+ All Categories
Home > Documents > Lead Controller Design

Lead Controller Design

Date post: 06-Jan-2016
Category:
Upload: zavad
View: 40 times
Download: 3 times
Share this document with a friend
Description:
Lead Controller Design. p lead. z lead. 20log(Kz lead /p lead ). Lead Design. From specs => PM d and w gcd From plant, draw Bode plot Find PM have = 180 + angle(G(j w gcd ) D PM = PM d - PM have + a few degrees - PowerPoint PPT Presentation
44
lead lead p s z s K s C ) ( Lead Controller Design 0 0 K z p lead lead lead lead p j z j K j C ) ( 0 ) ( tan ) ( tan ) ( ) ( ) ( 1 1 lead lead lead lead p z p j z j j C
Transcript
Page 1: Lead Controller Design

lead

lead

ps

zsKsC

)(

Lead Controller Design

00 Kzp leadlead

lead

lead

pj

zjKjC

)(

0)(tan)(tan

)()()(

11

leadlead

leadlead

pz

pjzjjC

Page 2: Lead Controller Design

101520253035404550

Mag

nit

ud

e (d

B)

10-2

10-1

100

101

102

103

0

30

60

90

Ph

ase

(deg

)Bode Diagram

Frequency (rad/sec)

zlead

plead

leadlead zp

20log(Kzlead/plead)lead

leadz

p

)(tan)(tan 11max lead

lead

lead

lead

pz

zp

Page 3: Lead Controller Design
Page 4: Lead Controller Design

Lead Design • From specs => PMd and gcd

• From plant, draw Bode plot

• Find PMhave = 180 + angle(G(jgcd)

• PM = PMd - PMhave + a few degrees

• Choose =plead/zlead so that max =PM and it happens at gcd

1gcdgcdgcd

gcdgcd

max

max

)/()()(

*,/

sin1

sin1

leadlead

leadlead

pjjGzjK

pz

Page 5: Lead Controller Design

Lead design example

• Plant transfer function is given by:• n=[50000]; d=[1 60 500 0];

• Desired design specifications are:– Step response overshoot <= 16%– Closed-loop system BW>=20;

Page 6: Lead Controller Design

n=[50000]; d=[1 60 500 0];figure(1); margin(n,d);Mp = 16/100; zeta =0.5; PMd = 100*zeta + 3;BW=20;w_gcd = BW*0.7;PM = pi+angle(polyval(n,j*w_gcd)/polyval(d,j*w_gcd));phimax= PMd*pi/180-PM;alpha=(1+sin(phimax))/(1-sin(phimax));zlead= w_gcd/sqrt(alpha);plead=w_gcd*sqrt(alpha);K=sqrt(alpha)/(abs(polyval(n,j*w_gcd)/polyval(d,j*w_gcd)));ngc = conv(n, K*[1 zlead]);dgc = conv(d, [1 plead]);figure(1); hold on; margin(ngc,dgc);hold off;[ncl,dcl]=feedback(ngc,dgc,1,1);figure(2); step(ncl,dcl);figure(3); margin(ncl*1.414,dcl);

Page 7: Lead Controller Design

-100

-50

0

50M

agn

itu

de

(dB

)

10-1

100

101

102

103

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 13.8 dB (at 38.3 rad/sec) , Pm = 53 deg (at 14 rad/sec)

Frequency (rad/sec)

Before designAfter design

Page 8: Lead Controller Design

-150

-100

-50

0

50M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-270

-180

-90

0

Ph

ase

(deg

)

Bode DiagramGm = 8.8 dB (at 38.3 rad/sec) , Pm = 40.6 deg (at 25.2 rad/sec)

Frequency (rad/sec)

Closed-loop Bode plot

Magnitude plot shifted up 3dBSo, gc is BW

Page 9: Lead Controller Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 10: Lead Controller Design

n=[50]; d=[1/5 1 0];figure(1); clf; margin(n,d); grid; hold on;Mp = 20/100; zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));PMd = zeta * 100 + 10;ess2ramp= 1/200; Kvd=1/ess2ramp;Kva = n(end)/d(end-1); Kzp = Kvd/Kva;figure(2); margin(Kzp*n,d); grid;[GM,PM,wpc,wgc]=margin(Kzp*n,d);w_gcd=wgc; phimax = (PMd-PM)*pi/180;alpha=(1+sin(phimax))/(1-sin(phimax));z=w_gcd/sqrt(alpha);p=w_gcd*sqrt(alpha);ngc = conv(n, alpha*Kzp*[1 z]); dgc = conv(d, [1 p]);figure(3); margin(tf(ngc,dgc)); grid;[ncl,dcl]=feedback(ngc,dgc,1,1);figure(4); step(ncl,dcl); grid;figure(5); margin(ncl*1.414,dcl); grid;

Page 11: Lead Controller Design

-40

-20

0

20

40

60M

agn

itu

de

(dB

)

10-1

100

101

102

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 18 deg (at 15.4 rad/sec)

Frequency (rad/sec)

Page 12: Lead Controller Design

-20

0

20

40

60

80M

agn

itu

de

(dB

)

10-1

100

101

102

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 9.04 deg (at 31.4 rad/sec)

Frequency (rad/sec)

Page 13: Lead Controller Design

-100

-50

0

50

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 44.6 deg (at 63.3 rad/sec)

Frequency (rad/sec)

Page 14: Lead Controller Design

0 0.05 0.1 0.15 0.2 0.250

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 15: Lead Controller Design

-80

-60

-40

-20

0

20M

agn

itu

de

(dB

)

100

101

102

103

104

-180

-135

-90

-45

0

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 55.8 deg (at 104 rad/sec)

Frequency (rad/sec)

Page 16: Lead Controller Design

-100

-50

0

50

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 44.6 deg (at 63.3 rad/sec)

Frequency (rad/sec)

Page 17: Lead Controller Design

n=[50]; d=[1/5 1 0];figure(1); clf; margin(n,d); grid; hold on;Mp = 20/100; zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));PMd = zeta * 100 + 10;ess2ramp= 1/200; Kvd=1/ess2ramp;Kva = n(end)/d(end-1); Kzp = Kvd/Kva;figure(2); margin(Kzp*n,d); grid;[GM,PM,wpc,wgc]=margin(Kzp*n,d);w_gcd=wgc; phimax = (PMd-PM)*pi/180;alpha=(1+sin(phimax))/(1-sin(phimax));z=w_gcd/alpha^.25; %sqrt(alpha);p=w_gcd*alpha^.75; %sqrt(alpha);ngc = conv(n, alpha*Kzp*[1 z]); dgc = conv(d, [1 p]);figure(3); margin(tf(ngc,dgc)); grid;[ncl,dcl]=feedback(ngc,dgc,1,1);figure(4); step(ncl,dcl); grid;figure(5); margin(ncl*1.414,dcl); grid;

Page 18: Lead Controller Design

-40

-20

0

20

40

60M

agn

itu

de

(dB

)

10-1

100

101

102

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 18 deg (at 15.4 rad/sec)

Frequency (rad/sec)

Page 19: Lead Controller Design

-20

0

20

40

60M

agn

itu

de

(dB

)

10-1

100

101

102

-180

-150

-120

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 9.04 deg (at 31.4 rad/sec)

Frequency (rad/sec)

Page 20: Lead Controller Design

-50

0

50

Mag

nit

ud

e (d

B)

10-1

100

101

102

103

104

-180

-150

-120

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 52.3 deg (at 50.1 rad/sec)

Frequency (rad/sec)

Page 21: Lead Controller Design

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 22: Lead Controller Design

-80

-60

-40

-20

0

20M

agn

itu

de

(dB

)

100

101

102

103

104

-180

-135

-90

-45

0

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 77.5 deg (at 82.2 rad/sec)

Frequency (rad/sec)

Page 23: Lead Controller Design

-100

-50

0

50

Mag

nit

ud

e (d

B)

10-1

100

101

102

103

104

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = 52.3 deg (at 50.1 rad/sec)

Frequency (rad/sec)

Page 24: Lead Controller Design

n=[1]; d=[1/5/200 1/5+1/200 1 0];figure(1); clf; margin(n,d); grid; hold on;zeta = 0.4; PMd = 100*zeta + 3;ess2ramp= 0.01; Kvd=1/ess2ramp;Kva = n(end)/d(end-1); Kzp = Kvd/Kva;figure(1); margin(Kzp*n,d); grid;[GM,PM,wgc,wpc]=margin(Kzp*n,d);w_gcd=wgc; phimax = (PMd-PM)*pi/180;alpha=(1+sin(phimax))/(1-sin(phimax));z=w_gcd/alpha^.25; %z=w_gcd/sqrt(alpha);p=w_gcd*alpha^.75; %p=w_gcd*sqrt(alpha);ngc = conv(n, alpha*Kzp*[1 z]); dgc = conv(d, [1 p]);figure(1); margin(tf(ngc,dgc)); grid;[ncl,dcl]=feedback(ngc,dgc,1,1);figure(4);step(ncl,dcl); grid;figure(5); margin(ncl*1.414,dcl); grid;

Page 25: Lead Controller Design

-200

-100

0

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 6.24 dB (at 31.6 rad/sec) , Pm = 6.51 deg (at 22 rad/sec)

Frequency (rad/sec)

Page 26: Lead Controller Design

-150

-100

-50

0

50

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 19.3 dB (at 113 rad/sec) , Pm = 36.1 deg (at 27 rad/sec)

Frequency (rad/sec)

Page 27: Lead Controller Design

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 28: Lead Controller Design

-150

-100

-50

0

50M

agn

itu

de

(dB

)

100

101

102

103

104

-270

-180

-90

0

Ph

ase

(deg

)

Bode DiagramGm = 15.3 dB (at 113 rad/sec) , Pm = 49.9 deg (at 46.5 rad/sec)

Frequency (rad/sec)

Page 29: Lead Controller Design

-200

-100

0

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 19.3 dB (at 113 rad/sec) , Pm = 36.1 deg (at 27 rad/sec)

Frequency (rad/sec)

Page 30: Lead Controller Design

n=[1]; d=[1/5/200 1/5+1/200 1 0];figure(1); clf; margin(n,d); grid; hold on;zeta = 0.4; PMd = 100*zeta + 10;ess2ramp= 0.01; Kvd=1/ess2ramp;Kva = n(end)/d(end-1); Kzp = Kvd/Kva;figure(1); margin(Kzp*n,d); grid;[GM,PM,wgc,wpc]=margin(Kzp*n,d);w_gcd=wgc; phimax = (PMd-PM)*pi/180;alpha=(1+sin(phimax))/(1-sin(phimax));z=w_gcd/alpha^.25; %z=w_gcd/sqrt(alpha);p=w_gcd*alpha^.75; %p=w_gcd*sqrt(alpha);ngc = conv(n, alpha*Kzp*[1 z]); dgc = conv(d, [1 p]);figure(1); margin(tf(ngc,dgc)); grid;[ncl,dcl]=feedback(ngc,dgc,1,1);figure(4);step(ncl,dcl); grid;figure(5); margin(ncl*1.414,dcl); grid;

Page 31: Lead Controller Design

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 32: Lead Controller Design

-200

-100

0

100M

agn

itu

de

(dB

)

10-1

100

101

102

103

104

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 20.1 dB (at 133 rad/sec) , Pm = 41.6 deg (at 28.3 rad/sec)

Frequency (rad/sec)

Page 33: Lead Controller Design
Page 34: Lead Controller Design
Page 35: Lead Controller Design
Page 36: Lead Controller Design
Page 37: Lead Controller Design
Page 38: Lead Controller Design
Page 39: Lead Controller Design
Page 40: Lead Controller Design
Page 41: Lead Controller Design
Page 42: Lead Controller Design
Page 43: Lead Controller Design
Page 44: Lead Controller Design

Recommended