCl2) H2OSynthetic interstitial clay waterVolvic mineral water

* Optional

-64

enI

Granite

two layers

Clay

one layer

Salt

one layer

Sand + Smectite

(95:5 volume)

Granite Powder( < 1mm)

Volvic mineralwater

Clay +Sand +

Smectite

(50:25:25 wt.%)

Solid salt

Synthetic clay water Brine

1. Vessel 2. Lid 3. Specimen holder4. O-ring 5. Lid retaining bolts

6. Thermocouple well7. Leachant inlet and outlet8. Stainless steel mesh 9. Leachant

Figure 19. Autoclave (dimensions in mm)

Group 1 : Mo, B, Li, Cs, Nd

2 : Si, Na, Al, Sr

3 : Fe, Zr

4 : Ca

Group

- g ^ S . - ^ <*^ & # ^ ulHtb ^ 4 y>^-^^- »«fl B, Li,

20-60 %

* T - W ^ I } . Group

Group 3^r ^ § ^ M

-g-o^o] ^^^ .c l - c-1 3J-711 ^ # 4 . ^ H ^ i 1 ? ] Cs l- Sr^l Normalized

Elemental Mass LOSS(NEML)TT B, Li, Mo, Na°ll «l«fl 1/10 «1 > 1 &•%;

. Si, Li, C s t B,

l^ ^ j i ^ 1 ^ | l i l fl]. si

S.71- ^ 50 ppmA5. a ] ^ ^ ^ ^e|7l-fil ^^-§-^£(150 ppmH

- 6 6 -

SRL 5 L ^ J L 3 H | ! - °l-8-*MGEE13) ^ « Stripa

WIPP^ <y-<g*|<*H 2^91 ^ 1 - ^ : jL^-Sfll- depth-profiled

xr JL^M^} -fi-A]- ^ # ? M * M-H}vfl 4[l21]. <>H ^ ^ ^ 1 stripa

- WIPP^ A]^U). -^^^3: pineapple slice ^Bfl^ SRL S ^

^1«|- 345 m lAi 3 m 3 ° 1 ^ bore holei ^^-s | -^4 . SRL

1 pa *}*} S^l^ ^^r ^ # # - i

Boom clays] ^- f JlSj-^l^ ^#^-ol 3.7)1

^ ^ - ^ ^B^^] 4-i- ^ ^ - i " ^A}§V7l ^ § H TAV^^lS R7T7

90 M 1 } ^ ^

New Mexico

pH» ^ ^ 1 ^ 1 4 , ^ ^ " ^ 4 ^J-^-S^oilAlfe pH

5.

- 6 7 -

Table 13. SRL waste glass compositions buried in Stripa of Sweden

Component 131/29.8% TDS 165/29.8% TDS 131/35% TDS

Glass frit

SiO2Na2O

B2O3

TiO2

Li2OMgOZrO2

La2O3

40.612.410.30.74.01.40.40.4

47.79.17.0-

4.90.7.0.7-

37.611.69.60.73.71.30.30.3

Simulated waste

Fe2O3

MnO2

Zeolite

AI2O3

NiOSiO2

CaONa2OCoal

Na2SO4

Cs2CO3a

SrCO3a

U3O8a

Total

13.43.92.92.71.61.2

1.00.90.70.20.10.11.1

100.0

13.43.92.92.71.61.2

1.00.90.70.20.10.11.1

99.9

15.84.53.43.21.91.41.21.00.80.20.20.2

1.3

100.1

'TDS waste was doped with Cs, Sr and U.

68-

ICDCOI

3 -

2-

1 -

Stripa [131/TDS]

Stripa [131/3S%TDS]

131/TOS131/35%TDSStripa-165^"DS

x W1PP-16S/TDS

Strip* [155/TDS1G/ante

I'O 20

Time [mo.]

30

Figure 20. In-situ testing of SRS waste glass in granite (Stripa) and salt (WIPP).

Granitic simulation

B

600

500

400

300

200

100

0 0-0

o o o o o o o o o ?

20 40 60 80 100Weeks

• Monolithic

o Fractured

Bmg

600

500

400

300

200

100

0 (

(

Boom

0

o

3 10 20

Clay

o o

o

• • • •

30 40Weeks

O

50

• Monolithic

^ Fractured

Figure 21. Boron concentrations in solution in granite and claymedia.

-70-

Table 14. Interactions between the components of the waste package andthe waste form (borosilicate glass) in the nuclear wasterepository

Tuff repository rock

Stainless steel

Radiation

No effect on glass durability: sorption of certainradionuclides reduces their concentration.No effect in saturated tuff: possible effect inunsaturated system due to sensitized steel.In saturated system, buffers pH change caused byleaching: when moist air irradiated. HNO3 forms

_that_lowe_rs_pHL

No effect.No effect.Increases leaching of glass when O2 present:forms reducing atmosphere in closed systemwhich decreases solubility of certain radionuclides:forms corrosion products which sorb certainradionuclides.No effect on leaching brines but possible effect toincrease Eh of brine! radiation damage in saltreduces Na+ and oxidizes Of.Evidence suggests the products recombine orreact with brine at doses expected in repository.This lowers ^effect on brin_e_ leaching.

Basalt and graniteRepository rock Causes reducing conditions in closed system

which lowers solubility of redox sensitiveelements; some sorptive properties indicated; littleeffect on durability of glass.No effect.Same interactions as in salt; data exist whichsuggests that iron may not cause increasedleaching in reducing environments.In a closed system, radiolysis appears not toincrease the oxidizing potential of therock-groundwater system.

Salt repository rockStainless steelIron overpack

Radiation

Stainless steelIron overpack

Radiation

- 7 1 -

SRL 165<a-frel (basaltic glass)

5ti

paragoniteej-

Luo SRL 165 70

°C

EDSS.

^r paragonite*

^^4, paragonitefe-

. paragonite*

-¥-f}- 10 nm

fl Na, Mg,

smectite7>

Fe, Ti, Al ^^r^l

» 120-240

paragonite7}- Aq-, SRL 165

R7T7

MgCl27l-

, XRD

* 190

hydrotalcite

53t°l 4 ^ 7.68,

7.62 A OL

rhyolitic

tektites7>

- 7 2 -

Table 15. Typical compositions of natural analogue glasses in wt.%

SiO2

AI2O3

B2O3

Na2O

K2O

CaO

MgO

FeO

Fe2O3

T1O2

MnO

P2O5

Li2O

NiO

ZrO2

PbO

CuO

H2O

Basaltglass

50.7

11.7

-

4.5

0.7

10.6

6.7

-

13.1

1.9

0.4

-

-

-

-

-

-

0.1

Rhyoliticglass

74.9

14.2

-

4.68

4.59

0.53

0.02

0.49

0.29

0.04

0.03

-

-

-

-

-

-

0.3

Tektire

74.4

12.17

-

1.32

2.61

1.52

1.85

-

5.58

0.76

0.11

-

-

-

-

-

-

0.01

Egyptionbead

64.75

0.62

-

19.43

' 1.66

7.23

2.53

-

0.31

-

0.02

-

-

-

-

-

1.55

-

Romanbottleglass68.48

2.61

-

19.73

0.77

6.74

0.68

0.29

-

-

0.65

-

-

-

-

-

<0.006

-

Tiffanywindow

glass

43.3

2.0

11.5

0.2

2.7

0.35

0.03

0.09

-.•

0.1

-

0.26

-

-

-

38.93

0.06

-

SRL 165glass

52.86

4.08

6.76

10.85

0.19

1.62

0.70

-

11.74

0.14

2.79

0.02

4.18

0.85

0.66

-

-

0.1

- 7 3 -

I

Figure 22. Hydrotalcite crystals formed on the (a) R7T7 and (b) basaltic glasses;(c) TEM micrograph showing the plate-like morphology of hydrotalcite(R7T7); (d) electron microdiffraction pattern obtained in the previousparticle (2.64 and 1.53 A).

6.

-g-7}7> J

} ^ *A^-£r Am, Pu^ * ^ € 4 i # 3 l - ^Np, "Tc, 129I

Schreiber ^ ^ ^K^9l ^ " ^ ^ € ^ ? 1 -feV^^ ^s)-«:

•i- "l^lfe- - f re)^^-^^ -g-S-^ri, -S-«flJ5E., oxygen fugacity,

[129]. ° l#^r ^^Hff-a- ^-ft-^: -^-e)JiSj-^l- ^ - # ^ MCC-1

(40-90 °C, 1~28 °a)# ^^1^1-^^t-ll, ^^-«.^-woi-^ o.^. ^ ] # ^ ^ 10 ppb

), U(V)

uranyl

^ ( ^ u , 238u,239Pu, ^'Am ^ ^Cm ^ ) 4 Sf^l-CUOa ^ NpO2 ^)-i-

^r 10"6~10"9 g/cm2-dayS

Tokai 4

MCC-1 H ^ H 3711

^##61 1/10-1/100

- 7 5 -

1(0

'O

K>

VO

(0

•10

.10

>o

10

0

i

~*&*-~

-

i i

\

**\

A

\

/

/

1 1

U(V)

\ /

! \

1 1

1 1 1 1©-©'

UflV),

f

4 •

\

2 < 6 8 10 12 14 16

Figure 23. Distribution of uranium redox states.

- 7 6 -

SA/V7)- 1- ^-o. -g-^o^ p H 7 ] .

^7>*1-H.5. <%^ € i ^ ^

Yucca Mountain ^ -g -^4 -frA>t!- S^i6!!^-! Np, Pu, Am ^-^-

^^1B1]>; 7J- ^l-olofl^ smectite-type clay, iron silicate,

uranium silicates, calcium thorium phosphate • •- ^^>o>#°l

^. smectite-type clay, iron silicate[133]). Np

^M-, U, Am, Pu ^ ^

7]- ^ 3717} Hi£31-5.3. Nd^- cfl i A>-g-*l-7lH tb4[96]

Walker ^ ^ r SRP flAi ^ A V ^ *fl fJ-A>^^|7l-i

# pH 4 - 9 ^^C-S. 2 ^ ^ - ^#^O]]A-1 9001^?!

- 7 7 -

# ^ PH

pH 9 1 -g-^^^fe «1^§>^4[47]. Diamond^- Friedman^: a239Pu, ^Np ^ ^U-^r i-g-A]?! -frel

0.03M NaHCO3) 2 -

- 7 8 -

10

Z. 10

3 io

10

10

-A

-6

-7

-8

-9

i i i

-

-

u * * % * »•• *

-

i i i

i

• « *

i

i i

i i

90.Sr

Pu

. 1 * .

I . „

1 I

I

-

-

• • •

I

0 100 200 300 400 500 600 700

Time, <Styi

800 900 1000

Figure 24. Leach rates of metal ions from high iron glass in pH 7buffered.

.L -L ± . s

pH,

-80-

ZL

pH, Eh ^°ll

, pH7>

canistervfl

- 8 1 -

$14. ^ porous medium^]

tb, 711

Sr

fe. Am, Pu

237Np, " T c , 129I

- 8 2 -

iv.

T", KAERI/NEMAC/RR-167/96, 1996.

2. J. R. Moody, Nucl. Chem Waste Manage., 3, 29, 1982.

3. A. Barkatt et al., Nucl. Chem. Waste Manage., 2, 3, 1981.

^ ^ l e } - ^ , 82-85, 1993(4€).

5. w^ig^ <^ " JL^^W O I -A>^^71#S] tfl^|aii|-^ ^ " , KAERI/NEMAC

/AR-6/92, 1992.

6. J. C. Cunnane et al., Mat. Res. Soc. Symp. Proa, 294, p. 225, 1993.

7. J. A. C. Marples, W. Lutze, M. kawanishi, Mat. Res. Soc. Symp.

Proa, 176, 257-282, 1990.

8. P. A. Tempest, Nucl Tech, 52, 415-425, 1981.

9. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, "Introduction to

ceramics", John Wiley and Sons, pp. 95-100, 1976.

10. J. E. Mendel, et al., "Thermal and radiation effects on borosilicate

waste glasses", IAEA-SM-207/100, IAEA, 2, 49-60, 1976.

11. M. A. H. Reimus, G. F. Piepel, G. B. Mellinger, " West Valley Glass

product qualification durability studies: Effects of composition, redox

state, heat treatment, and groundwater", PNL-SA-15579, 1988.

12. H. Mitamura, T. Banba, T. Murakami, Nucl. Chem. Waste Manage.,

6(3/4), 223-231, 1986.

13. C. M. Jantzen, D. F. Bickford, Mat. Res. Soc. Symp. Proa, 44,

135-146, 1985.

- 8 3 -

14. A. C. Buechele, X. Feng, H. Gu, I. L. Pegg, Mat. Res. Soc. Symp.

Proa, 176, 393-402, 1990.

15. A. C. Buechele et al., Mat. Res. Soc. Symp. Proc, 212, 141-152,

1991.

16. T. V. Palmiter, I. Joseph, L. D. Pye, Mat. Res. Soc. Symp. Proc,

212, 153-158, 1991.

17. C. M. Jantzen, D. F. Bickford, D. G. Karraker, Adv. Ceram., 8, 30-38,

1984.

18. V. J. Jain, S. M. Barnes, Ceram. Trans. 23, 251-257, 1991.

19. Y. I. Matyunin, A. V. Demin, M. I. Fedorova, Atomic Energy, 81(4),

706-709, 1996.

20. E. Vernaz, A. Loida, G. Malow, J. A. C. Marples, H. J. Matzke,

"Long-term stability of high-level waste forms", CEA-CONF-10429,

1990.

21. Kazuhiro Kawamura, Jin Ohuchi, "Characterization of highly waste

loaded glass for HLW", CONF-941075, 1995.

22. M. J. Plodinec, G. G. Wicks, Mat. Res. Soc. Symp. Proc., 333,

148-158, 1994.

23. G. F. Piepel, "A statistical approach for identifying nuclear waste

glass compositions that will meet quality and processability

requirements", PNL-SA18146, 1990.

24. R. D. Peters, C. C. Chapman, J. E. Mendel, C. G. Williams,

"Database for waste glass composition and properties",

CONF-930906-19, 1993.

25. A. A. Kruger, "Glass science tutorial: Lecture No. 7, Waste glass

-84-

technology for Hanford", Funding Organization: USDOE, Washington,

DC, p. 496, 1995.

26. W. G. Ramsey, G. G. Wicks, "WIPP/SRL in-situ tests: Compositional

correlations of MIIT waste glass", DP-MS-89-78, 1989,

27. J. L. Rasce, T. J. Overcamp, C. A. Cicero, "The effect of

compositional parameters on the TCLP and PCT durability of

environmental glasses.", CONF-9509266-1, 1995.

28. E. Y. Vernaz, J. L Dussossoy, "Current state of knowledge of nuclear

waste glass corrosion mechanisms: the case of R7T7 glass", Applied

Geochemistry (suppl. 1), 13-22, 1992.

29. J. E. Mandel, "Nuclear waste materials handbook - Waste form test

method", DOE/TIC-11400, 1981.

30. C. M. Jantzen, N. E. Bibler, " Product consistency test (PCT) for

DWPF glass: Part I. Test development and protocol", DPST-87-575,

1987.

31. B. Grambow, Mat. Res. Soc Symp. Proa, 44, 15-21, 1985.

32. Advocat T. " Les mecanismes de corrosion en phase aqueuse du

verre nucleaire R7T7. Approche experimentale: Essai de modelisation

thermodynamique and cinetique", PhD thesis, Universite Louis

Pasteur, Strasbourg, France, 1991.

33. S. Gin, Mat. Res. Soc. Symp. Proc, 412, 189-196, 1996.

34. J. C. Cunnane, J. M. Allison, Mat. Res. Soc. Symp. Proa, 333, 3-14,

1994.

35. R. D. Peters, S. C. Slate, PNL-3948, 1981.

36. W. B. White, "Corrosion of glass, ceramic and ceramic

- 8 5 -

superconductor", Noyes Publ., Park Ridge, New Jersey, 1992.

37. W. L. Ebert, J. K. bates, Nucl. TechnoL, 104, 372-84, 1993.

38. L. Tratingnon, J. C. Petit, G. Delia, J. C. Dvan, / . Nucl. Mater, 190,

228-246, 1992.

39. E. Y. Vernaz, Mat. Soc. Symp. Proc, 257, 37-48, 1992.

40. J. K. Bates, W. L. Ebert, T. J. Gerding, "Proc. of Int. High-Level

Radioactive Waste Management Conf.", Las Vegas, NV, April 8-12,

p. 1095, 1990.

41. William. L. Bourcier, Mat. Res. Soc. Symp. Proc., 333, 69-82, 1994.

42. Tsunetaka Banba, "Leaching model of nuclear waste glass", Journal-

of-Nuclear-Science-and-Technology-Tokyo-Japan, 23(12), 1075-1082,

1986.

43. B. Grambow, D. M. Strachan, Mat Res. Soc. Symp. Proc., 112,

713, 1987.

44. D. I. Parkhurst, "PHREEQE - A computer code for geochemical

calulations", USGS/wri-80-96, Government Printing Office, 1980.

45. "Radioactive waste management and disposal", ed. L. Cecille, Elsevier

Science Publishing Co., 302-315, 1991.

46. K. M. Olson, S. C. Marschman, G. F. Piepel, G. K. Whiting, "Product

consistency testing of West Valley compositional variation glass".,

PNL-10191, 1994.

47. ^Hfl^- S], "JL^$\ wo>A]-^^7]^. :&s1-&£ Qty' KAERI-NEMAC

/Ar-14/93, 1993.

48. D. E. Clark, R. L. Schulz, G. G. Wicks, A. R. Lodding, Mat Res.

Soc. Symp. Proa, 333, 107-122, 1994.

-86

49. J. K. Bates, et al., "Radioactive waste processing of high-level

radioactive wastes. Evaluation of factors anticipated to affect waste

glass reaction during repository disposal", ANL-95/20, 1995.

50. B. Grambow, Mat. Res. Soc. Symp. Proa, 333, 167-181, 1994.

51. K. B. Harvey, C. D. Litke, C.A. Larocque, Phys. Chem. Glasses,

33(2), 43-50, 1992.

52. "Radioactive waste management and disposal", ed. L. Cecille, Elsevier

Science Publishing Co., 275-286, 1991.

53. J. Caurel, E. Vermaz, D. Beaufort, Mat Res.,. Soc. Symp. Proc, 176,

309-317, 1990.

54. G. Ramsey, C. M. Jantzen, "Application of the hydration

thermodynamic model for glass durability under saturated tuff

repository conditions", WSRC-PR-90-26, 1990.

55. R. J. Lemire, F. Garisto, Radiochim Acta, 58/59, 37-44, 1992.

56. W. Lutze, B. Grambow, Radiochim Acta, 58/59, 3-7, 1992.

57. Jing C. Sang, et al., Mat. Res. Soc. Symp. Proc, 333, 519-524, 1994.

58. K. Ishiguro, et al., Nuclear Engineering and Design, 116, 61-70,

1989.

59. D. G. Coles, Nucl. Chem. Waste Manage., 2, 245, 1981.

60. G. G. Wicks, P. E. O'Rourke and P. G. Whitkop, "The chemical

durability of Savannar River Plant waste glass as a function of

groundwater pH", DP-MS-81-104, 1982.

61. B. Grambow, R. Muller, A. Rother, W. Lutze, Radiochim. Acta,

52/53, 501-506, 1991.

62. N. E. Bibler, C. M. Jantzen, Mat. Res. Soc. Symp. Proa, 84, 47-66,

87-

1987.

63. Y. Inagaki et al., Mat. Res. Soc. Symp. Proa, 456, 213-220, 1997.

64. K. G. Knauss, et al., Mat. Res. Soc. Symp. Proa, 176, 371-381, 1990.

65. J. Caurel, E. Vermaz, D. Beaufort, Mat. Res. Soc. Symp. Proa, 176,

309-317, 1990.

66. J. A. Stone, Nucl Chem Waste Manage., 2, 113-118, 1981.

67. C. Pescatore, A. J. Machiels, "Effects of water flow rates on

leaching, in geochemical behavior of disposed radioactive waste", G.

S. Barney, (ed.), Washington, DC (USA), American Chemical Society,

349-358, 1984.

68. X. Feng, et al., "Effects of S/V on secondary phase formation on

waste glasses", D. Bickford, S. Bates, V. Jain, G. Smith, (eds.),

CONF-940416, 235-254, 1994.

69. X. Feng, et al., Nuclear Technology, 104(2), 193-206, 1993.

70. N. Godon, E. Vernaz, J. P.-Mestre, "Testing the alteration of waste

glasses under geological storage conditions task 3 characterization of

radioactive waste forms a series of final reports(1985-89) No 18",

EUR-13606EN, 1991.

71. L. Wang, "Transuranium elements leaching from simulated HLW

glasses in synthetic interstitial claywater", INIS-mfl3759, 1992.

72. T. Banba, et al., "Effects of alpha decay on the properties of actual

nuclear waste glass", CONF-941075, 1397-1404, 1995.

73. N. E. Bibler, J. A. Kelley, "Effect of internal alpha radiation on

borosilicate glass containing Savannah River Plant Waste", DP-1482,

May 1978.

74. G. L. McVay et al., Nucl. Chem Waste Manage., 2, 103, 1981.

75. W. L. Ebert, J. K. Bates, T. A. Jr. Abrajano, T. J. Gerding, "The

influence of penetrating gamma radiation on the reaction of simulated

nuclear waste glass in tuff groundwater", CONF-890488-12, 1989.

76. Hiroshi Kamizono, et al., "Durability of high-level waste glass in

flowing groundwater under gamma-irradiation" CONF-941075, 1995.

77. C. L. Crawford, N. E. Bibler, "Effects of temperature and radiation on

the results of the nuclear waste glass product consistency leach

test", CONF-930438, 303- 312, 1994.

78. D. O. Russo et al., Mat. Res. Soc. Symp. Proa, 456, 205-212, 1997.

79. D. J. Wronkiewicz, Mat Res. Soc. Symp. Proa, 333, 83-98, 1994.

80. Lars Carlsen, Pia Lassen, Waste Management, 12, 1-6, 1992.

81. J. C. Dran et al., Radiochim. Acta, 58/59, 17-20, 1992.

82. S. Gin, N. Giodon, J. P. Mestre, E. Y. Vernaz, D. Beaufort, Mat. Res.

Soc. Symp. Proa, 333, 565-572, 1994.

83. J. Wei, P. Van Iseghem, Mat. Res. Soc. Symp. Proa, 456, 189-196,

1997.

84. X. Feng, "Surface layer effects on waste glass corrosion",

CONF-931108-19, 1993.

85. A. S. Barinov, M. I. Ojovan, N. V. Ojovan, Mat. Res. Soc. Symp.

Proc, 412, 265-270, 1996.

86. J. K. Bates, T. J. Gerding, A. B. Woodland, Mat. Res. Soc. Symp.

Proa, 176, 347-354, 1990.

87. John K. Bates, Edgar C. Buck, Mat. Res. Soc. Symp. Proa, 333,

41-54, 1994.

- 8 9 -

88. A. L. Kielpinski, "The long-term acceleration of waste glass

corrosion: A preliminary review", WSROTR-95-0306, 1995.

89. W. L. Gong, R. C. Ewing, L. M. Wang, E. Vernaz, J. K. Bates, W.

L. Ebert, Mat. Res. Soc. Symp. Proa, 412, 197-204, 1996.

90. E. C. Buck, "Analytical electron microscopy examination of solid

reaction products in long-term test of SRL 200 waste glasses",

ANL/CMT/CP—79802, 1993.

91. S. B. Xing, A. C. Buechele, I. L. Pegg, Mat. Res. Soc. Symp. Proa,

333, 541-548, 1994.

92. H. Asano, H. Wakamatsu, M. Akashi, "High level radioactive

waste management", Proceeding of the Third International

Conference, American Nuclear Society, Inc., 2, 1658-69, 1992.

93. Tsuyoshi Imakita, Kaoru Sasakawa, Fumio Matsuda, Ryutaro Wada,

Mat. Res. Soc. Symp. Proc, 333, 573-578, 1994.

94. 3 ^ , " i ^ W ^ l ? ] ! - *!£--£ 3RV S.£\ W ^ M J / S H I ^ ^

# -Aa! 'ST1" PhD thesis, Chungnam University Taejon, Korea, 1997.

95. Y. Inagaki, A. Ogata, H. Furuya, K. Idemitsu, T. Banba, T. Maeda,

Mat Res. Soc. Symp. Proc, 412, 257-264, 1996.

96. Susumu Muraoka, Muneaki Sexoo, Yoshii Kobayashi, "Progress

report on safety research on high-level waste management for the

period April 1989 to march 1990", JAERI-M-91-019, 1991.

97. Kaoru Sasakawa, Tsuyoshi Imakita, Ryutaro Wada, Fumio Matsuda,

Mat. Res. Soc. Symp. Proc., 333, 579-584, 1994.

98. N. E. Biblerl "Leaching fully radioactive SRP nuclear waste glass in

tuff groundwater in stainless steel vessel", DP-MS-85-141, 1986.

- 9 0 -

99. J. A. Covington, M. A. Molecke, G.G. Wicks, "WIPP/SRL in-situ

tests: MIIT program-The effects of metal package components",

WSRC-MS-91-074, 1991.

100. J. E. Mendel, "Final report of the defense high-level waste

leaching mechanisms program", PNL-5157 (DE84-016737), 1984.

101. H. U. Zwicky, T. H. Graber, R. Grauer, R. Restani, Mat. Res.

Soa Symp. Proa, 294, 134-144, 1993.

102. G. G. Wicks, B. M. Robnett, W. D. Rankin, "Scientific Basis for

Nuclear Waste Management, Vol. V", 15-24, North-Holland, New

York, 1982.

103. N. Goden, E. Y. Vernaz, "Enhancement of the glass corrosion in

the presence of clay minerals: Testing experimental results with an

integrated glass dissolution model", CONF-921131130, 1992.

104. N. Godon et. al., "Radioactive SON 68 18 17 L1C2A2Z1 glass

interaction with environmental materials. Investigation of irradiation

damage in glass specimens by thermoluminescence", EUR-13613,

1992.

105. K. Hara, K. Idemitsu, "Glass properties and source term models

relevant to disposal", IAEA-TECD0O582, 1991.

106. I. G. McKinley, "The near-field geochemistry of HLW disposal in

an argilleous host rock", NEGRA-NTB-88-26, 1989.

107. K. A. Boult, et al, " Radionuclide release from solidified high level

waste task 3 characterization of radioactive waste forms a series of

final report (1985-89) No 19", EUR-13604, 1991.

108. R. B. Heimann, "Effect of cement on radioactive waste-form

- 9 1 -

performance in multicomponent systems tests at 200 °C",

INIS-mf-12730, 1986.

109. C. G. Jr. Namboodri, G. G. Wicks, "SRL in-situ tests in the United

Kingdom: Part 2, Surface analyses of SRS waste glass buried for

one and two years in limestone at Ballidon, UK", WSRC-RP-91-288,

1991.

110. "High level radioactive waste management", Vol. 2, Proceeding of

the international topic meeting, Las Vegas, Nevada, April 8-12,

1103-1109, 1990.

111. J. K. Bates, et al., "Yucca Mountain Project - Argonne National

Laboratory annual progress report, FY 1994. Yucca mountain

prooject", ANL-94/42, 1995.

112. Fernando Bazen, J. H. Rego, R. D. Aines, "Leaching of actinide-

doped nuclear waste glass in a tuff-dominated system",

UCRL-94721, 1987.

113. P. Van lseghem, K. Berghman, K. Lemmens, W. Timmermans,

Wang Lian, "Laboratory and in-situ interaction between simulated

waste glasses and clay task 3 characterization of radioactive waste

forms a series of final reports (1985-89) No 21", EUR-13607, 1992.

114. A. Lodding, P. Van Iseghem, Mat. Res. Soc. Symp. Proa, 412,

229-238, 1996.

115. Pierre PH. Van Iseghem, Mat. Res. Soc. Symp. Proa, 333, 133-144,

1994.

116. P. Van-Iseghem, H. Yamamoto, "The integrated interaction between

high-level waste glass and the near field barriers", BLG638, 1992.

- 9 2 -

117. P. Van-Iseghem, K. Lemmens, M. Aertsens, M. Put, "Interaction

between HLW glass and clay: experiments versus model., Nuclear

Energy Agency, 75 - Paris (France). Validation through model

testing", 203-217, Organisation for Economic Co-Operation and

Development. Paris, France, 1995.

118. J. A. C. Marples, "The European Commissions Round Robin of their

repository system simulation test. A compilation and evaluation of

the results for the granite option", AERE-R-13660, 1989.

119. L. A. Mertens, W. Lutze, Mat. Res., Soc. Symp.. Proa, 176, 267-274,

1990.

120. J. A. C. Marples, W. Lutze, M. Kawanishi and P. van Iseghem, "A

comparison of the behavior of vitrified HLW in repogitories in salt,

clay and granite. II : Results", EUR-12544, 1990.

121. J. P. Williams, G. G. Wicks, D. E. Clark, A. R. Lodding, "Analyses

of SRS waste glass buried in granite in Sweden and salt in the

united states(U)", WSRC-MS-90-370, 1991.

122. E. Vernaz, A. Loida, G. Malow, J. A. C. Marples, H. J. Matzke,

"Long-term stability of high-level waste forms", CEA-CONF-10429,

1990.

123. N. E. Bibler, C. M. Jantzen, Mat Res. Soc. Symp. Proa, 84, 47-66,

1987.

124. James J. Mazer, Mat. Res. Soc. Symp. Proa, 333. 159-165, 1994.

125. J. L. crovisier, J. Honnorez, B. Fritz, J. C. Petit, Appl. Geochem.

Suppl. Issue, 1, 55, 1992.

126. J. S. Luo, W. L. Ebert, J. J. Mazer, J. K. Bates, Mat. Res. Soc.

- 9 3 -

Symp. Proa, 456, 157-163, 1997.

127. J. K. Bates et al., Nucl. Chem Waste Manage., 5, 63, 1984.

128. A. Abdelouas, J. L. Crovisier, W. Lutze, R. Muller, W. Bernotat,

Mat. Res. Soc. Symp. Proa, 333, 513-518, 1994.

129. H. D. Schreiber et al., Physics Chem. Glasses, 26(1), 24, 1985.

130. K. Miyahara, T. Ashida, N. Tsunoda, Y. Yusa, N. Sasaki, "Static

leaching actinides and fission products from fully radioactive waste

glass of HLLW generated in Tokai reprocessing plant", PNCT

N8410 89-009.

131. W. L. Ebert, J. K. Baqtes, E. C. Buck, M. Gong, S. F. Wolf,

"Disposition of actinides released from high-level waste glass",

CONF-940416, 231-241, 1994.

132. D. J. Wronkiewicz, "Effects of radionuclide decay on waste glass

behavior: A critical review", ANL-93/45, 1993.

133. J. A. Fortner et al., Mat. Res. Soc. Symp. Proc, 456, 165-172, 1997.

134. K. Miyahara, T. Ashida, N. Tsunoda, Y. Yusa, N. Sasaki, "Leaching

behavior of actinides and fission products from fully radioactive

waste glass of HLLW generated in Tokai reprocessing plant"., E.

Warnecke, R. Odoj, R. Simon (eds.). Requirements for waste

acceptance and quality control. Proceedings, 595-607, 1990.

- 9 4 -

•*i ^1 ^§ i i . °<£ ^\

KAERI/AR-483/98

INIS ^ ^ | 2 =

(TR, AR-?] ^ - T - *r*1*V)

s T1 *> s * *1 *

sfl °1 -1 104 p. «*( v), a * > 3 71

1998. 2

26 Cm.

^ U C V ), cfl^|«l( ), _ iJ-UliJ

* * (15-20W)

§-^)j^]7l-g- A]-g-oJ] oj.

^•^r 2:A>§]-^nf. SE^

(1013"<>|^flil)

1*11 ^r*5«}^

si ^ # ° 1 € -^ -f- l ifl«

o)]A] ^•Aj'Q-

- « # A 1 3 3 |

,,^ ^

7^«^^^A,

-]•<*} 7l^S)-5ftcf- -^l^l^r^i ^ ^ 5J pH&

o) ^ § - « l H , J1 -J>11 S.-T-E} -n-fr^l "S"A

* • . *^a**l. *#***!. aifl^yi*. *!•*. 1 4

h Eh, -£-£5!]- <y-

5J Bj 3 •*)-.£] Aj

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.Sponsoring Org.

Report No.Stamdard Report No. INIS Subject Code

KAERI/AR-483/98

Title/

Subtitle

Leach Behavior of High-Level Borosilicate Glasses under Deep Geological

Environment

Project Manager

and DepartmentChun, Kwan Sik ( Engineered Barrier Developement )

Researcher and

DepartmentKim, Seung Soo ; Park, Hyun Soo ( Engineered Barrier Developement)

Publication

PlaceTaejon Publisher KAERI

Publication

Date1998. 2.

Page 103 p. 111. & Tab. Yes( V ), No ( ) Size 26 Cm.

Note

Classified Open( V ), Restricted( ),

Class DocumentReport Type State-of-the-Art Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

This report presents an overview of the activities in high-level radioactive waste

glass which is considered as the most practicable form of waste, and also is intended to

be use in the disposal of national high-level radioactive waste in future.

Leach theory of waste glass and the leach effects of ground water, metal barrier,

buffer materials and rocks on the waste glass were reviewed.

The leach of waste glass was affected by various factors such as composition, pH

and Eh of ground water, temperature, pressure, radiation and humic acid. The

crystallization, crack, weathering and the formation of altered phases of waste glass

which is expected to occur in real disposal site were reviewed. The results of leaching

in laboratory and in-situ were compared. The behaviors of radioactive elements leached

from waste glass and the use of basalt glass for the long-term natural analogue of waste

glass were also written hi this report.

The appraisal of durability of borosilicate waste glass as a waste media was

performed from the known results of leach test and international in-situ tests were

introduced.Subject Keywords(About 10 words)

leach, high-level, waste glass, borosilicate, geology,


Recommended