+ All Categories
Home > Documents > Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers...

Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers...

Date post: 28-Mar-2018
Category:
Upload: vophuc
View: 227 times
Download: 2 times
Share this document with a friend
34
Lecture 1 Complex Numbers Definitions. Let i 2 = 1. i = 1. Complex numbers are often denoted by z . Just as R is the set of real numbers, C is the set of complex numbers. If z is a complex number, z is of the form z = x + iy C, for some x, y R. e.g. 3 + 4i is a complex number. z = x + iy real part imaginary part. If z = x + iy, x, y R, the real part of z = (z ) = Re(z )= x the imaginary part of z = (z ) = Im(z )= y. eg.z =3+4i (z )=3 (z )=4. If z = x + iy, then z (“z bar”) is given by z = x iy and is called the complex conjugate of z . eg. If z =3+4i, then z =3 4i. Example. Solve x 2 2x +3=0. x = (2)± (2) 2 4(1)(3) 2(1) = 2± 8 2 = 2±2 2 2 =1 ± 2 i.
Transcript
Page 1: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 1

Complex NumbersDefinitions.

Let i2 = −1.

∴ i =√−1.

Complex numbers are often denoted by z.

Just as R is the set of real numbers, C is the set of complex numbers. If z is a complexnumber, z is of the form

z = x + iy ∈ C, for some x, y ∈ R.

e.g. 3 + 4i is a complex number.

z = x + iy↑ ↖

real part imaginary part.If z = x + iy, x, y ∈ R,

the real part of z = �(z) = Re(z) = x

the imaginary part of z = �(z) = Im(z) = y.

eg. z = 3 + 4i

�(z) = 3

�(z) = 4.

If z = x + iy, then z (“z bar”) is given by

z = x − iy

and is called the complex conjugate of z.

eg. If z = 3 + 4i, then z = 3 − 4i.

Example. Solve x2 − 2x + 3 = 0.

x = −(−2)±√

(−2)2−4(1)(3)

2(1) = 2±√−8

2 = 2±2√−2

2 = 1 ±√

2 i. �

Page 2: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 2Complex Arithmetic.

Addition/Subraction.

Example 1. (2 + 3i) + (4 + i) = 6 + 4i.Example 2. (8 − 3i) − (−2 + 4i) = 10 − 7i.

Multiplication/Division.

Example 1. (2 + 3i)(1 + 2i) = 2 + 4i+ 3i− 6 = −4 + 7iExample 2. (3 − 2i)(3 + 2i) = 9 − (2i)2 = 9 + 4 = 13

∴ when we multiply two complex conjugates, we get a real number.

Example 3. 2+3i1+4i = 2+3i

1+4i × 1−4i1−4i = (2+3i)(1−4i)

(1+4i)(1−4i) = 2−8i+3i−12i2

1−(4i)2 = 14−5i17

(realising the denominator)

Page 3: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 3Theorem. If two complex numbers are equal then their real parts are equal and theirimaginary parts are equal, i.e., if a+ ib = c+ id where a, b, c, d ∈ R, then a = c and b = d.

Example 1. Find x, y if (3 + 4i)2 − 2(x− iy) = x+ iy.

Left hand side (LHS) = 9 − 16 + 24i− 2x+ i2y

= −7 − 2x+ i(24 + 2y)∴ −7 − 2x = x

3x = −7

x = − 73

& 24 + 2y = yy = −24 �

Example 2. Find x, y ifx

1 + i+

y

2 − i = 2 + 4i.

LHS =x

1 + i+

y

2 − i=

x

1 + i× 1 − i

1 − i +y

2 − i ×2 + i2 + i

=x(1 − i)1 + 1

+y(2 + i)4 + 1

=x(1 − i)

2+y(2 + i)

5

Nowx(1 − i)

2+y(2 + i)

5= 2 + 4i.

∴ 5x(1 − i) + 2y(2 + i) = 20 + 40i5x− i5x+ 4y + i2y = 20 + 40i

5x+ 4y + i(−5x+ 2y) = 20 + 40i

Equating real and imaginary part,

5x+ 4y = 20−5x+ 2y = 40

Solving simultaneously,6y = 60y = 10

& ∴ x = −4. �

Page 4: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 4Square Roots of Complex Numbers.

Example 1. Find the square root of 35 − 12i.

Let√

35 − 12i = a+ ib : − square both sides.

35 − 12i = (a+ ib)2

= a2 − b2 + i(2ab)

∴ a2 − b2 = 35and 2ab = −12

ab = −6.By inspection, solutions are a = 6& b = −1 or a = −6 or b = 1.or a2 − b2 = 35

ab = −6

b = −6a.

∴ a2 −(− 6a

)2

= 35

a2 − 36a2

= 35.

a4 − 36 = 35a2

a4 − 35a2 − 36 = 0.

(a2 − 36)(a2 + 1) = 0

a2 = 36 & a2 + 1 = 0 ⇒ a /∈ R

∴ a = ±6 & ∴ b = ±1.

& ∴√

35 − 12i = 6 − i. � (By convention, sign(�(√z)) = sign(�(z)))

Example 2. Find the roots of z2 − (1 − i)z + 7i− 4 = 0 in the form a+ ib.

z =(1 − i) ±

√(1 − i)2 − 4(1)(7i− 4)

2

=(1 − i) ±

√1 − 1 − 2i− 28i+ 16

2

=(1 − i) ±

√16 − 30i

2From beside,

=(1 − i) ± (5 − 3i)

2

=1 − i+ 5 − 3i

2or

1 − i− (5 − 3i)2

= 3 − 2i or − 2 + i. �

√16 − 30i = (a+ ib)

16 − 30i = a2 − b2 + i(2ab)

a2 − b2 = 162ab = −30ab = −15a = 5 & b = −3

or a = −5 & b = 3

& ∴√

16 − 30i = 5 − 3i

∵ sign(16) = sign(5) = +

Page 5: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 5The Argand Diagram. (Note: Ordered pairs:- eg. 2 + i = (2, 1)

for 2 + i = x+ iy on (x, y)-plane)

Two methods: i. P (x, y) the point P on the (x, y)-planeii. Vector

−→OP

x-axis is called the real axis.y-axis is called the imaginary axis.

Eg. Plot the following on the Argand diagram:P = 2 + 3i;B = 3 − i;A = −2 − i;M = 4;E = 2i

Page 6: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

z = x+ iy= r cos θ + ir sin θ

= r(cos θ + i sin θ)

Modulus (Distance OP )denoted by r,mod z, |z|, |x+ iy|by Pythagoras, r2 = x2 + y2

r =√x2 + y2

r = |z| = |x+ iy| =√x2 + y2.

Argument (angle θ)denoted by θ, arg z, arg(x+ iy) [or amp z, amp (x+ iy) {amplitude}]by definition, −180◦ < θ ≤ 180◦

For x �= 0, tan θ = yx .

The mod-arg form of a complex numberz = x+ iy

= r(cos θ + i sin θ)

( = r cis θ).

Complex ConjugateIf z = x+ iy, then the complex conjugate is z = x− iy

Page 7: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Radian measure (or circular measure)

eg. 360◦ = 2π radians = 2π rad = 2πc = 2π

180◦ = π

90◦ = π2

60◦ = π3

45◦ = π4

30◦ = π6

More on mod-arg forms.

Examples. Express the following in mod-arg form:-(a) 2 + 2i;(b) 2 + 5i;(c) −1 +

√3i;(d) 3i;(e) 1 − 3i

(a) 2 + 2i

r =√

22 + 22 =√

8 = 2√

2& tan θ = 2

2 = 1 & ∴ θ = π4

& ∴ 2 + 2i = 2√

2(cos π

4 + i sin π4

). �

(b) 2 + 5i

r =√

22 + 52 =√

29& tan θ = 5

2 & ∴ θ = tan−1 52 ≈ 68◦12′

& ∴ 2 + 5i =√

29(cos

(tan−1 5

2

)+ i sin

(tan−1 5

2

))≈

√29

(cos 68◦12′ + i sin 68◦12′

)�

Page 8: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

(c) −1 +√

3i

r =√

12 + 3 =√

4 = 2tanα =

√3

1 & ∴ α = π3 & ∴ θ = π − π

3 = 2π3

& ∴ −1 +√

3i = 2(cos 2π

3 + i sin 2π3

). �

(d) 3i

By inspection, 3i = 3(cos π

2 + i sin π2

). �

(e) 1 − 3i

r =√

12 + 32 =√

10tan(−θ) = 3 & ∴ −θ = tan−1 3 & ∴ θ = − tan−1 3 ≈ 71◦34′.& ∴ 1 − 3i =

√10

(cos

(− tan−1 3

)+ i sin

(− tan−1 3

))=

√10

(cos

(tan−1 3

)− i sin

(tan−1 3

))≈

√10

(cos 71◦34′ − i sin 71◦34′

)�.

Page 9: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 6Axioms

An integral domain is a set of elements with two binary operations defined for them, whichobey the laws obeyed by the integers.

A set S is an integral domain if its elements a, b, c, . . . obey the following laws.

1. Closure Law for Addition, i.e., a + b ∈ S

2. Closure Law for Multiplication, i.e., a × b ∈ S

3. Commutative Law for Addition, i.e., a + b = b + a4. Commutative Law for Multiplication, i.e., a × b = b × a5. Associative Law for Addition, i.e., a + (b + c) = (a + b) + c6. Associative Law for Multiplication, i.e., a × (b × c) = (a × b) × c7. Distributive Law of Multiplication over Addition, i.e., a × (b + c) = a × b + a × c8. There exists an additive identity (or zero element) 0, such that for every a,

a + 0 = 0 + a = a (Note 0 ∈ S)9. There exists a multiplicative identity (or unity element) 1, such that for every a,

a × 1 = 1 × a = a (Note 1 ∈ S)10. There exists an additive inverse (or opposite), −a, for each member a of the set such

that a + (−a) = (−a) + a = 0.11. Cancellation Law. If ab = ac and a �= 0, then b = c.

Example 1. Z, the set of the integers, is an integral domain.

The elements of a field F obey the above axioms 1-10 for integral domains, (where a, b, care elements of F) and instead of the cancellation law, there is a law about the existenceof a multiplicative inverse (or reciprocal):

11′. If a−1 and 1 are elements of F, and a × a−1 = a−1 × a = 1, where a �= 0, then a−1 isthe multiplicative inverse of a.

Example 2. C, the set of complex numbers is a field.

Example 3. The additive inverse of z = 2 + 3i is −z = −2 − 3i

Example 4. The multiplicative inverse of z = 2 + 3i is z−1 = 12+3i = 1

2+3i

(2−3i2−3i

)= 2−3i

13 .

Page 10: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 7

(∗){

cos(A+B) = cosA cosB − sinA sinBsin(A+B) = sinA cosB + sinB cosA

Mod-arg theorems

i. If z1 = r1(cos θ1 + i sin θ1) & z2 = r2(cos θ2 + i sin θ2)then if z1 = z2 then r1 = r2 & θ1 = θ2.

ii. |z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2 ± 2π.i.e., for example:

arg(z1z2) = 100◦ + 140◦ − 360◦

= −120◦

arg(

z1z2

)= arg z1 − arg z2 ± 2π.

Proof . If z1 = r1(cos θ1 + i sin θ1)

and z2 = r2(cos θ2 + i sin θ2)

then z1z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2 + i sin θ2 cos θ1 + i sin θ1 cos θ2)

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) − (see (∗) above)

& ∴ |z1z2| = r1r2 = |z1||z2| and arg(z1z2) = θ1 + θ2 = arg(z1) + arg(z2).

Extended:

arg(z1z2 · · · zn) = arg z1 + arg z2 + · · · + arg zn ± 2πn.

|zn| = |z|n (eg., |z3| = |zzz| = |z||z||z| = |z|3).

and arg(zn) = n arg z ± 2πk.

∣∣ 1zn

∣∣ = 1|z|n and arg

(1

zn

)= arg 1 − arg(zn) = 0 − n arg z ± 2πk = −n arg z ± 2πk.

Page 11: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 1. Find the modulus and argument of z = (2 − i)(1 − 3i).

|z| = |2 − i||1 − 3i|=

√22 + 12 ·

√12 + 32

=√

5 ·√

10

=√

50

= 5√

2.

arg(z) = arg(2 − i) + arg(1 − 3i) = − tan−1 12 − tan−1 3 ≈ −98◦8′.

Example 2. z =(−1 + 2i)(1 + i)

−2 − 3i

|z| =| − 1 + 2i||1 + i|

| − 2 − 3i|

=√

5 ·√

2√13

=√

10√13

=

√1013.

arg(z) = arg(−1 + 2i) + arg(1 + i) − arg(−2 − 3i)

≈ 285◦15′ − 360◦

= −74◦45′

Page 12: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 8Triangle Inequalities.

Example 1. If z1 = 2 + i and z2 = −1 + 2i, z1 + z2 = 1 + 3i. �

Polygon Rule.

Page 13: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Subtraction of Complex Numbers.

z2 − z1 = z2 + (−z1):

Page 14: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Triangle Inequalities.|z1 + z2| ≤ |z1| + |z2|:

|z1 − z2| ≥ |z1| − |z2|:

Example 2. Verify the triangle inequalities if

z1 = 2 − 3i,z2 = −1 + 4i,

z1 + z2 = 1 + i,z1 − z2 = 3 − 7i.

|z1| =√

13

|z2| =√

17

|z1 + z2| =√

2

|z1 − z2| =√

58.

|z1 + z2| ≤ |z1| + |z2|√2 ≤

√13 +

√17 �

|z1 − z2| ≥ |z1| − |z2|√58 ≥

√13 −

√17 �.

∴ triangle inequalities hold. �

Page 15: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Product of Complex Numbers.

The triangle OQR is constructed similar to �AOP . A is the point (1, 0).

Multiplication by i, −1, −i.

Multiplication by i, rotation 90◦ (anticlockwise).

Page 16: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Multiplication by −1, rotation 180◦ anticlockwise.

Multiplication by −i, rotation 270◦ anticlockwise

Page 17: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 9Geometric Representation of Locus Problems.

General forms:- |z − z1| = a represents a circle, centre at z1 radius a units.

Example 1. |z| = 1.

Example 2. |z − 3| = 2.

Example 3. |z − i| = 1.

Page 18: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 4. |z − 1 − 2i| = 2

|z − (1 + 2i)| = 2 centre (1, 2), radius 2 units.

Example 5. |z| ≤ 3 (note:- if less than, it is inside, if it is greater than, it is outside.)

Page 19: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 6. 2 < |z| ≤ 3.

Example 7. |z| ≤ 4 and 0 ≤ arg z ≤ π3 .

Page 20: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 8. 1 ≤ �(z) ≤ 2 if z = x + iy,then �(z) = y (& ∴ 1 ≤ y ≤ 2)

Example 9. −π6 < arg z ≤ π

3 .

Example 10. 1 ≤ �(z) ≤ 2 and �(z) ≤ −1

Example 11. 1 ≤ �(z) ≤ 2 or �(z) ≤ −1

Page 21: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 12. |z| ≤ 4 or 0 ≤ arg z ≤ π3

Page 22: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 10Using Algebra to Represent Locus Problems

Example 1. Show algebraically that |z − 2− i| = 4 represents a circle with radius 4 unitsand centre (2, 1).

|z − 2 − i| = 4.

∴ |x + iy − 2 − i| = 4.

∴ |(x − 2) + i(y − 1)| = 4.

∴√

(x − 2)2 + (y − 1)2 = 4.

∴ (x − 2)2 + (y − 1)2 = 16.

which is a circle centre (2, 1), radius 4 units. �

Example 2. Sketch the curve: (i) �(z2) = 3 (ii) �(z2) = 4.

(i) �(z2) = 3

�((x + iy)2) = 3

�(x2 − y2 + 2ixy) = 3

x2 − y2 = 3.

Page 23: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

(ii) �(z2) = 4.

∴ 2xy = 4.

∴ xy = 2.

Example 3. Describe in geometric terms, the curve described by 2|z| = z + z + 4.

2|z| = z + z + 4.

∴ 2|x + iy| = x + iy + x − iy + 4.

∴ 2√

x2 + y2 = 2x + 4 = 2(x + 2).

∴√

x2 + y2 = x + 2.

∴ x2 + y2 = (x + 2)2.

∴ x2 + y2 = x2 + 4x + 4.

∴ y2 = 4x + 4.

⇒ sideways parabola at vertex (−1, 0).

Page 24: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 4. Sketch the locus of �(z + iz) < 2.

�(x + iy + i(x + iy)) < 2.

∴ �(x + iy + ix − y) < 2.

∴ x − y < 2.

Example 5. If z1 = 1 + i & z2 = 2 + 3i find the locus of z if |z − z1| = |z − z2|.

|x + iy − (1 + i)| = |x + iy − (2 + 3i)|.∴ |(x − 1) + i(y − 1)| = |(x − 2) + i(y − 3)|.√

(x − 1)2 + (y − 1)2 =√

(x − 2)2 + (y − 3)2.

(x − 1)2 + (y − 1)2 = (x − 2)2 + (y − 3)2.

x2 − 2x + 1 + y2 − 2y + 1 = x2 − 4x + 4 + y2 − 6y + 9.

∴ 2x + 4y = 11.

N.B. |z − z1| = |z − z2| will always be a straight line. It will always be the perpendicularbisector of the interval joining z1 to z2.

Page 25: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 11(∗) Note. sin(A+B) = sinA cos B +sinB cos A & cos(A+B) = cos A cos B− sinA sinB.

De Moivres Theorem. (cos θ + i sin θ)n = cos nθ + i sinnθ.

Proof. (By mathematical induction for n = 0, 1, 2, . . . .)

Step 1. Test n = 0.

L.H.S. = (cos θ + i sin θ)0

= 1R.H.S. = cos 0 + i sin 0

= 1= L.H.S.

∴ it is true for n = 0.

Step 2. Assume true for n = k i.e., (cos θ + i sin θ)k = cos kθ + i sin kθ.

Test for n = k + 1.

i.e., L.H.S. = (cos θ + i sin θ)k+1 & R.H.S. = cos(k + 1)θ + i sin(k + 1)θ

= (cos θ + i sin θ)k(cos θ + i sin θ)1

= (cos kθ + i sin kθ)(cos θ + i sin θ)(since we have assumed it true for n = k)= cos kθ cos θ + i sin θ cos kθ + i sin kθ cos θ − sin kθ sin θ

= cos kθ cos θ − sin kθ sin θ + i(sin θ cos kθ + sin kθ cos θ)

= cos(kθ + θ) + i sin(kθ + θ) (see (∗) above)

= cos(k + 1)θ + i sin(k + 1)θ= R.H.S.

Step 3. If the result is true for n = 0, then true for n = 0 + 1, i.e., n = 1. If the result istrue for n = 1, then true for n = 1 + 1, i.e., n = 2 ans so on for all nonnegative integersn �

Page 26: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Example 1. Simplify:

(a) (cos θ − i sin θ)−4 (b) (sin θ − i cos θ)7 (c) (cos 2θ+i sin 2θ)3

(cos θ−i sin θ)4 .

(a) (cos θ − i sin θ)−4 = cos(−4θ) − i sin(−4θ)= cos 4θ + i sin 4θ �

(b) (sin θ − i cos θ)7 = (−i cos θ + sin θ)7

= −i7(cos θ − i sin θ)7

= i(cos 7θ − i sin 7θ)= sin 7θ + i cos 7θ �

(c) (cos 2θ+i sin 2θ)3

(cos θ−i sin θ)4 = (cos θ+i sin θ)6

(cos θ−i sin θ)4

= (cos θ+i sin θ)6

(cos(−θ)+i sin(−θ))4

= (cos θ+i sin θ)6

(cos θ+i sin θ)−4

= (cos θ + i sin θ)10

= cos 10θ + i sin 10θ �Example 2. Express in the form x + iy:

(a)(cos π

2 + i sin π2

)6(b)

(1 +

√3

)10.

(a) (cos π2 + i sin π

2 )6 = cos 6π2 + i sin 6π

2

= cos 3π + i sin 3π

= −1 + 0i

= −1 �(b) (1 +

√3)10 = (2(cos π

3 + i sin π3 )10

= 210(cos 10π3 + i sin 10π

3 )

= 210(− 1

2 − i√

32

)

= −512 − 512i√

3 �

Page 27: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 12De Moivre’s Theorem and the Argand Diagram

Example. If z =√

3 + i represent the following on the Argand Diagram:

z, iz, 1z ,−z, 2z, z, z2 + z, z3 − z

z = 2(cos π6 + i sin π

6 )

z−1 = (2(cos π6 + i sin π

6 ))−1

= 12 (cos−π

6 + i sin−π6 )

= 12 (cos π

6 − i sin π6 )

2z = 4(cos π6 + i sin π

6 )

z2 = (2(cos π6 + i sin π

6 ))2

= 4(cos π3 + i sin π

3 )z3 = (2(cos π

6 + i sin π6 ))3

= 8(cos π2 + i sin π

2 )

Solution on next page.

Page 28: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just
Page 29: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 13Trigonometric Identities and DeMoivre’s Theorem

Example. Obtain cos 6θ in terms of cos θ. Hence show that x = cos(2k + 1) π12 where

k = 0, 1, 2, 3, 4, 5 is a solution to the equation 32x6−48x4 +18x2−1 = 0 and hence deducethat cos π

12 . cos 5π12 = 1

4 .

cos 6θ + i sin 6θ = (cos θ + i sin θ)6.

Consider using Pascal’s Triangle:1

1 11 2 1

1 3 3 11 4 6 4 1

1 5 10 10 5 11 6 15 20 15 6 1

. . . . . . . . . . . . . . . . . .

For example,(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

cos 6θ + i sin θ = (cos θ + i sin θ)6

= cos6 θ + 6 cos5 θi sin θ + 15 cos4 θ(i sin θ)2 + 20 cos3 θ(i sin θ)3 + 15 cos2 θ(i sin θ)4

+6 cos θ(i sin θ)5 + (i sin θ)6 - from Pascal’s Triangle= cos6 θ + 6i cos5 θ sin θ − 15 cos4 θ sin2 θ − 20i cos3 θ sin3 θ + 15 cos2 θ sin4 θ + 6i cos θ sin5 θ

− sin6 θ∴ cos 6θ = cos6 θ − 15 cos4 θ sin2 θ + 15 cos2 θ sin4 θ − sin6 θ − equating parts

= cos6 θ − 15 cos4 θ(1 − cos2 θ) + 15 cos2 θ(1 − cos2 θ)2 − (1 − cos2 θ)3

= cos6 θ − 15 cos4 θ + 15 cos6 θ + 15 cos2 θ(1 − 2 cos2 θ + cos4 θ)

− (1 − 3 cos2 θ + 3 cos4 θ − cos6 θ)

= cos6 θ − 15 cos4 θ + 15 cos6 θ + 15 cos2 θ − 30 cos4 θ + 15 cos6 θ − 1 + 3 cos2 θ

− 3 cos4 θ + cos6 θ

= 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1

If cos 6θ = 0, then 6θ = ±π2 ,± 3π

2 ,± 5π2 ,± 7π

2 ,± 9π2 , etc.

∴ θ = ± π12 ,± 3π

12 ,± 5π12 ,± 7π

12 ,± 9π12 , etc.

Page 30: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

= 2k+112 π for k = 0,±1,±2,±3,±4,±5, . . .

∴ these are the roots of 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 = 0.

Now if x = cos θ, then 32x6 − 48x4 + 18x2 − 1 = 0 has roots

x = cos π12 , cos 3π

12 , cos 5π12 , cos 7π

12 , cos 9π12 , cos 11π

12

= cos 2k+112 π for k = 0, 1, 2, 3, 4, 5 (six roots because we have degree six).

Product of roots of 32x6 − 48x4 + 18x2 − 1 = 0 is − 132 .

∴ cos π12 · cos 3π

12 · cos 5π12 · cos 7π

12 · cos 9π12 · cos 11π

12 = − 132

∴ cos π12 · 1√

2· cos 5π

12 · cos 7π12 · (− 1√

2) · cos 11π

12 = − 132

∴ cos π12 · cos 5π

12 · cos 7π12 · cos 11π

12 = 116

But cos 11π12 = − cos π

12 and cos 7π12 = − cos 5π

12 .

∴ cos2 π12 · cos2 5π

12 = 116

∴ cos π12 · cos 5π

12 = 14 �

Page 31: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 14

Example. If z = cos θ + i sin θ, show that zn + 1zn = 2 cos nθ. Hence or otherwise obtain

an expression for cos5 θ in terms of cos nθ and then evaluate∫ π

20

cos5 θ dθ.

z = cos θ + i sin θ

zn = (cos θ + i sin θ)n

= cos nθ + i sinnθ

1zn

= z−n = (cos θ + i sin θ)−n

= cos−nθ + i sin−nθ

= cos nθ − i sinnθ.

∴ zn +1zn

= (cos nθ + i sinnθ) + (cos nθ − i sinnθ)

= 2 cos nθ.

Pascal’s �:1

1 11 2 1

1 3 3 11 4 6 4 1

1 5 10 10 5 1

(z +

1z

)5

= z5 + 5z4

(1z

)+ 10z3

(1z

)2

+ 10z2

(1z

)3

+ 5z

(1z

)4

+(

1z

)5

= z5 + 5z3 + 10z +10z

+5z3

+1z5

= z5 +1z5

+ 5(

z3 +1z3

)+ 10

(z +

1z

)

Now : − zn +1zn

= 2 cos nθ.

∴ z +1z

= 2 cos θ,

z3 +1z3

= 2 cos 3θ,

& z5 +1z5

= 2 cos 5θ.

∴ (2 cos θ)5 = 2 cos 5θ + 5 · 2 cos 3θ + 10 · 2 cos θ

32 cos5 θ = 2 cos 5θ + 10 cos 3θ + 20 cos θ

∴ cos5 θ = 132

(2 cos 5θ + 10 cos 3θ + 20 cos θ

)= 1

16 (cos 5θ + 5 cos 3θ + 10 cos θ)

Page 32: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

& ∴∫ π

2

0

cos5 θ dθ = 116

∫ π2

0

(cos 5θ + 5 cos 3θ + 10 cos θ) dθ

= 116

[sin 5θ

5 + 53 sin 3θ + 10 sin θ

]π2

0

= 116

((15 sin 5π

2 + 52 sin 3π

2 + 10 sin π2

)−

(0))

= 116

(15 − 5

3 + 10)

= 815 �

N.B. Similar expressions can be found for sin5 θ:

zn − 1zn

= (cos nθ + i sinnθ) − (cos nθ − i sinnθ)

= 2i sinnθ.(z − 1

z

)5

= z5 − 5 · z4 · 1z

+ 10z3

(1z

)2

− 10z2

(1z

)3

+ 5z

(1z

)4

−(

1z

)5

=(

z5 − 1z5

)− 5

(z3 − 1

z3

)+ 10

(z − 1

z

)

∴ (2i sin θ)5 = 2i sin 5θ − 5 · 2i sin 3θ + 10 · 2i sin θ

32i5 sin5 θ = 2i sin 5θ − 10i sin 3θ + 20i sin θ (Note : i5 = i)

sin5 θ = 132 (2 sin 5θ − 10 sin 3θ + 20 sin θ) (dividing by 32i)

= 116 (sin 5θ − 5 sin 3θ + 10 sin θ)(

& ∴∫

sin5 θ dθ= 116

∫(sin 5θ−5 sin 3θ+10 sin θ) dθ= 1

16

(− 1

5 cos 5θ+ 53 cos 3θ−10 cos θ)+C)

Page 33: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

Lecture 15

Complex Roots of Unity.

If zn = ±1 has n roots, all lying on the unit circle in the argand diagram evenly spaced,for example:

For zn = 1:• n is odd, 1 real root and n − 1 non-real complex roots.• n even, 2 real roots, n − 2 non-real complex roots.zn = −1 has n complex roots.

Example. Solve z7 = 1 and show the roots on the argand diagram. Hence show thatcos 2π

7 + cos 4π7 + cos 6π

7 = − 12 .

If z = cos θ + i sin θ (modulus 1 because |z7| = |z|7 = 1 & ∴ |z| = 1),z7 = (cos θ + i sin θ)7 = 1

= cos 7θ + i sin 7θ = 1.

Equating real parts,cos 7θ = 1

7θ = 0, 2π, 4π, 6π, 8π, 10π, 12π, . . .

θ = 0, 2π7 , 4π

7 , 6π7 , 8π

7 , 10π7 , 12π

7 , . . .

∴ roots are z1 = cos 0 + i sin 0 = 1

z2 = cos 2π7 + i sin 2π

7 = α

z3 = cos 4π7 + i sin 4π

7 = α2

z4 = cos 6π7 + i sin 6π

7 = α3

z5 = cos 8π7 + i sin 8π

7 = α4

z6 = cos 10π7 + i sin 10π

7 = α5

z7 = cos 12π7 + i sin 12π

7 = α6

(7 solutions because degree of polynomial equation z7 = 1 is 7.)

Page 34: Lecture 1 Complex Numbers - 4unitmaths.com4unitmaths.com/complex.pdfLecture 1 Complex Numbers Definitions. Let i2 = −1. ∴ i = −1. Complex numbers are often denoted by z. Just

cos 8π7 = cos 6π

7 sin 8π7 = − sin 6π

7

cos 10π7 = cos 4π

7 sin 10π7 = − sin 4π

7

cos 12π7 = cos 2π

7 sin 12π7 = − sin 2π

7

.

& ∴ the roots for − π < arg z ≤ π, are :z1 = 1

z2 = cos 2π7 + i sin 2π

7 = z7 = α

z3 = cos 4π7 + i sin 4π

7 = z6 = α2

z4 = cos 6π7 + i sin 6π

7 = z5 = α3

z5 = cos 6π7 − i sin 6π

7 = z4 = α−3

z6 = cos 4π7 − i sin 4π

7 = z3 = α−2

z7 = cos 2π7 − i sin 2π

7 = z2 = α−1

i.e., the complex roots of unity always occur as pairs

(Note: anxn + an−1xn−1 + an−2x

n−2 + · · · + a0 = 0, then sum of roots = − ba .)

z7 = 1

z7 − 1 = 0& ∴ sum of roots = 0 (since coefficients of z6 is 0.)

∴ z1 + z2 + z3 + z4 + z5 + z6 + z7 = 0

& ∴ 1 + 2 cos 2π7 + 2 cos 4π

7 + 2 cos 6π7 = 0

2 cos 2π7 + 2 cos 4π

7 + 2 cos 6π7 = −1

cos 2π7 + cos 4π

7 + cos 6π7 = − 1

2


Recommended