+ All Categories
Home > Documents > Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf ·...

Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf ·...

Date post: 30-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
53
Learning LargeScale Social Knowledge Graphs Zhilin Yang, Jie Tang Dept. Computer Science, Tsinghua University
Transcript
Page 1: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  Large-­‐Scale  Social  Knowledge  Graphs  

Zhilin  Yang,  Jie  Tang  Dept.  Computer  Science,  Tsinghua  University  

Page 2: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Large-­‐scale  social  networks  

•  Facebook  – 1.4  billion  acHve  users  in  Quarter  1,  2015  – Tens  of  millions  of  posts  per  day  

•  AMiner  – 39  million  researchers  – 79  million  papers  

•  Large-­‐Scale  social  networks  are  big  informaHon  networks!  

Page 3: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Large-­‐scale  collecHve  knowledge  

•  Freebase  – 44  million  enHHes  – 2.4  billion  facts  

•  YAGO2  – 10  million  enHHes  – 120  million  facts  

•  Wikipedia  – 35  million  enHHes  – 2  million  categories  

Page 4: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Bridge  the  gap  

Andrew  Ng  

Chris  Manning  

Michael  Jordan  

Dan  Klein  

Computer  science  

System  ArHficial  intelligence  

Machine  learning  

Natural  language  processing  

Social  Network   Collec/ve  Knowledge  

Page 5: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Bridge  the  gap  

•  Social  knowledge  graph  •  Why?  – BeZer  mine  large  volume  of  informaHon  – BeZer  user  understanding  and  recommendaHon  – BeZer  search  

Page 6: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

What  we’ve  done  

•  Propose  an  algorithm  GenVector  to  learn  large-­‐scale  social  knowledge  graph  – Weakly  supervision  based  on  unsupervised  techniques  

– MulH-­‐source  Bayesian  embedding  model  

•  Online  deployment  – Online  service  on  AMiner.org  – Online  AB-­‐test  

Page 7: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  – 38,049,189  researchers  (AMiner)  

– 74,050,920  papers  (AMiner)  

– 20,552,544,886  bytes  corpus  (Wikipedia  full  text)  

– 35,415,011  enHHes  (Wikipedia)  

Page 8: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  •  Fast  –  ImplementaHon  opHmizaHon  for  a  60  /mes  speedup  

– From  3  hours  per  iteraHon  to  3  minutes  

Page 9: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  •  Fast  •  Accurate  – Offline  test:  4%  to  15%+  beZer  than  state-­‐of-­‐the-­‐arts  

– Online  test:  decrease  the  error  rate  by  67%  

Page 10: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  •  Fast  •  Accurate  •  Novel  – Bridge  the  gap  between  social  networks  and  collecHve  knowledge  

– Bridge  the  gap  between  topic  models  and  word/network  embedding  

Page 11: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  •  Fast  •  Accurate  •  Novel  •  Real-­‐world  impact  – Online  deployment  on  AMiner  

– 183,876  visits  ever  since  

Page 12: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Key  features  

•  Large-­‐scale  •  Fast  •  Accurate  •  Novel  •  Real-­‐world  impact  

How  did  we  make  it?  

Page 13: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Problem  formulaHon  

•  Input  – A  social  network  – A  collecHve  knowledge  source  – Social  text  interacHon  

•  Output  – For  each  social  network  vertex,  output  related  knowledge  concepts  as  a  ranked  list  

Page 14: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Approach  Social  network   CollecHve  knowledge  

Network  embedding   Knowledge  concept  embedding  

Probability  

MulH-­‐Source  Bayesian  embedding  model  

Unsupervised   Unsupervised  

Social  text  interacHon  

Weakly-­‐supervised  

Page 15: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Approach  Social  network   CollecHve  knowledge  

Network  embedding   Knowledge  concept  embedding  

Probability  

MulH-­‐Source  Bayesian  embedding  model  

Unsupervised   Unsupervised  

Social  text  interacHon  

Weakly-­‐supervised  Leverage  network  structure  

Page 16: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Approach  Social  network   CollecHve  knowledge  

Network  embedding   Knowledge  concept  embedding  

Probability  

MulH-­‐Source  Bayesian  embedding  model  

Unsupervised   Unsupervised  

Social  text  interacHon  

Weakly-­‐supervised  Leverage  collec/ve  knowledge  

Page 17: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Approach  Social  network   CollecHve  knowledge  

Network  embedding   Knowledge  concept  embedding  

Probability  

MulH-­‐Source  Bayesian  embedding  model  

Unsupervised   Unsupervised  

Social  text  interacHon  

Weakly-­‐supervised  

Weakyly  supervision  based  on  unsupervised  techniques  

Page 18: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Approach  Social  network   CollecHve  knowledge  

Network  embedding   Knowledge  concept  embedding  

Probability  

MulH-­‐Source  Bayesian  embedding  model  

Unsupervised   Unsupervised  

Social  text  interacHon  

Weakly-­‐supervised  

Bridge  the  gap!  

Page 19: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Page 20: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Researcher  embedding  

Keyword  embedding  

Page 21: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Generate  a  topic  distribu/on    for  each  document  

Page 22: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Generate  Gaussian  distribu/on  for  each  topic  

Page 23: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Generate  the  topic  for  each  word  

Page 24: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Generate  the  topic  for  each  user  

Page 25: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

T

MulH-­‐source  Bayesian  embeddings  

α θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

T τ r

τ k

Number  of  documents:  D,  number  of  topics:  T,  dimension  of  embedding:  E  

Generate  embeddings  for  keywords  and  users  

Page 26: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Inference  

•  Collapsed  Gibbs  sampling  •  The  joint  probability  

Page 27: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Inference  Dirichlet  distribuHon  

Normal  Gamma  distribuHon  

Page 28: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Inference  GeneraHng  topics  

Page 29: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Inference  GeneraHng  embeddings  

Page 30: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Inference  Full  CondiHonal  

Page 31: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Parameter  update  

Page 32: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Embedding  update  

Page 33: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  framework  

•  IniHalize  •  Burn-­‐in  – Sample  topics  

•  Sampling  – Sample  topics  – Update  parameters  – Update  embeddings  

Page 34: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Experiments  

•  Comparison  methods  – GenVector:  our  method  – GenVector-­‐E:  without  embeddings  – GenVector-­‐M:  without  the  model  – GenVector-­‐R:  use  weakly-­‐supervision  score  only  – AM-­‐base:  AMiner  previous  method  – CountKG:  sort  by  counts  aler  KG  matching  – Author-­‐topic:  Author-­‐topic  model  – NTN:  Neural  tensor  network  

Page 35: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Experiments:  homepage  matching  Methods   Precision@5  

GenVector   77.9402%    

GenVector-­‐E   77.8548%  

GenVector-­‐M   65.5608%  

GenVector-­‐R   72.8549%  

AM-­‐base   73.8189%  

CountKB   54.4832%  

Author-­‐topic   74.4397%  

NTN   65.8911%  

Page 36: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Experiments:  LinkedIn  skill  maching  

Methods   Precision@5  

GenVector   26.8468%  

GenVector-­‐E   26.5765%  

GenVector-­‐M   24.6695%  

GenVector-­‐R   26.3063%  

AM-­‐base   24.5195%  

CountKB   25.4954%  

Author-­‐topic   26.4864%  

NTN   24.3243%  

Page 37: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Experiments:  human  labeling  bad  cases  

Methods   Precision@5  

GenVector   98.8%  

GenVector-­‐R   99.6%  

AM-­‐base   81.2%  

Author-­‐topic   98.4%  

NTN   92.8%  

Page 38: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Online  deployment  

Page 39: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Online  deployment  

Page 40: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

ImplementaHon  opHmizaHon  

•  Faster  computaHon  of  G’()  •  Faster  computaHon  of  log,  exp  and  pow  •  Local  variables  instead  of  in-­‐array  access  •  MulH-­‐thread  parallelizaHon  

Page 41: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Run  Hme  and  convergence  

Page 42: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Online  AB-­‐test  

Leverage  collecHve  intelligence    -­‐-­‐  evaluate  the  methods    -­‐-­‐  leverage  user  feedback  to  improve  the  model  

Page 43: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Online  AB-­‐test  Methods   Precision@10  

GenVector   96.67%  

AM-­‐base   90.00%  

Page 44: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Case  study:  Andrew  Ng  GenVector   AM-­‐base  

Unsupervised  learning   Challenging  problem  

Feature  learning   Reinforcement  learning  

Bayesian  networks   Autonomous  helicopter  

Reinforcement  learning   Autonomous  helicopter  flight  

Dimensionality  reducHon   Near-­‐opHmal  planning  

Page 45: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Case  study:  Dan  Klein  GenVector   AM-­‐base  

Language  models   Machine  translaHon  

Markov  models   Word  alignment  

ProbabilisHc  models   Bleu  score  

Natural  language   Best  result  

Coreference  resoluHon   Language  model  

Page 46: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Case  study:  Xiaoou  Tang  GenVector   AM-­‐base  

Feature  extracHon   Face  recogniHon  

Image  segmentaHon   Face  image  

Image  matching   Novel  approach  

Image  classificaHon   Line  drawing  

Face  recogniHon   Discriminant  analysis  

Page 47: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Take-­‐away  •  Large-­‐scale  

–  Link  38,049,189  researchers  to  35,415,011  knowledge  concepts  

•  Fast  –  60  Hmes  speed  up  

•  Accurate  –  Decrease  the  error  rate  by  67%  online  

•  Novel  –  Bridge  social  networks  and  collecHve  knowledge  –  bridge  topic  models  and  network/word  embedding  

•  Real-­‐world  impact  –  Online  service  with  183,876  visits  

Page 48: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Appendix  

Page 49: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  keyword  embeddings  

•  Skip-­‐gram  

output  

predicHon  

input  

W(t)  

W(t-­‐2)   W(t-­‐1)   W(t+1)   W(t+2)  

Page 50: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  keyword  embeddings  

•  Skip-­‐gram  – Use  the  current  keyword  to  predict  the  context  – ObjecHve  funcHon  

Page 51: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  keyword  embeddings  

•  Scan  through  all  Htles  and  abstracts  – Extract  n-­‐grams  according  to  Wikipedia  concepts  

•  Replace  all  extracted  n-­‐grams  in  the  Wikipedia  corpus  as  a  token  – E.g.,  machine  learning  -­‐>  machine_learning  

•  Train  a  skip-­‐gram  model  on  the  processed  corpus  

Page 52: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Learning  network  embeddings  

•  DeepWalk  – Generate  a  random  walk  sequence  from  each  node  

– Train  a  skip-­‐gram  model  on  the  random  walk  sequence  

Page 53: Learning(Large)Scale(Social( Knowledge(Graphs(kimiyoung.github.io/slides/thesis.pdf · Large)scale(social(networks(• Facebook(– 1.4(billion(acHve(users(in(Quarter(1,(2015(–

Weakly  supervision  •  Given  a  researcher,  extract  all  the  keywords  in  his  papers’  Htles,  denoted  as  k1,  k2,  …,  kn.  

•  Let  ci  be  the  count  of  the  keyword  ki  in  the  author’s  papers’  Htles.  

•  Compute  a  score  for  each  keyword  ki  

•  Select  top-­‐k  keywords  as  weakly-­‐supervised  informaHon  

si = cj cosi, jj∑


Recommended