+ All Categories
Home > Documents > Lecture 11 Surface Characterization

Lecture 11 Surface Characterization

Date post: 02-Jun-2018
Category:
Upload: melissa-choi
View: 222 times
Download: 0 times
Share this document with a friend

of 21

Transcript
  • 8/10/2019 Lecture 11 Surface Characterization

    1/21

    13.051J/20.340J

    Lecture 11

    Surface Characterization of Biomaterials in Vacuum

    The structure and chemistry of a biomaterial surface greatly dictates thedegree of biocompatibility of an implant. Surface characterization isthus a central aspect of biomaterials research.

    Surface chemistrycan be investigated directly using high vacuummethods:

    Electron spectroscopy for Chemical Analysis (ESCA)/X-ray

    Photoelectron Spectroscopy (XPS)

    Auger Electron Spectroscopy (AES)

    Secondary Ion Mass Spectroscopy (SIMS)

    1. XPS/ESCA

    Theoretical Basis:

    Secondary electrons ejectedby x-ray bombardment from thesample near surface (0.5-10 nm)with characteristic energies

    Analysisof the photoelectron energiesyields a quantitativemeasure of the surface composition

  • 8/10/2019 Lecture 11 Surface Characterization

    2/21

    23.051J/20.340JElectron energy analyzer

    ( = h)

    (variable retardation voltage)

    Lens

    e

    e

    e

    P 10-10Torr

    X-ray source Detector

    E

    K

    EF

    LILII

    LIII

    Evac

    EBenergy is characteristic

    elementand

    kin

    Photoelectron binding

    of thebonding environment

    Chemical analysis!

    Binding energy = incident x-ray energy photoelectron kinetic energy

    EB= h- Ekin

  • 8/10/2019 Lecture 11 Surface Characterization

    3/21

    33.051J/20.340J

    Quantitative Elemental Analysis

    C1s

    N1s

    O1sIntensity

    Low-resolution spectrum

    500 300

    Bindingenergy (eV)

    Area under peakIi number of electrons ejected (& atoms present)Only electrons in the near surface region escape without losing

    energy by inelastic collision

    Sensitivity: depends on element. Elements present in concentrations>0.1 atom% are generally detectable (H & He undetected)

    Quantification of atomic fraction Ci (of elements detected)

    Ci =Ii / Si Siis the sensitivity factor:

    Ij / Sjj -f(instrument & atomic parameters)

    - can be calculated

    sum over detectedelements

  • 8/10/2019 Lecture 11 Surface Characterization

    4/21

    43.051J/20.340J

    High-resolution spectrumC1s

    Intensity

    PMMA

    290 285

    Bindingenergy (eV)

    Ratio of peak areas gives a ratio of photoelectrons ejected from atomsin a particular bonding configuration (Si = constant)

    Ex. PMMA5carbons in total H CH3

    H CH3C C

    3 C C (a) Lowest EBC1s

    H C=O

    H CEB 285.0 eV O

    CH3

    1 OCH3

    (b) Intermediate EBC1sEB 286.8 eV

    Why does core electron EBvary with valence shell

    1C=O

    O

    (c) Highest EBC1sEB 289.0 eV

    configuration?

  • 8/10/2019 Lecture 11 Surface Characterization

    5/21

    53.051J/20.340J

    from carbon

    Slight shift to 1s

    Electronegative oxygen robs valence electrons(electron density higher toward O atoms)

    Carbon core electrons held tighterto the + nucleus(less screening of + charge)

    higher C binding energy

    Similarly, different oxidation states of metals can be distinguished.

    Ex. Fe FeO Fe3O4 Fe2O3

    Fe2pbinding energy

    XPS signal comes from first ~10 nm of sample surface.

    What if the sample has a concentration gradient within this depth?

    Surface-segregating species Adsorbed species

    10nm

    Multivalent oxide layer

  • 8/10/2019 Lecture 11 Surface Characterization

    6/21

    63.051J/20.340J

    Depth-Resolved ESCA/XPS

    The probability of a photoelectron escaping the sample without

    undergoing inelastic collision is inversely related to its depth t withinthe sample:

    t( ) ~ expP t

    e

    where e(typically ~ 5-30 ) is the electron inelastic mean-free path,which depends on the electron kinetic energy and the material.

    (Physically, e= avg. distance traveled between inelastic collisions.)

    For t= 3e P(t) = 0.05e

    =90

    95% of signalfrom t 3e

    By varying the take-off angle (), the sampling depth can bedecreased, increasing surface sensitivity

    e e

    t =3 sine

  • 8/10/2019 Lecture 11 Surface Characterization

    7/21

    73.051J/20.340J

    Ci

    5 90

    (degrees)

    Variation of composition with angle may indicate:

    - Preferential orientation at surface- Surface segregation- Adsorbed species (e.g., hydrocarbons)- etc.

    Quantifying composition as a function of depth

    The area under thejth peak of element i is the integral of attenuatedcontributions from all sample depthsz:

    z (Iij =CinstT Ekin )Lijij n (z) exp dzi

    sine

    L

    Cinst= instrument constantT(Ekin) = analyzer transmission function

    ij= angular asymmetry factor for orbitaljof element i

    ijis the photoionization cross-sectionni(z) is the atomic concen. of iat a depthz(atoms/vol)

  • 8/10/2019 Lecture 11 Surface Characterization

    8/21

  • 8/10/2019 Lecture 11 Surface Characterization

    9/21

    93.051J/20.340J

    where:

    MW 1/ 3

    a= monolayer thickness (nm) a =107

    NAv

    MW = molar mass (g/mol)= density (g/cm3)

    Ekin= electron kinetic energy (eV)

    Ex: efor C1susing a Mg Kx-ray source:

    EB= h- Ekin

    For Mg Kx-rays: h= 1254 eVEkin= 970 eVFor C1s: EB= 284 eV

    1 2 0.5 (nm) = (

    49E +0.11Ekin ) Assume = 1.1 g/cm3e kin

    e= 3.1 nm

  • 8/10/2019 Lecture 11 Surface Characterization

    10/21

    3.051J/20.340J 10

    For non-uniform samples, signal intensity must be deconvolutedtoobtain a quantitative analysis of concentration vs. depth.

    Case Example: a sample comprising two layers (layer 2 semi-infinite):

    1 d

    2

    z (Iij = Cins T kin )Lijij ni (z)exp sin

    dze

    ij ij o i,1 e,1

    ij ,o i,2 e,2 e,1 sin,

    e,1 sin

    (1)

    d (2) d or Iij =Iij ,

    1 exp

    e,1 sin

    +Iij ,exp

    e,1 sin

    (1)

    z Iij = Iij,oni,1 sin exp

    sin

    ee

    I =I (1) n sin1 exp

    d

    d

    (2)

    z I ij oni,2 sin exp

    sin

    , ee0 d

    +I (2)n sinexp

    d

    Why e,1? Electrons originating insemi-infinite layer 2 are attenuatedby overlayer 1

    ( )where Iij

    i

    , = measured peak area from a uniform, semi-infinite sample

    of material i.

  • 8/10/2019 Lecture 11 Surface Characterization

    11/21

    113.051J/20.340J

    Methods to solve ford

    Scenario 1: ni,2=0(ex., C1speak of a polymer adsorbed on an oxide):

    d d 1(1)

    Iij =Iij ,

    1 exp

    sin

    e,1 2

    (1)measure a bulk sample of the upper layer material Iij ,

    Iij

    dln 1 (1)I ij,

    =

    e,1 sin

    obtain slope of ln 1

    I (1

    ij

    ) vs. csc d/e,1 Iij ,

    for a fixed :

    d = e,1 sinln 1I

    (1

    ij

    )

    Iij ,

    substitute a calculated or measured e,1to obtain d

  • 8/10/2019 Lecture 11 Surface Characterization

    12/21

    3.051J/20.340J 12

    Scenario 2: ni,1=0(ex., M2ppeak from underlying metal oxide (MOx):

    d(2)

    d 1Iij =Iij ,exp

    e,1 sin

    2

    measure Iijfor same peak at different take-off angles (1, 2)

    (2) d

    I ni,2e,2 sin exp Iij ,ij o 1,

    e,1 sin11 = d

    2 (2)Iij , I ni,2e,2 sin exp ij o 2,e,1 sin2

    d 1

    Iij , =sin1 exp (csc csc2 )Iij ,

    sin2 e,11

    2

    1 Iij ,

    sin21d = (csc csc )

    ln Iij , sin

    e,1 2 12 1

    substitute a calculated or measured e,1to obtain d

  • 8/10/2019 Lecture 11 Surface Characterization

    13/21

    3.051J/20.340J 13

    Scenario 3: element present in distinguishable bonding configurations inlayers 1 & 2 (ex., O1speak from -C-O-C- and MOx):

    (1)

    d (2) d

    Iij =Iij ,1 exp

    e,1 sin

    +Iij,

    exp e,1 sin

    (2 ) d

    I ni,2e,2 sinexp 1 dIij(2) ij o,

    e,1 sin=(1) d Iij (1)

    2I ni,1e,1 sin

    1exp

    e,1 sin

    ,ij o

    (1) (2)measure element peak areasIij and Iij

    (1)

    (2), ,for same element and orbital: Iij o =Iij o

    ni,2 Ci,2=for same element and orbital: ni,1 Ci,1

    I

    d

    ij

    (2)C

    i,2e,2 exp e,1 sin

    I =

    ij

    d

    (1)

    Ci,1e,1 1 exp

    e,1 sin

    solve numerically for d, substituting calculated values of e,2& e,1

  • 8/10/2019 Lecture 11 Surface Characterization

    14/21

    143.051J/20.340J

    if d

  • 8/10/2019 Lecture 11 Surface Characterization

    15/21

    153.051J/20.340J

    Ion Etching

    Depth profiling for depths > 10 nm (100 nm 1 m)

    Ar+, Xe+or He+ions etch surface layer

    Signal

    Intensity

    6(OH)2) coatingHydroxyapatite (Ca10(PO4)

    P2pTi2p

    XPS spectra re-recorded

    on Ti implant

    sputter time

    Calibration of sputter rates: time depth

  • 8/10/2019 Lecture 11 Surface Characterization

    16/21

    163.051J/20.340J

    2. Auger Electron Spectroscopy

    Theoretical Basis:

    Auger electrons createdby electron bombardment of sample areejected from near surface (1-3 nm)with characteristic energies

    Analysisof the Auger electron energiesyields a quantitativemeasure of the surface composition

    ejected core electron

    EK EM= EN+ Ekin EvacAuger electronNEkin = EK EM ENM

    ELIII

    xyz (ECVVor ECCV)

    LLII

    I

    ejection from x shell

    electronic transition yx K

    release of z-level Auger with Ekin

    INFORMATION: Exyzis characteristic to element & bonding

    AES vs. XPS

    Advantages Disadvantages

    - focused e-beam gives highx,y spatial resolution(5 nm vs. ~1 m)

    - charging effects onnonconductive samples(unsuitable)

    - larger bonding effects - degradation of organics

  • 8/10/2019 Lecture 11 Surface Characterization

    17/21

    173.051J/20.340J

    3. Secondary Ion Mass Spectroscopy (SIMS)

    Experimental Approach:

    Energetic ions (1-15 keV)bombard sample surface

    Secondary ions/charged fragmentsare ejected from surface anddetected

    ion gun

    filter mass filter

    ionenergy

    detector

    sample

    Ion Guns

    Nobel gas: Ar+, Xe+

    liquid metal ion: Ga+, Cs+(~1nm beam size x,y mapping)types

    pulsed LMI (time-of-flight source)

    low currents used: 10-8-10-11A/cm2

    Ion beam current(A/cm2)

    surface monolayerlifetime (s)

    10-5 16

    10-7 160010-9 1.6105

    10-11 1.6107

    1 Amp = 6.21018 ions/sec

  • 8/10/2019 Lecture 11 Surface Characterization

    18/21

    183.051J/20.340J

    Detectors

    sensitive to the ratio of mass/charge (m/z)

    resolution defined as m/m (larger = better!)

    Quadrupole (RF-DC): resol. m/m~ 2000; detects m< 103amu

    Oscillating RF fielddestabilizes ions: only ionswith specified m/zcan pass

    Magnetic sector: m> 104amu; m/m~ 10,000

    R

    Applied B-field results incircular trajectory (radius=R)of charged particles

    1 2mV1/ 2

    R =

    B

    z

    acceleratingvoltage

    Time-of-flight (TOF): m~ 103-104amu; m/m~ 10,000

    Pulsed primary beamgenerates secondary ion

    m 1/ 2

    pulses detected at distance Ltime =

    2zV

    L

    flight tubelength

  • 8/10/2019 Lecture 11 Surface Characterization

    19/21

    193.051J/20.340J

    Modes of Operation

    Static SIMS

    low energy ions: 1-2 keV; penetration ~5-10

    low ion doses: < 1013ions/cm2sec 1 cm2 1015 atoms

    195% of signal from

    statomic layer!

    Information:

    surface composition

    surface bonding chemistry (sputtered fragments)

    Example: SIMS of silica powderNegative spectrum

    Intensity(arb. units)

    O

    OH

    SiO2

    SiO2H

    SiO3 SiO3H

    (SiO2)2OH

    16 17 60 61 76 77 137

    m/z

    OH HO OHWhich structure is

    suggested from SIMS? SiSiOO O O

    O

  • 8/10/2019 Lecture 11 Surface Characterization

    20/21

    203.051J/20.340J

    Positive spectrum

    Intensity(arb. units) O+

    CH3+

    H2O+

    OH

    +

    15 16 17 18

    SIMS suggests presence m/zof adsorbed methanol

    SIMS vs. XPS/AES

    Advantages Disadvantages

    - high sensitivity (ppm ppb) - not quantitative

    - more sensitive to top surface

    - applicable to any solid

    Dynamic SIMS

    1-20 keV primary beam

    rastered beam sputters a crater in sample

    secondary ions gives depth profiling

  • 8/10/2019 Lecture 11 Surface Characterization

    21/21

    213.051J/20.340J

    beam pathprimary

    10-100 m

    10-100 m

    N

    Signal

    Intensity

    N ion-implanted Ti (for wear resistance)

    sputter time

    References

    J.C. Vickerman, Ed., Surface AnalysisThe Principle Techniques,J. Wiley & Sons: New York,NY, 1997, Chapters 3, 4 & 5.

    D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press:United Kingdom, 1998.

    C.-M. Chan, Polymer Surface Modification and Characterization,Hanson: Cincinnati, OH:1994, Chapters 3 & 4.

    P.J. Cumpson, Angle-resolved XPS and AES: depth-resolution limits and a general comparisonof properties of depth-profile reconstruction methods,J. Electron Spectroscopy 73(1995) 25

    52.

    B. Elsener and A. Rossi, XPS investigation of passive films on amorphous Fe-Cr alloys,Electrochimica Acta 37(1992) 2269-2276.

    A.M. Belu, D.J. Graham and D.G. Castner, Time-of-flight secondary ion mass spectroscopy:techniques and applications for the characterization of biomaterial surfaces, Biomaterials 24,(2003) 3635-3653.


Recommended