+ All Categories
Home > Documents > Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Date post: 14-Dec-2015
Category:
Upload: sarthak-patel
View: 213 times
Download: 0 times
Share this document with a friend
Description:
genetics lecture
32
MCB 2410 Gene,cs Chapter 23 Cancer 10/29/14 Transcrip,onal network governing the angiogenic switch in human pancrea,c cancer PNAS 2007 104: 12890H12895.
Transcript
Page 1: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

MCB$2410$$Gene,cs$Chapter$23$

Cancer'10/29/14$

Transcrip,onal$network$governing$the$angiogenic$switch$in$human$pancrea,c$cancer$

PNAS$2007$104:$12890H12895.$

Page 2: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cancer'

A$group$of$disorders$characterized$by:$

cell'prolifera-on.$

•  Cells$do$not$respond$to$normal$controls$of$cell$division.$

•  Cells$divide$rapidly$and$constantly$=$tumor$growth.$

•  Crowds$normal$cells$and$robs$nutrients.$

•  Advanced$tumors$shed$cells$that$travel$to$other$parts$of$

the$body$=$metastasis.$

Page 3: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cancer'Tumor$forma,on$

•  One$or$more$cell$cycle$signals$disrupted.$

=$abnormally$high$rate$of$prolifera,on$(cell$division).$

•  Gradually$lose$normal$shape$and$form$a$dis,nct$mass$

=$Tumor.$$

Benign'tumor$–$cells$remain$localized.$

'Malignant'tumor$–$cells$invade$other$,ssue.'

Page 4: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cancer'

•  Occurs$in$many$,ssue$types.$

•  public$health$issue.$

•  A$model$to$study$cell$cycle$

control.$

Page 5: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cancer'A$gene,c$disease$

Early$observa,ons$that$cancer$was$gene,c:$

1.  Many$mutagens$also$cause$cancer.$

2.  Many$cancers$have$recurring$chromosomal$

abnormali,es.$

3.  Some$specific$$cancers$run$in$families.$

(i.e.$re-noblastoma)$$$

Page 6: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Many$cancers$have$chromosomal$abnormali,es.$

Spectral$Karyotyping$Fluorescence$in"situ$hybridiza,on$(SKY'FISH)$

(normal$human$karyotype)$

Page 7: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Many$cancers$have$chromosomal$abnormali,es.$

Normal$human$

karyotype$

Karyotype$of$HCC38$cells.$

(derived$from$breast$cancer)$

•  Hypertriploid.$

•  37$structural$

abnormali,es$involving$

all$chromosomes$except$

6$and$16.$

•  Etc…$

h\p://www.path.cam.ac.uk/~pawefish/BreastCellLineDescrip,ons/HCC38.html$

Page 8: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Many$cancers$have$recurring$chromosomal$abnormali,es.$

Nature$421,$440H444(23$January$2003)$

BurkiA’s'lymphoma''has$a$recurring$reciprocal"transloca.on"between$the$qHarms$of$

chromosomes$8$&$14.$

(Also$see$figure$23.11)$

Sarthak Patel
focus on the myc gene its put in a new position and does different shit translocatoin
Page 9: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Knudson’s'mul-step'model'of'cancer.$(1971)$H$Explains$re,noblastoma$

Cancer'is'mul-step.$If$one$or$more$required$muta,ons$are$

inherited,$less$muta,ons$would$be$required$to$produce$cancer.$

Unilateral$

Sporadic$

Bilateral$

Familial$

Sarthak Patel
used be called the 2 hit hypothesisbut is a multistep model2 different formes of retinoblastoma Unilateral: one I gets affected and is rare, very rare, *need mutation 2 times Bilateral: familiarl history of having retonal blastoma, people get 2 I’s in in chromosomes they inheritied 1 bad cancer copy so there’re more prone to cancerthey already have a mutation in place and need 1 additonal mutaiton cancer is a step wise progrmession
Page 10: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Clonal'evolu-on'of$a$tumor.'

Indicates$an$

iden,cal$cell.$1st$muta,on$cell$

predisposed$to$

proliferate$faster.$

2nd$muta,on$causes$

cell$to$divide$rapidly.$

3rd$muta,on$cell$

undergoes$structural$

changes.$

4th$muta,on$causes$

cell$to$divide$

uncontrollably$and$

invade$other$,ssue.$

Most$tumors$arise$from$

soma,c$muta,ons$that$

accumulate$in$a$person’s$

life$span.$

The$rate$of$clonal$evolu,on$depends$on$the$frequency$with$which$new$muta,ons$arise.$

Sarthak Patel
Goal of somatic division is to create 2 identical daughter cels 1st mutation: cell may be replicating too fast and not proofreading itselfthen 2nd mutation —you have a whole lineage of cells with ONLY 2nd mutation— but then other cells have 3rd mutation —then fourth
Page 11: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Many$cancers$are$influenced$by$environmental$factors.$$

Hong$Kong$

Salt$Lake$City,$Utah$

Page 12: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Types'of'cancer'causing'genes:'Oncogenes$=$Mutated$dominantHac,ng$s#mulatory$genes$that$cause$cancer.$

(protoGoncogene'=$oncogene$prior$to$muta,on)$$

Sarthak Patel
oncogones are the genes that are the pedal for cancer protoonocogens can be mutated to for onocognees tumor supresor genes are the breaks for the the oncogoens
Page 13: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Types'of'cancer'causing'genes:'

Tumor'suppressor'genes'=$Mutated$recessiveHac,ng$

inhibitory$genes$that$cause$cancer.$

Page 14: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Loss'of'heterozygosity'People$heterozygous$for$a$tumorHsuppressor$gene$are$predisposed$to$cancer.$

Loss'of'heterozygosity'oien$leads$to$cancer$in$a$person$heterozygous$for$a$tumorHsuppressor$gene.$

Page 15: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cell'Cycle'

Sarthak Patel
focus on the G1/S checkpoint
Page 16: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cell'Cycle'

Kinase$–$an$enzyme$that$adds$a$phosphate$to$a$protein$

'CyclinGdependent'kinases$(CDKs)$–$kinases$that$control$key$events$of$the$cell$cycle.$

'•  CDKs'are$func,onal$only$when$associated$with$a$

cyclin$(another$protein).$

•  Each$cyclin$appears$at$specific$points$in$the$cell$cycle.$

•  When$bound$to$a$CDK,$which$cyclin$is$present$will$

determine$which$protein$the$CDKs$phosphorylate.$

Sarthak Patel
Kinase: regulates the post translational level CDK are particular type of kinase that adds phospates to cyclins will cuase and activation or deactivation
Sarthak Patel
Page 17: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

The$re-noblastoma'protein'helps$control$the$progression$through$

G1/S'checkpoint.$

RB$binds$E2F$and$keeps$it$inac,ve.$

Increasing$conc.$Of$cyclinGDGCDK'and$cyclinGEGCDK'phophorylate$RB.$

Once$phosphorylated,$RB$is$inac,ve$and$releases$E2F.$

E2F$binds$DNA$and$s,mulates$

transcrip,on$of$DNA'replica-on'genes.$

(RB$=$tumor$suppressor)$

Sarthak Patel
E2F: a transcritopn factor that stimulates Dna replication genes when with RB, E2F is unable to bind to the promotor region and intaite DNA replication increasing concnetration of CDK’s will pohspoalte the RB, and by the end of the G1/S cycle they’ll be done phosphtrlatyind and E2F is relaed and interact with promotr for DNA replicatoin RB retinal blasmota: you have TWO (2) mutant forms of RB then it cant bind to E2F. if RB is not bound to e2F then it will just keep replicating DNA—one mutation will still cause binding of rb and e2f but just not as muchneed 2 more full not binding
Page 18: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cell$cycle$progression$is$also$regulated$by$

external'factors.$•  Hormones$and$growth$factors$are$unable$to$pass$through$the$cell$

membrane.$

•  Typically$bind$to$cell$surface$receptors$that$transmit$the$message$

into$the$cell.$

='Signal'transduc-on'pathway.'

Example:$Ras'signal'transduc-on'pathway'

•  Inac-ve'Ras$binds$guanosine$diphosphate$(GDP).$

•  Ac-ve'Ras$binds$guanosine$triphosphate$(GTP).'

Sarthak Patel
growth factors and hormones are examples of external stumultes (External factors) that stimulate pathways you know this bull shit foucus on the GCPR-PI pathayw
Page 19: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Example:$Ras'signal'transduc-on'pathway.'

Binding$of$growth$factor$

causes$conforma,on$change$

and$phosphoryla,on.$

Adaptor$molecules$bind$to$

receptor$and$link$to$Ras.$

Ras$binds$GTP$and$is$

ac,vated.$

Page 20: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Example:$Ras'signal'transduc-on'pathway.'

Ac,vated$Ras$ac,vates$Raf.$

Ac,vated$Raf$ac,vates$MEK.$

Ac,vated$MEK$ac,vates$MAP'kinase.$

Ac,vated$MAP'kinase'moves$

to$nucleus$and$ac,vates$

transcrip,on$factors$that$

s,mulate$transcrip,on$of$

cell$cycle$genes.$

Cascade'of'reac-ons'

Sarthak Patel
know what MAP isactive RAF—. MEK—> MAP kinase (transported to the nucleus and actiaates transcrtiopn factors)
Page 21: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Types'of'cancer'causing'genes:'

Oncogenes$=$Mutated$dominantHac,ng$s#mulatory$genes$that$cause$cancer.$

(protoGoncogene'=$oncogene$prior$to$muta,on)$$

Tumor'suppressor'genes'=$Mutated$recessiveHac,ng$inhibitory$genes$that$cause$cancer.$

DNA'repair'genes'=$muta,ons$in$DNAHrepair$genes$can$

increase$the$likelihood$of$acquiring$muta,ons$in$these$

genes.$

Two$processes$that$control$rate$of$muta,ons$arising$in$cell:$

$1)$The$rate$that$muta,ons$arise$in$replica,on$and$aier.$

$2)$The$efficiency$with$which$errors$are$corrected.$

Sarthak Patel
even if you have an error or mutation there are repair mechanisms that fix it but if the DNA Repoiar genes aren’t working properly then you’llj ust accumlate a bunch of errors
Page 22: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

miRNAs'and'Cancer'A$source$of$cancer….$

A$poten,al$therapy$for$cancer…$

Sarthak Patel
one miRNA can regulate 100s of genes at the same time in cancer, there are different expressions of miRNA, allows to diganose cancer better (where in body, tumor, histology), cancers and look the smae and be in the same poistion but by really different. if miRNA is adjusted.
Page 23: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Cancer'Genome'Project'

Goal$is$to$completely$

sequence$the$genome$of$

500$tumors$in$50$different$

types$of$cancer.$$

Currently:$

71$genomes$complete$or$in$process.$

18$countries.$

Page 24: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Genome'mapping'using$Gene-c'Markers'

•  We$can$use$linkage"analysis"to$iden,fy$disease$loci.$

•  We$iden,fy$gene-c'markers$that$are$linked$to$(inherited$with)$disease.$

•  Gene-c'Marker'=$Any$gene$or$DNA'sequence'that$can$be$used$to$iden,fy$a$loca,on$in$the$genome.$

Page 25: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Single'Nucleo-de'Polymorphism'='SNP'Chromosomes$are$iden,cal$

for$most$of$their$lengths.$

SNPs$are$varia-ons$at$a$single"base.$

Each$set$of$SNPs$

='a'Haplotype'

Page 26: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Restric-on'enzymes$$(restric,on$endonuclease)$

$

•  Isolated$from$bacteria$(viral$defense).$

•  Cut$dsDNA$in$a$sequence4specific4way.$

•  usually$recogni-on'site$is$4$to$8bp$long.$

•  Most$recogni,on$sequences$are$palindromic.$$

Sarthak Patel
cuts double stranded DNA in a speicfic manner can recognize certain parts in a DNA (which are palindromes)like DNA transcription factors
Page 27: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Restric,on$enzymes$

make$two$kinds$of$cuts:$

1)'StaggeredG'or'“s-ckyG”'ends'

$

&$$

2)'Blunt'ends'

(palindromic)'

Sarthak Patel
this is staggered or sticky end cut
Sarthak Patel
this is a blunt end cut, cut right up the middle 2 major restricition enzymes research: cut the DNA with restircution enzyme (manipulation tool) and then repair nicks with DNA ligase
Page 28: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Gel'electrophoresis'

Used$to$separate$

nucleic$acids$based$

on$their$size.$

•  Nucleic$acids$are$‘loaded’$into$a$gel$

matrix$that$is$in$a$

salt$buffer.$

•  An$electrical$charge$is$passed$through$

the$gel.$

•  Nucleic$acids$will$travel$to$the$

posi-ve$pole.$

Sarthak Patel
DNA is negaively charged, dna moves via SIZE (heaver is slower)moves from negiaive side ot poistive side
Page 29: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Wells$for$sample$loading.$

Page 30: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Gel'electrophoresis'

•  Something$is$added$to$DNA$

or$gel$that$allows$

visualiza,on$(e.g.$EtBr,$

radioac,ve$label).$

•  Sample$is$run$alongside$a$

known$size'standard'or$‘ladder’.$

•  Smaller$fragments$‘run’$

faster$than$larger$

fragments.$

(Wells)$

DNA'''''

Moves'''''

This'''''

Direc-on''

“Run to

red”

Big'

Small'

Page 31: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Restric-on'Fragment'Length'Polymorphism'(RFLP)'

Varia-on$in$Restric,on$enzyme$

recogni-on'sequences'results$in$heritable$differences$in$‘cut$

pa\erns’$between$individuals.$

Ancestral$Sequence$had$2$HaeIII$sites.$

Muta,on$(ie.$SNP)$results$in$some$people$having$

2$sites$and$some$people$having$one$site.$

When$treated$with$HaeIII,$each$varia,on$produces$a$different$‘banding’$pa\ern$when$evaluated$with$

Gel$electrophoresis.$

Sarthak Patel
you can test if indivual has a mutation 1. produce 3 cuts 2. makes 2 cuts
Page 32: Lec17_10-29_Cancer_Ch23_1slide(1)-2 copy

Restric-on'Fragment'Length'Polymorphism'(RFLP)'

RFLP’s'can'be'used'to'detect'linkage.'


Recommended