+ All Categories
Home > Documents > Lec2 Transmission Lines

Lec2 Transmission Lines

Date post: 02-Jun-2018
Category:
Upload: gariyak
View: 223 times
Download: 0 times
Share this document with a friend

of 29

Transcript
  • 8/11/2019 Lec2 Transmission Lines

    1/29

    6.976

    High Speed Communication Circuits and Systems

    Lecture 2

    Transmission Lines

    Michael Perrott

    Massachusetts Institute of Technology

    Copyright 2003 by Michael H. Perrott

  • 8/11/2019 Lec2 Transmission Lines

    2/29

    M.H. Perrott MIT OCW

    Maxwells Equations

    General form:

    Assumptions for free space and transmission line propagation- No charge buildup = 0- No free current J = 0

    Note: well only need Equations 1 and 2

  • 8/11/2019 Lec2 Transmission Lines

    3/29

    M.H. Perrott MIT OCW

    Assumptions

    Orientation and direction

    - E field is in x-direction and traveling in z-direction- H field is in y-direction and traveling in z-direction-

    In freespace:

    For transmission line (TEM mode)

    y

    x

    z

    Ex

    Hy

    direction

    of travel

    x

    z

    ExHy

    b

    aydirection

    of travel

  • 8/11/2019 Lec2 Transmission Lines

    4/29M.H. Perrott MIT OCW

    Solution

    Fields change only in time and in z-direction

    - Assume complex exponential solution

  • 8/11/2019 Lec2 Transmission Lines

    5/29

  • 8/11/2019 Lec2 Transmission Lines

    6/29M.H. Perrott MIT OCW

    Solution

    Fields change only in time and in z-direction

    - Assume complex exponential solution

    Implications:

    But, what is the value of k ?

  • 8/11/2019 Lec2 Transmission Lines

    7/29M.H. Perrott MIT OCW

    Evaluate Curl Operations in Maxwells Formula

    Definition

  • 8/11/2019 Lec2 Transmission Lines

    8/29M.H. Perrott MIT OCW

    Evaluate Curl Operations in Maxwells Formula

    Definition

    Given the previous assumptions

  • 8/11/2019 Lec2 Transmission Lines

    9/29M.H. Perrott MIT OCW

    Now Put All the Pieces Together

    Solve Maxwells Equation (1)

  • 8/11/2019 Lec2 Transmission Lines

    10/29

  • 8/11/2019 Lec2 Transmission Lines

    11/29M.H. Perrott MIT OCW

    Now Put All the Pieces Together

    Solve Maxwells Equations (1) and (2)

  • 8/11/2019 Lec2 Transmission Lines

    12/29

    M.H. Perrott MIT OCW

    Connecting to the Real World

    Current solution is complex

    But the following complex solution is also valid

    And adding them together is also a valid solution that

    is now real-valued

  • 8/11/2019 Lec2 Transmission Lines

    13/29

    M.H. Perrott MIT OCW

    Calculating Propagation Speed

    The resulting cosine wave is a function of time AND

    position

    Consider riding one part of the wave

    Velocity calculation

    yx

    z

    direction

    of travel

    z

    tEx(z,t)

  • 8/11/2019 Lec2 Transmission Lines

    14/29

    M.H. Perrott MIT OCW

    Freespace Values

    Constants

    Impedance

    Propagation speed

    Wavelength of 30 GHz signal

  • 8/11/2019 Lec2 Transmission Lines

    15/29

    M.H. Perrott MIT OCW

    Voltage and Current

    Definitions:

    x

    y

    a

    b

    H

    t

    w

    x

    z

    ExHy

    b

    ay

    I

    E

  • 8/11/2019 Lec2 Transmission Lines

    16/29

    M.H. Perrott MIT OCW

    Parallel Plate Waveguide

    E-field and H-field are influenced by plates

    x

    z

    ExHyb

    ay

  • 8/11/2019 Lec2 Transmission Lines

    17/29

    M.H. Perrott MIT OCW

    Current and H-Field

    Assume that (AC) current is flowing

    x

    z

    ExHyb

    ay

    I

    I

  • 8/11/2019 Lec2 Transmission Lines

    18/29

    M.H. Perrott MIT OCW

    Current and H-Field

    Current flowing down waveguide influences H-field

    x

    z

    ExHyb

    ay

    x

    y

    I

    I

    H

  • 8/11/2019 Lec2 Transmission Lines

    19/29

    M.H. Perrott MIT OCW

    Current and H-Field

    Flux from one plate interacts with flux from the other

    plate

    x

    z

    ExHyb

    ay

    x

    y

    I

    I

  • 8/11/2019 Lec2 Transmission Lines

    20/29

    M.H. Perrott MIT OCW

    Current and H-Field

    Approximate H-Field to be uniform and restricted to lie

    between the plates

    x

    z

    ExHyb

    ay

    x

    y

    a

    b

    I

    I

  • 8/11/2019 Lec2 Transmission Lines

    21/29

    M.H. Perrott MIT OCW

    Voltage and E-Field

    Approximate E-field to be uniform and restricted to lie

    between the plates

    x

    z

    ExHyb

    ay

    a

    b

    J

    J

    x

    y

    EV

  • 8/11/2019 Lec2 Transmission Lines

    22/29

    M.H. Perrott MIT OCW

    Back to Maxwells Equations

    From previous analysis

    These can be equivalently written as

    Where

  • 8/11/2019 Lec2 Transmission Lines

    23/29

    M.H. Perrott MIT OCW

    Wave Equation for Transmission Line (TEM)

    Key formulas

    Substitute (2) into (1)

    Characteristic impedance (use Equation (1))

  • 8/11/2019 Lec2 Transmission Lines

    24/29

    M.H. Perrott MIT OCW

    Connecting to the Real World

    Current solution is complex

    But the following solution is also valid

    And adding them together is also a valid solution

  • 8/11/2019 Lec2 Transmission Lines

    25/29

    M.H. Perrott MIT OCW

    Calculating Propagation Speed

    The resulting cosine wave is a function of time AND

    position

    Consider riding one part of the wave

    Velocity calculation

    yx

    z

    direction

    of travel

    z

    tEx(z,t)

  • 8/11/2019 Lec2 Transmission Lines

    26/29

  • 8/11/2019 Lec2 Transmission Lines

    27/29

    M.H. Perrott MIT OCW

    LC Network Analogy of Transmission Line (TEM)

    LC network analogy

    Calculate input impedance

    L

    C

    L

    C

    L

    C

    L

    Zin

  • 8/11/2019 Lec2 Transmission Lines

    28/29

    M.H. Perrott MIT OCW

    How are Lumped LC and Transmission Lines Different?

    In transmission line, L and C values are infinitely

    small

    - It is always true that

    For lumped LC, L and C have finite values

    - Finite frequency range for

    L

    C

    L

    C

    L

    C

    L

    Zin

  • 8/11/2019 Lec2 Transmission Lines

    29/29

    M.H. Perrott MIT OCW

    Lossy Transmission Lines

    Practical transmission lines have losses in their

    conductor and dielectric material

    - We model such loss by including resistors in the LCmodel

    The presence of such losses has two effects on

    signals traveling through the line

    - Attenuation- Dispersion (i.e., bandwidth degradation)

    See Chapter 5 of Thomas Lees book for analysis

    Zin 1/G

    L

    C

    R

    1/G

    L

    C

    R

    1/G

    L

    C

    R LR


Recommended