+ All Categories
Home > Documents > Lecture 13 – Geodetic Reference Systems

Lecture 13 – Geodetic Reference Systems

Date post: 31-Dec-2015
Category:
Upload: fritz-calhoun
View: 44 times
Download: 4 times
Share this document with a friend
Description:
Lecture 13 – Geodetic Reference Systems. GISC-3325 3 March 2008. Update. Exam scheduled for 13 March 2008 Covers lectures, labs, homework, required readings and chapters 5-7. Required reading: Burkholder 3D Cogo article. 3D Coordinate Systems. Geodetic (Curvilinear) Coordinates - PowerPoint PPT Presentation
Popular Tags:
19
Lecture 13 – Geodetic Reference Systems GISC-3325 3 March 2008
Transcript
Page 1: Lecture 13 – Geodetic Reference Systems

Lecture 13 – Geodetic Reference Systems

GISC-3325

3 March 2008

Page 2: Lecture 13 – Geodetic Reference Systems

Update

• Exam scheduled for 13 March 2008– Covers lectures, labs,

homework, required readings and chapters 5-7.

• Required reading:– Burkholder 3D Cogo

article

Exam 1 Grades

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16S

co

re

Page 3: Lecture 13 – Geodetic Reference Systems

3D Coordinate Systems

• Geodetic (Curvilinear) Coordinates– Latitude, longitude and ellipsoid height– Right-handed, earth-centered earth-fixed,

positive east

• Geocentric (Cartesian) Coordinates– X, Y, Z– Likewise, ECEF, right-handed, – Orthogonal

Page 4: Lecture 13 – Geodetic Reference Systems

GPS vectorsDifference in geocentric coordinates.

Both difference in geocentric coordinates and changes in local geodetic horizon coordinates.

Page 5: Lecture 13 – Geodetic Reference Systems

Local Geodetic Horizon (LGH)

• ECEF, right-handed, orthogonal, 3-D

• Origin at any point specified– N in meridian plane oriented twd N pole– U normal to ellipsoid at origin– E perpendicular to meridian plane

Page 6: Lecture 13 – Geodetic Reference Systems

LGH

Page 7: Lecture 13 – Geodetic Reference Systems

Geodetic azimuth.

Mark-to-mark slant range.

Vertical or zenith angle.

Page 8: Lecture 13 – Geodetic Reference Systems

Geodetic to Geocentric Coordinate Conversions

Page 9: Lecture 13 – Geodetic Reference Systems

Geocentric to Geodetic

Page 10: Lecture 13 – Geodetic Reference Systems

Geocentric to Geodetic

• We use ellipsoid parameters (a, f-1)

• Calculate preliminary values (set: h = 0)– Lat1 = atan( (Z / sqrt(x2+y2))*(1/(1-e2))

– N1 = a / sqrt(1-e2*sin(Lat1)2)

– h1 = (sqrt(x2+y2)/cos(Lat1))-N1

• We iterate using these starting values

• We stop iterating when the shift in ellipsoid height is within our accuracy goal.

Page 11: Lecture 13 – Geodetic Reference Systems

2D-Coordinate Transformations• Given

– x = r * cos(γ)– y = r * sin(γ)

• Rotate coordinate system byΘ– x’ = r * cos(γ – Θ)– y’ = r * sin(γ – Θ)

• Use trig identities to solve recollect– cos(γ – Θ) = cos γcos Θ+sin Θsin γ– sin(γ – Θ) = sin γ cos Θ – cos γ sin Θ

Page 12: Lecture 13 – Geodetic Reference Systems

Translation

• If we shift the origin we can update coordinates by merely adding/subtracting shift from matching coordinate.– x’ = x – tx– y’ = y - ty

Page 13: Lecture 13 – Geodetic Reference Systems

Scale change

• We can scale coordinates to account for issues like m to ft.– x’ = s * x– y’ = s * y

Page 14: Lecture 13 – Geodetic Reference Systems

Four-parameter transformation

• Combines rotations, translations and scale in one operation.– x’ = s*(x*cos Θ+y*sin Θ) + tx– y’ = s*(-x*sin Θ+y*cos Θ)+ty

• Matrix form is simpler

Page 15: Lecture 13 – Geodetic Reference Systems

Three-Dimensional Transformation

• 7-parameters– scale– rotations along X,Y,Z axes– translations in X,Y,Z

Page 16: Lecture 13 – Geodetic Reference Systems

Euler matrices and 7-parameter

Matrix D for rotation on Z axis

Matrix C for rotation of Y axis

Matrix B for rotation of X axis

Page 17: Lecture 13 – Geodetic Reference Systems

Euler matrices

Page 18: Lecture 13 – Geodetic Reference Systems

Application of 7-para transf

Page 19: Lecture 13 – Geodetic Reference Systems

Recommended