+ All Categories
Home > Documents > lec-9.stiffness-5.ppt

lec-9.stiffness-5.ppt

Date post: 23-Dec-2015
Category:
Upload: bheemesh-gudelli
View: 216 times
Download: 2 times
Share this document with a friend
73
CHAPTER 5 THE ANALYSIS OF BEAMS & FRAMES 5.1 Introduction For a two-dimensional frame element each node has the capability of translating in two directions and rotating about one axis. Thus each node of plane frame has three degrees of freedom. Similarly three structure forces (vertical force, shear force and bending moment) act at a node. For a two-dimensional beam element each node has two degrees of freedom (one rotation and one translation). Similarly two structure forces (vertical force and a bending moment) act at a node. However in some structures a node has one degree of freedom either rotation or translation. Therefore they are subjected to a moment or a force as the case may be. The structure stiffness matrices for all these cases have been developed in the previous chapter which can be summarized as under:- i) Beams and frames subjected to bending moment ii) Beams and frames subjected to shear force and bending moment iii) Beams and frames subjected to shear force, bending moment and axial forces
Transcript
Page 1: lec-9.stiffness-5.ppt

CHAPTER 5THE ANALYSIS OF BEAMS & FRAMES

5.1 IntroductionFor a two-dimensional frame element each node has the capability of translating in two directions and rotating about one axis. Thus each node of plane frame has three degrees of freedom. Similarly three structure forces (vertical force, shear force and bending moment) act at a node.For a two-dimensional beam element each node has two degrees of freedom (one rotation and one translation). Similarly two structure forces (vertical force and a bending moment) act at a node. However in some structures a node has one degree of freedom either rotation or translation. Therefore they are subjected to a moment or a force as the case may be.

The structure stiffness matrices for all these cases have been developed in the previous chapter which can be summarized as under:-

i) Beams and frames subjected to bending momentii) Beams and frames subjected to shear force and bending momentiii) Beams and frames subjected to shear force, bending moment and

axial forces

Page 2: lec-9.stiffness-5.ppt

Following steps provide a procedure for the determination of unknown deformation, support reactions and element forces (axial forces, shear forces and bending moment) using the force displacement relationship (W=K). The same procedure applies both to determinate and indeterminate structures.

5.2 PROCEDURE TO ANALYSE BEAMS AND FRAMES USING DIRECT STIFFNESS METHOD

5.2.1. Identifying the components of the structural system or labeling the Structures & Elements.As a first step, divide the structure into some finite number of elements by defining nodes or joints. Nodes may be points of supports, points of concentrated loads, corners or bends or the points where the internal forces or displacements are to be determined. Each element extends between the nodes and is identified by arbitrary numbers (1,2,3).

a) Structure Forces and DeformationsAt a node structure forces are assumed to act in their positive direction. The

positive direction of the forces is to the right and upward and positive moments and rotations are clockwise. Start numbering the known forces first and then the unknown forces.

Page 3: lec-9.stiffness-5.ppt

Structures Forces not acting at the jointsStiffness method is applicable to structures with structure forces acting at

nodes only. However if the structure is subjected to concentrated loads which are not acting at the joints or nodal points or if it is subjected to distributed loads then equivalent joint loads are calculated using the following procedure.

i) All the joints are considered to be fixed. [Figure-5(b)]ii) Fixed End Moments (FEM’s) and Reactions are calculated using the

formulae given in the table as annex-Iiii) If more than one FEM and reactions are present then the net FEM and

Reaction is calculated. This is done by algebric summation. [Figure-5(c)]Equivalent structure forces or loads at the joints/nodes are obtained by

reversing the signs of net FEM’s & Reactions. [Figure-5(d)]orReversing the signs of Net FEM’s or reaction gives the equivalent structure

loads on the joints/nodes.v) Equivalent element forces are calculated from these equivalent structure

loads using equation 5.2, 5.3 and 5.4 as explained in article number 5.vi) Final element forces are obtained by the following equation

w = wE + wF

Page 4: lec-9.stiffness-5.ppt

wherewE = Equivalent element forceswF = Element forces while considering the elements to be fixed.

FAB

FAB

M

M

Equivalent Joint Loads

Fixed End Moments & Reactions

Fixed End Moments & Reactions

Actual Structure

Fig.5.1

FBA

( + )R

( + )

1R

R1

( M

R2 3

FBC+

R2

M

R3

R4

FCBM

4R

(d)

A B C

FBA

FBA

RR1

( M

FAB M

M+

2

FBC

3R

FBCM

FCBM

R4

(c)

(b)

FCBM

(a)

Net

(wf)

(WE)

M

Page 5: lec-9.stiffness-5.ppt

b) Element ForcesSpecify the near and far end of each element. Draw free body diagram of

each member showing its local co-ordinate and element forces. Arbitrary numbers can identify all the element forces of the structure.

5.2.2. Calculation of Structure Stiffness Matrices of the membersProperties of each element like its length, cross-sectional area, moment of inertia, direction cosines, and numbers identifying the structure forces acting at its near and far ends can be systematically tabulated. Using values of these parameters in equation 4.53 structure stiffness matrix of each member can be formed by applying equation 4.54,4.55 and 4.56 depending upon the situation.

5.2.3. Formation of Structure Stiffness Matrix of the Entire StructureAccording to the procedure discussed in chapter 3 article 3.1.3 stiffness matrix [K] of the entire structure is formed.

5.2.4. Calculation of Unknown Structure Forces and DisplacementsFollowing relation expresses the force-displacement relationship of the structure in the global coordinate system:

[W] = [K] []Where

[W] is the structure load vector[K] is the structure stiffness matrix[] is the displacement vector

Page 6: lec-9.stiffness-5.ppt

Partitioning the above equation into known and unknown portions as shown below:

W

W

K K

K Kk

u

u

k

11 12

21 22

WhereWk = known loads

Wu = unknown loads

u = unknown

deformationk = known

deformationExpansion of the above leads to the following equation.[Wk] = [K11] [u] + [K12] [k] --------------------- (A)[Wu] = [K21] [u] + K22 k --------------------- (B)As k = 0So, unknown structure displacement [u] can be calculated by

solving the relation (A), which takes the following form. [u] = [K11]-1 [Wk] ---------------------- (C)

Unknown structure force i.e. reactions can be calculated by solving equation B which takes the following form

Wu = [K21] [u] ---------------------- (D)

Page 7: lec-9.stiffness-5.ppt

5.2.5. Calculation of element forces:Finally element forces at the end of the member are computed using the following equation (E).w = k = Tw = kT --------------- (E)

where [w] is the element force vector[kT] is the product of [k] and [T] matrices of the element

where [w] is the element force vector[kT] is the product of [k] and [T] matrices of the element[] is the structure displacement vector for the element.Following are the [kT] matrices for different elements used in the subsequent examples.

Case-I Beam/frame subjected to bending moment only

L

EI

L

EIL

EI

L

EI

kT42

24

Page 8: lec-9.stiffness-5.ppt

Case-II Beams subjected to Shear Forces & Bending Moment

3322

3322

22

22

121266

121266

6642

6624

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

kT

Case-IIIFor frame element subjected to axial force, shear force and bending

moment.

L

lAE

L

lAEm

L

AEm

L

AEL

lAE

L

lAEm

L

AEm

L

AEL

mEI

L

mEI

L

lEI

L

lEI

L

EI

L

EIL

mEI

L

mEI

L

lEI

L

lEI

L

EI

L

EIL

mEI

L

mEI

L

lEI

L

lEI

L

EI

L

EIL

mEI

L

mEI

L

lEI

L

lEI

L

EI

L

EI

kT m

..00

..00

.12.12.12.1266

.12.12.12.1266

.6.6.6.642

.6.6.6.624

333322

333322

2222

2222

Page 9: lec-9.stiffness-5.ppt

Plotting bending moment and shearing force diagrams:

Bending moment and shearing force diagrams of the structure are plotted using the element forces calculated in step-5. Examples on the next pages have been solved using the above-mentioned procedure.

Page 10: lec-9.stiffness-5.ppt

5.3 ILLUSTRATIVE EXAMPLESEXAMPLE 5.1 Solve the beam shown in the figure using stiffness method. Solution

6'

w ,

W , W , W ,

Structure loads and deformations

w ,w ,1 1

1

2 2

11

w , w ,4 4

Element forces and deformation

3 3

2

5

2 2 3 3

5'

10k

5'

2kip/ft

15' 6'

10k

W ,

w ,

3

5 6 6

4 4

Numbering element and structure forces

Page 11: lec-9.stiffness-5.ppt

39

39

5.37

5.37

5.12

5.12

' sFEF10k

2k/ft 2k/ft10k

Fixed end moments

-12.5k'

-37.5k'

-3912.5k'

37.5k'

39

Calculating fixed end moments and equivalent joint loads

39

5.1

25

5.12

Moments End FixedNet W

4

3

2

1

F

F

F

F

W

W

W

W

F

39

Net fixed end moment

-12.5 -25 -1.5

1 32

Page 12: lec-9.stiffness-5.ppt

39

5.1

25

5.12

4

3

2

1

E

E

E

E

W

W

W

W

W K

12.5 25 1.5

1 2 3

Equivalent joint Moments

-39

Equivalent joint loads are :

Calculating structure stiffness matrices of elementFollowing table lists the properties needed to form structure stiffness

matrices of elements.

Member Length (ft) I J

1 10 1 2

2 15 2 3

3 12 3 4

Page 13: lec-9.stiffness-5.ppt

Structure stiffness matrices are:

2

1

2

1

1

2 1 2 1

4.02.0

2.04.0EI

42

24

10

EIK

3

2

3

2

2

3 2 3 2

267.013.0

13.0267.0EI

42

24

15

EIK

4

3

4

3

3

4 3 4 3

34.0167.0

167.034.0EI

42

24

12

EIK

Forming structure stiffness matrix of the entire structureUsing relation [K] = [K]1 + [K]2 + [K]3 structure stiffness matrix of the entire structure is:

Page 14: lec-9.stiffness-5.ppt

4

3

2

1

33.0167.000

167.034.0267.013.00

013.0267.04.02.0

002.04.0

4 3 2 1

EIK

4

3

2

1

33.0167.000

167.0597.013.00

013.0667.02.0

002.04.0

EIK

4 3 2 1

Finding unknown deformations Unknown deformations are obtained by using the following equation

] = [K]-1 [W]

Page 15: lec-9.stiffness-5.ppt

736.132

35

85.24

8.18

1

39

5.1

25

5.12

56.305.125.0123.0

05.108.249.024.0

25.049.088.194.0

123.024.094.097.2

1

39

5.1

25

5.12

33.0167.000

167.0597.013.00

013.0667.02.0

002.04.0

1

4

3

2

1

4

3

2

1

1

4

3

2

1

EI

EI

EI

Page 16: lec-9.stiffness-5.ppt

Calculating element forcesUsing relation [w]=[kT][] we get

88.39

27.10

67.12

325.11

7.13

5.12

1

132.74-

35

24.85

18.8

34.0167.000

167.034.000

0267.013.00

013.0267.00

004.02.0

002.04.0

6

5

4

3

2

1

EIEI

w

w

w

w

w

w

E

E

E

E

E

E

Page 17: lec-9.stiffness-5.ppt

Actual forces on the structure are obtained by superimposing the fixed end reactions on above calculated forces.

0

1.50

1.50

2.26

2.26

0

08.39

27.10

67.12

325.11

7.13

5.12

39

39

5.37

5.37

5.12

5.12

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

E

E

E

E

E

E

F

F

F

F

F

F

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

0

1.50

1.50

2.26

2.26

0

08.39

27.10

67.12

325.11

7.13

5.12

39

39

5.37

5.37

5.12

5.12

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

E6

E5

E4

E3

E2

E1

F6

F5

F4

F3

F2

F1

6

5

4

3

2

1

Page 18: lec-9.stiffness-5.ppt
Page 19: lec-9.stiffness-5.ppt

EXAMPLE 5.2Analyse the frame shown in the figure using stiffness method.

Solution

2kip/ft 50k'

10'

W ,

W ,

W ,

1 1

2 2

3 3

w ,w ,1 1

2 2 w ,3 3

w ,4 4

1

2

Structure forces and deformations

Element forces and deformations

20'

Numbering element forces and deformations

Page 20: lec-9.stiffness-5.ppt

0

0

67.66

67.66

'

4

3

2

1

F

F

F

F

w

w

w

w

sFEM

-16.67k'

Equivalent joint moment

66.67k'

Net fixed end moment

2kip/ft

Finding Fixed end moments and equivalent structure load

0

67.66

67.66

moments end fixedNet

3

2

1

F

F

F

F

W

W

W

W

Equivalent Joint Loads

67.161 EW

Page 21: lec-9.stiffness-5.ppt

Calculating structure stiffness matrices of elements.Following table shows the properties of the elements required to form structure stiffness matrices of elements.

Members Length (ft) i j

1 20 2 1

2 10 1 3

Structure stiffness matrices of both elements are:

1

2

2.01.0

1.02.0

1

2

42

24

201

EI

EIK

3

1

4.02.0

2.04.0

3

1

42

24

102

EI

EIK

2 1 2 1

1 3 1 3

Page 22: lec-9.stiffness-5.ppt

Forming structure stiffness matrix for the entire structure.Structure stiffness matrix for the entire frame is obtained using relation[K] = [K]1 + [K]2

3

2

1

4.002.0

02.01.0

2.01.06.0

EIK

finding unknown deformationUnknown deformation can be calculated by using equation[]u = [K11]-1 [W]k

1 2 3

This can be done by partitioning the structure stiffness matrix into known and unknown deformations and forces

Page 23: lec-9.stiffness-5.ppt

k

u

u

k

KK

KK

W

W

2221

1211

EIEI

W

W

E

E1

0

0

4.002.0

02.01.0

2.01.06.067.16 1

3

2

EIEI

78.27667.16

6.0

111

[u] = [K11]-1[Wu]

Finding Unknown ReactionsUnknown reactions can be calculated using the following equation.

uW uK 21

Page 24: lec-9.stiffness-5.ppt

556.5

78.2

78.27/12.0

1.0

3

2

3

2

E

E

E

E

W

W

EIEIW

W

W=WF+WE

56.5

45.69

556.5

78.2

0

67.66

3

2

W

W

Calculating element forces(Moments)Using relation

kTw

56.5

11.11

56.5

78.2

1

0

27.78-

0

4.02.00

2.04.00

02.01.0

01.02.0

4

3

2

1

EIEI

w

w

w

w

E

E

E

E

Page 25: lec-9.stiffness-5.ppt

OR

56.5

11.11/1

0

78.27

4.02.0

2.04.

56.5

78.2/1

78.27

0

2.01.0

1.02.0

4

3

2

1

EIO

EIw

w

EIEIw

w

E

E

E

E

Actual forces acting on the structure can be found by superimposing the fixed end reactions on the forces calculated above.

EF www

56.5

11.11

11.61

45.69

0

0

667.66

667.66

56.5

11.11

56.5

78.2

4

3

2

1

w

w

w

w

Page 26: lec-9.stiffness-5.ppt

1

2

69.45 61.11 11.11

5.56

69.45

61.11

11.11

5.56

BMDFinal element forces

Page 27: lec-9.stiffness-5.ppt

EXAMPLE 5.3Analyse the shown beam using direct stiffness method.Beam subjected to shear and moment.

15'

2kips

10'

5kip/ft (0.41667kip/inch)

W1 W2 W3

w1

W5W4

w7

w5

w8

w6

W6

w4w3

w2

1 2

Structure forces and deformations

Element forces and deformations

STEP-1 Numbering the forces and deformations

Page 28: lec-9.stiffness-5.ppt

5.37

5.37

1125

1125

1

1

30

30

"

8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

w

w

w

w

w

w

w

w

sFEF

37.5k

Fixed end forces

30k"

37.5k

5kip/ft (0.41667kip/inch)

1k 1k

1125k"

2kips 30k"

-1125k"

Finding fixed end forces and equivalent joint loads

Page 29: lec-9.stiffness-5.ppt

30k" 1095k"

Net fixed end forces

[W]F=Net fixed end moments and forces =

5.37

5.38

1

1125

1095

30

6

5

4

3

2

1

F

F

F

F

F

F

W

W

W

W

W

W

Equivalent joint loads

30k" 1095k"

Page 30: lec-9.stiffness-5.ppt

Equivalent joint loads =

1095

30

2

1

E

E

W

W

Calculating Structure Stiffness Matrices of ElementsFollowing table shows the properties of the elements required to form structure stiffness matrices of elements

ML I J K L

1 120 1 2 4 5

2 180 2 3 5 6

Page 31: lec-9.stiffness-5.ppt

From structural elements

Member-1 1 2 4 5

5

4

2

1

00000694.000000694.000041667.000041667.0

00000694.000000694.000041667.000041667.0

00041667.000041667.0033333.0016667.0

00041667.000041667.0016667.00333.0

1

EIK

Member-2 2 3 5 6

6

5

3

2

00000206.000000206.0000185.0000185.0

00000206.000000206.0000185.0000185.0

000185.0000185.00222.00111.0

000185.0000185.00111.00222.0

2

EIK

Page 32: lec-9.stiffness-5.ppt

Forming structure stiffness matrix for the entire structureStructure stiffness matrix for the entire beam is obtained using the relation[K] = [K]1 + [K]2

6

5

4

3

2

1

00000206.00000206.00000185.000018519.00

00000206.0000009.000000694.0000185.000023148.000041667.0

0000000694.000000694.0000041667.000041667.0

000185.0000185.000222.00111.00

00018519.000023148.000041667.00111.00555.0016667.0

000041667.000041667.00016667.00333.0

6 5 4 3 2 1

EIK

Finding unknown deformationsUnknown deformation can be calculated using equation[u] = [K11]

-1 [Wk]

This can be done by partitioning the structure stiffness matrix into known and unknown deformations and forces.

k

u

u

k

KK

KK

W

W

2221

1211

Page 33: lec-9.stiffness-5.ppt

6

5

4

3

2

1

6

5

4

3

2

1

00000206.00000206.00000185.000018519.00

00000206.0000009.000000694.0000185.000023148.000041667.0

0000000694.000000694.0000041667.000041667.0

000185.0000185.000222.00111.00

00018519.000023148.000041667.00111.00555.0016667.0

000041667.000041667.00016667.00333.0

6 5 4 3 2 1

EI

W

W

W

W

W

W

E

E

E

E

E

E

Using Equation [u] = [K11]-1 [Wk]

5886.22870

2946.105351

1095

30

0555.0016667.0

016667.00333.011

2

1

EIEIFinding Unknown ReactionsUnknown reactions can be calculated using the following equation[W]u = [K]21 []u

235.4

91.0

14.5

86.253

1

5886.22870

2946.10535

00018519.00

00023148.000041667.0

00041667.000041667.0

0111.00

6

5

4

3

EIEI

W

W

W

W

E

E

E

E

Page 34: lec-9.stiffness-5.ppt

W = WE + WF

735.41

41.39

14.4

86.1378

5.37

5.38

1

1125

235.4

91.0

14.5

86.253

6

5

4

3

W

W

W

W

Since all the deformations are known to this point we can find the element forces in each member using the relation [w]m = [kT]m []m

Member-1:

1397.5

1397.5

7647.586

30

0

0

58863.22870

2946.10535

1

00000694.000000694.000041667.000041667.0

00000694.000000694.000041667.0000416667.0

00041667.000041667.0033333.0016667.0

0001667.000041667.0016667.00333.0

4

3

2

1

EIEI

w

w

w

w

E

E

E

E

Superimposing the fixed end forces for member-1 on the above w’s we get

w = wE + wF

Page 35: lec-9.stiffness-5.ppt

1397.6

1397.4

764.616

0

1

1

30

30

1397.5

1397.5

7647.586

30

4

3

2

1

w

w

w

w

73529.41

2647.33

117.1379

764.616

5.37

5.37

1125

1125

23529.4

23529.4

1176.254

2353.508

8

7

6

5

w

w

w

w

23529.4

23529.4

1176.254

2353.508

0

0

0

5886.22870

1

00000206.000000206.0000185.0000185.0

00000206.000000206.0000185.0000185.0

000185.0000185.00222.00111.0

000185.0000185.00111.00222.0

8

7

6

5

EIEI

w

w

w

w

E

E

E

E

FE www

Member 2 :

Superimposing the fixed end forces

Page 36: lec-9.stiffness-5.ppt

OR

EI

EI

w

w

w

w

w

w

w

w

w

E

E

E

E

E

E

E

E

E

1

0

0

0

0

5886.22870

2946.10535

00000206.000000206.00000185.0000185.00

00000206.000000206.00000185.0000185.00

000185.0000185.000222.00111.00

000185.0000185.000111.00222.00

0000000694.000000694.0000041667.000041667.0

000000694.000000694.0000041667.000041667.0

000041667.000041667.000333.001667.0

000041667.000041667.0001667.00333.0

8

7

6

5

4

3

2

1

24.4

24.4

21.254

42.508

14.5

14.5

53.586

30

8

7

6

5

4

3

2

1

E

E

E

E

E

E

E

E

E

w

w

w

w

w

w

w

w

w

w = wE +wF

Page 37: lec-9.stiffness-5.ppt

5.37

5.37

1125

1125

1

1

30

30

24.4

24.4

21.254

42.508

14.5

14.5

53.586

30

8

7

6

5

4

3

2

1

w

w

w

w

w

w

w

w

w

74.41

26.33

2.1379

58.616

14.6

14.4

53.616

0

8

7

6

5

4

3

2

1

w

w

w

w

w

w

w

w

w

Page 38: lec-9.stiffness-5.ppt

Shear Force Diagram Bending Moment Diagram

-4.139-6.139

33.2647

-41.735-248.34

-616.7647

711.432

-1379.117

1 2-4.139

0 616.7647k" 1379.177kip"-616.7647k"

-6.139 33.26 41.735

- - - -++

Page 39: lec-9.stiffness-5.ppt

10'

5'

5'

3k/ft

4k

A

BC

D

6'

EXAMPLE 5.4Analyse the frame by STIFFNESS METHOD

Page 40: lec-9.stiffness-5.ppt

W11,11

W10,10

W12,12

W3,3

W2,2 W5,5

W6,6W1,1 W4,4

W7,7W9,9

W8,8

Structure Forcesand Deformation

Page 41: lec-9.stiffness-5.ppt

w11,11

w9,9 w10,10

w8,8w7,7

w12,12

w3,3

w1,1

w5,5

w6,6

w4,4

w2,2

w17,17

w15,15

w13,13

w14,14w16,16

w18,18

Element Forcesand Deformations

13

2

Page 42: lec-9.stiffness-5.ppt

3k/ft

4k

2k

2k

60k"

60k"

300k" 300k"

15k 15k

1

2

3

0

0

0

0

0

0

0

0

15

15

300

300

2

2

0

0

60

60

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

sFEM'

Fixed End Moments and reactions

Page 43: lec-9.stiffness-5.ppt

2

0

60

0

0

0

0

15

300

2

15

240

12

11

10

9

8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

F

F

F

F

W

W

W

W

W

W

W

W

W

W

W

W

2k240 K"

15k

0

15k

300 K"

Net fixed end moments

[W]F=

Page 44: lec-9.stiffness-5.ppt

2k

240 K"

15k

0

15k

300 K"

0

Equivalent joint loads

[W]E=

0

0

15

300

2

15

240

7

6

5

4

3

2

1

E

E

E

E

E

E

E

W

W

W

W

W

W

W

Page 45: lec-9.stiffness-5.ppt

Finding the structure stiffness matrices of elements.Next we will calculate the structure stiffness matrices for each element using the properties of members tabulated in below where E = 29000 ksi I = 100 inch4 and A = 5 inch2 (same for all members):

Member Length(in.)

l m I J K L M N

1 120 0 1 10 1 11 2 12 3

2 120 1 0 1 4 2 5 3 6

3 72 0 -1 4 7 5 8 6 9

Page 46: lec-9.stiffness-5.ppt

3

12

2

11

1

10

13889.2013889.2000333.1208333.1208

13889.2013889.2000333.1208333.1208

00333.1208333.120800

00333.1208333.120800

333.1208333.120800667.96666333.48333

333.1208333.120800333.48333667.96666

1

K

For member-1 we have

10 1 11 2 12 3

Page 47: lec-9.stiffness-5.ppt

For member-2

6

3

5

2

4

1

333.1208333.12080000

333.1208333.12080000

0013889.2013889.20333.1208333.1208

0013889.2013889.20333.1208333.1208

00333.1208333.1208667.96666333.48333

00333.1208333.1208333.48333667.96666

2

K

1 4 2 5 3 6

Page 48: lec-9.stiffness-5.ppt

For member-3 4 7 5 8 6

9

9

6

8

5

7

4

2356.932356.9300481.3356481.3356

2356.932356.9300481.3356481.3356

00889.2013889.201300

00889.2013889.201300

481.3356481.335600111.161111556.80555

481.3356481.335600556.80555111.161111

3

K

Finding structure stiffness matrix for the entire frame.Using relation [K] = [K]1+[K]2+[K]3 we get the following structure stiffness matrix.

(See next slide)

Page 49: lec-9.stiffness-5.ppt

139.203.1208139.203.1208

3.1208

3.120867.9666633.12083.48333

048.33562356.9348.3356

0189.20130089.20130

48.33561.16111148.3356056.80555

2356.9348.3356568.130148.33563.1208

00003.20343.1208139.203.1208

48.3356056.8055548.33563.120878.2577773.12083.48333

139.203.12083.1208003.1208

3.12080138.203.120847.12283.1208

3.12083.483333.12083.483333.12083.193333

12

11

10

9

8

7

6

5

4

3

2

1

12 11 10 9 8 7 6 5 4 3 2 1

00000000

0000000003.12080

00000000

0002356.930000

000000

0000000

000000

00089.20130

0000

0000047.1228

000000

0000033.1208

K

Page 50: lec-9.stiffness-5.ppt

Finding unknown deformationsUnknown deformation can be calculated using equation

[u] = [K11]–1[Wk]This can be done by partitioning the structure stiffness matrix into known

and unknown deformations and forces.

Unknown deformations can be calculated using the equation ;

[]u=[K11]-1[W]kSolving the above equation we get ,

k

u

u

k

2221

1211

KK

KK

W

W

0

0

15

300

2

15

240

111.161111481.33560556.80555000

481.3356568.130104814.3356333.120800

000278.2034333.1208013889.20333.1208

556.80555481.3356333.1208778.2577770333.1208333.48333

0333.120800722.12280333.1208

0013889.20333.120804718.1228333.1208

00333.1208333.48333333.1208333.1208333.193333

7

6

5

4

3

2

11

Page 51: lec-9.stiffness-5.ppt

Finding Unknown reactions

Unknown reactions can be calculated using the following equation:

001535.

037023.

007682.

001527.

039859.

01202.

00184.

7

6

5

4

3

2

1

42062.1

5242.14

7704.40

42501.3

4707.15

001535.0

037023.0

007682.0

001527.0

039859.0

01202.0

00184.0

000013889.200333.1208

00000333.12080

0000333.12080333.48333

481.33562356.930481.3356000

00889.20130000

12

11

10

9

8

21

E

E

E

E

E

uu

W

W

W

W

W

KW

Page 52: lec-9.stiffness-5.ppt

Now we will superimpose the fixed end reactions on the above calculated structure forces. [W]=[W]E+[W]F

58.0

52.14

23.19

42.3

47.15

2

0

60

0

0

42.1

52.14

77.40

42.3

47.15

12

11

10

9

8

W

W

W

W

W

Finding the unknown element forces.Up to this point all the deformations are known to us, we can find the element forces in each element using relation [w]m = [kT]m[]m For member-1

039859.0

0

01202.0

0

00184.0

0

00333.1208333.120800

00333.12083330.120800

13889.2013889.2000333.1208333.1208

13889.2013889.2000333.1208333.1208

333.1208333.120800667.96666333.48333

333.1208333.120800333.48333667.96666

4

3

6

5

2

1

w

w

w

w

w

w

Page 53: lec-9.stiffness-5.ppt

Equation givesw1 = 40.77 kips-inch c.w.w2 = 129.704 kips-inch c.w.w5 = –1.421 kips Downwardw6 = 1.421 kips Upwardw3 =14.524 kips Rightward w4 = –14.524 kips LeftwardSuperimposing the fixed end reactions in their actual direction we get w1 = 41.0269 – 60 = -18.973 kips-inch c.c.w.w2 = 130.2173 + 60 = 190.2173 kips-inch c.w.w5 = 1.427036 – 2 = -3.1427036 kips Rightward w6 = -1.427036 – 2 =0.57296 kips Rightwardw3 = 14.5289 kips Upwardw4 = -14.5289 kips Downward

Page 54: lec-9.stiffness-5.ppt

For member-2

0370233.0

0398595.0

0076822.0

012024.0

001528.0

001845.0

333.1208333.12080000

333.1208333.12080000

0013889.2013889.20333.1208333.1208

0013889.2013889.20333.1208333.1208

00333.1208333.1208667.96666333.48333

00333.1208333.1208333.48333667.96666

12

11

10

9

8

7

w

w

w

w

w

w

Above equation givesw7 = 109.782 kips-inch c.w.w8 = -53.25353 kips-inch c.c.w.w9 = - 0.47048 kips Downwardw10 = 0.47048 kips Upwardw11 = 3.427 kips Rightward w12 = -3.427 kips Leftward

Page 55: lec-9.stiffness-5.ppt

Similarly for member-2 we have to superimpose the fixed end reactionsw7 = 109.782 – 300 = -190.218 kips-inch c.c.w.w8 = –53.25353 + 300 = 246.746 kips-inch c.w.w9 = –0.471071+15 = 14.5289 kips Upwardw10 = 0.471071 +15 = 15.471 kips Upwardw11 = 3.427 kips Rightward w12 = –3.427 kips LeftwardAnd finally for member-3 we get

0

0370233.0

0

00768219.0

00153523.0

0015278.0

00889.2013889.201300

00889.2013889.201300

2356.932356.9300481.3356481.3356

2356.932356.9300481.3356481.3356

481.3356481.335600111.161111556.80555

481.3356481.335600556.80555111.161111

18

17

16

15

14

13

w

w

w

w

w

w

Page 56: lec-9.stiffness-5.ppt

Solving the above equation we get w13 = -246.74227 kips-inch c.c.w.w14 = 0 kips-inchw15 = 3.427kips Upwardw16 = -3.427 kips Downwardw17 = 15.4711 kips Rightward w18 = -15.4711kips Leftward

PLOTTING THE BENDING MOMENT AND SHEARING FORCE DIAGRAM.

According to the forces calculated above bending moment and shearing force diagrams are plotted below:

Page 57: lec-9.stiffness-5.ppt

-3.427k

14.528k

-15.471k

3.427k

+

+

+ -

Shearing Force Diagram

231.959k"

-246.747k"

-190.218k"

-18.973

15.407k"

Bending moment diagram

3.1427k

+

- -

-

Page 58: lec-9.stiffness-5.ppt

EXAMPLE 5.5 To analyse the frame shown in the figure using direct stiffness method.

40'

10'

10'

3k/ft

Page 59: lec-9.stiffness-5.ppt

W 1 , 1

W 3 , 3

W 2 , 2

W 5 , 5

W 6 , 6 W 8 , 8

W 9 , 9

W 7 , 7

W 4 , 4

Structure Forces and Deformation

w 1 , 1

w 2 , 2

w 5 , 5

w 6 , 6

w 3 , 3

w 4 , 4

Element Forces and Deformation

w 7 , 7

w 11 , 11

w 9 , 9

w 8 ,

w 12 , 12

w 10 , 10

Page 60: lec-9.stiffness-5.ppt

0

0

60

60

4800

4800

0

0

0

0

0

0

12

11

10

9

8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

F

F

F

F

w

w

w

w

w

w

w

w

w

w

w

w

Fixed end moments

0

60

4800

0

0

0

0

60

4800

9

8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

F

W

W

W

W

W

W

W

W

W

4800k"

0

60

4800k"

0

60

[W]F=Net

fixed end forces=

Page 61: lec-9.stiffness-5.ppt

Equivalent joint loads=

0

60

4800

3

2

1

E

E

E

W

W

W

The properties of each member are shown in the table below.E = 29 x 103 ksi , I = 1000 inch4 and A = 10 inch2 are same for all members.

Member Length l m I J K L M N

1 169.7056 inch

0.707 0.707 4 1 5 2 6 3

2 480 inch 1 0 1 7 2 8 3 9

Page 62: lec-9.stiffness-5.ppt

Using the structure stiffness matrix for frame element in general form we get structure stiffness matrix for member-1.

3

6

2

5

1

4

0045.8900045.890804.818804.818064.4272064.4272

0045.8900045.890804.818804.818064.4272064.4272

804.818804.818045.8900045.890064.4272064.4272

804.818804..8180045.8900045.890064.4272064.4272

064.4272064.4272064.4272064.4272666.68353633.341768

064.4272064.4272064.4272064.427233.341768666.683536

1

K

Similarly for member-2 we get,

9

3

8

2

7

1

167.604167.6040000

167.604167.6040000

0015.315.321.75521.755

0015.315.321.75521.755

0021.75521.755667.24166633.120833

0021.75521.75533.120833667.241666

2

K

Page 63: lec-9.stiffness-5.ppt

Calculating the structure stiffness matrix for the entire frame.After getting the structure stiffness matrices for each element we can find the structure stiffness matrix for the whole structure using following relation:

[K]1+[K]2 = [K]

1 2 3 4 5 6 7 8 9

167.60400000167.60400

015.321.755000015.321.755

021.75566.241666000021.75533.120833

0000045.890804.818064.42720045.890804.818064.4272

000804.8180045.890064.4272804.8180045.890064.4272

000064.4272064.427266.683536064.4272064.427233.341768

167.604000045.890804.818064.42721715.1494804.818064.4272

015.321.755804.8180045.890064.4272804.818195.893854.3516

021.75533.120833064.427206.427233.341678064.4272854.351632.925203

9

8

7

6

5

4

3

2

1

K

Page 64: lec-9.stiffness-5.ppt

Finding unknown deformationsUnknown deformation can be calculated using equation [u] = [K11]–1[Wk]This can be done by partitioning the structure stiffness matrix into known and unknown deformations and forces.

k

u

u

k

2221

1211

KK

KK

W

W

Unknown deformations can be calculated using the equation ; [u] = [K11]-1 [Wk]

0

60

4800

1715.1494804.818064.4272

804.818195.893854.3516

064.4272854.3516333.9252031

3

2

1

Solving above equation we get 1 = 0.00669 c.w. 2 = - 0.223186 downward3 = 0.141442 Rightward

Page 65: lec-9.stiffness-5.ppt

4546.85

75539.5

927.976

4417.85

2432.54

716.728

141442.0

223186.0

00669.0

167.60400

015.321.755

021.75533.120833

0045.890804.818064.4272

804.8180045.890064.4272

064.4272064.427233.341768

9

8

7

6

5

4

21

E

E

E

E

E

E

uu

W

W

W

W

W

W

KW

Page 66: lec-9.stiffness-5.ppt

Now we will superimpose the fixed end forces on the above calculated equivalent forces.

W=WE+WF

4546.85

75539.65

927.5776

4417.85

2432.54

716.728

0

60

4800

0

0

0

4546.85

75539.5

927.976

4417.85

2432.54

716.728

9

8

7

6

5

4

W

W

W

W

W

W

Page 67: lec-9.stiffness-5.ppt

Calculating the unknown element forcesAll the deformations are known up to this point, therefore we can calculate the forces in all elements using relation [w] =[kT][]For member-1 we get [w]1=[kT]1[]1

14144.00

22319.00

321.1208321.1208321.1208321.120800

321.1208321.1208321.1208321.120800

34676.5034676.5034676.5034676.50668.6041668.6041

34676.5034676.5034676.5034676.50668.6041668.6041

063.4272063.4272063.4272063.4272665.683536332.341768

063.4272063.4272063.4272063.4272332.341768665.683536

0.00669

0

6

5

4

3

2

1

E

E

E

E

E

E

w

w

w

w

w

w

Solving the above equation we get following values of w’s for the equivalent loading condition provided by member-1 w1E= 729.0578 kip-inch c.w.

w2E= 3015.829 kip-inch c..w.

w3E= –22.066 kip Downward

w4E= 22.0669 kip Upward

w5E= 98.773 kip Rightward

w6E= –98.773 kip Leftward

w = wE+wF

Page 68: lec-9.stiffness-5.ppt

As wF are zero therefore w’s will be having the same values as those of wE ‘s

For member-2 we get [w]2=[kT]2[]2

0

141442.0

0

223186.0

0

00669.0

16667.60416667.6040000

16667.60416667.6040000

001467.31467.3208.755208.755

001467.31467.3208.755208.755

00208.755208.755667.241666333.120833

00208.755208.755333.120833667.241666

12

11

10

9

8

7

E

E

E

E

E

E

w

w

w

w

w

w

solving the above equation we get the structure forces for the equivalent structure loads provided by member-2 w7E= 1785.543 kip-inch c.w.w8E= 977.047 kip-inch c..w.w9E= –5.7553 kip Downwardw10E= 5.7553 kip Upwardw11E= 85.454 kip Rightwardw12E= –85.454 kip Leftward

Page 69: lec-9.stiffness-5.ppt

Superimposing the fixed end forces in their actual direction we get the element forces for the actual loading condition.

w7= 1785.543 – 4800 = -3014.698 kip-inch c.c.w.w8= 977.047 + 4800 = 5776.927 kip-inch c..w.w9= –5.7553 +60 = 54.244 kip Upwardw10= 5.7553 + 60 = 65.754 kip Upwardw11 = 85.454 kip Rightwardw12= – 85.454 kip Leftward

Plotting the bending moment and shearing force diagrams.Bending moment and the shearing force diagram can be drawn according to the element forces calculated above.

Page 70: lec-9.stiffness-5.ppt

-3014.698k" 5776.927k"

54.244k 65.754k

-85.454k85.454k

Page 71: lec-9.stiffness-5.ppt

Shearing force Diagram Bending Moment Diagram

-22.059kip

54.244 kip

-65.7541 kips

263.016 " 729.0578 kip-inch

-3015.829 kip-inch

2870.376 kip-inch

-5797.047 kip-inch

- - --

++

+

Page 72: lec-9.stiffness-5.ppt

a

L

L/2

L

L

A

A

bM

B

L/2wB

A B

L

L

L

A

A

A

L/2w

w B

B

w B

a

L/2

L

MAA

b

L/2

P

P

BMB

MA MB

MA MB

MA MB

MA MB

MA MB

MA MB

2

2

B2

2

AL

bPa M

L

Pab M

2

2

B2

2

AL

bPa M

L

Pab M

12

wL - M

2

A 12

wL M

2

B

2A wL

192

5 - M 2

B wL192

11 M

30

wL - M

2

A 20

wL M

2

B

96

5wL - M

2

A 96

5wL M

2

B

1 -

L

3a

L

Mb - MA

1 -

L

3b

L

Ma M B

Page 73: lec-9.stiffness-5.ppt

TheThe End End


Recommended