+ All Categories
Home > Documents > Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003...

Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003...

Date post: 23-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
22
6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter: noise margins 3. CMOS inverter: propagation delay Reading assignment: Howe and Sodini, Ch. 5, §5.4 Announcements: Final exam: May 23, 1:30-4:30 (Walker) HSPICE tutorial by Susan Luschas: April 1, 7:30-9:30 (Rm. 3-133) Webcast of Lecture 13 available (see course website)
Transcript
Page 1: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1

Lecture 14 - Digital Circuits (III)

CMOS

April 1, 2003

Contents:

1. Complementary MOS (CMOS) inverter: introduction

2. CMOS inverter: noise margins

3. CMOS inverter: propagation delay

Reading assignment:

Howe and Sodini, Ch. 5, §5.4

Announcements:

• Final exam: May 23, 1:30-4:30 (Walker)

• HSPICE tutorial by Susan Luschas: April 1, 7:30-9:30(Rm. 3-133)

• Webcast of Lecture 13 available (see course website)

Page 2: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-2

Key questions

• How does CMOS work?

• What is special about CMOS as a logic technology?

• What are the key design parameters of a CMOS in-verter?

• How can one estimate the propagation delay of aCMOS inverter?

Page 3: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-3

Screen shots of NMOS inverters (currently in WebLab):

2 NMOS inverter with resistor pull-up

Main problem: slow pull up

Page 4: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-4

2 NMOS inverter with current source pull-up

Main problem: DC current in one logic state

Page 5: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-5

1. Complementary MOS (CMOS) Inverter

Circuit schematic:

VIN VOUT

VDD

CL

Basic operation:

•VIN = 0 ⇒ VOUT = VDD

VGSn = 0 < VTn ⇒ NMOS OFF

VSGp = VDD > −VTp ⇒ PMOS ON

•VIN = VDD ⇒ VOUT = 0

VGSn = VDD > VTn ⇒ NMOS ON

VSGp = 0 < −VTp ⇒ PMOS OFF

Page 6: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-6

Output characteristics of both transistors:

VSDp

-IDp

VSGp

VSGp=-VTp

00VDSn

VGSn

VGSn=VTn

00

IDn

Note:

VIN = VGSn = VDD − VSGp ⇒ VSGp = VDD − VIN

VOUT = VDSn = VDD − VSDp ⇒ VSDp = VDD − VOUT

IDn = −IDp

Combine into single diagram of ID vs. VOUT with VIN asparameter.

Page 7: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-7

VIN VOUT

VDD

CL

VOUT

VIN

00

VDD-VIN

ID

? no current while idling in any logic state.

Transfer function:

VOUT

VIN0

0 VDDVTn VDD+VTp

VDD

NMOS cutoff PMOS triode

NMOS saturation PMOS triode

NMOS saturation PMOS saturation

NMOS triode PMOS saturation

NMOS triode PMOS cutoff

? ”rail-to-rail” logic: logic levels are 0 and VDD

? high |Av| around logic threshold⇒ good noise margins

Page 8: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-8

Transfer characteristics of CMOS inverter in WebLab:

Page 9: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-9

2. CMOS inverter: noise margins

VOUT

VIN0

0 VDDVMVIL VIH

VM

VDD

Av(VM)

NML

NMH

• Calculate VM

• Calculate Av(VM)

• Calculate NML and NMH

2 Calculate VM (VM = VIN = VOUT )

At VM both transistors saturated:

IDn =1

2

Wn

LnµnCox(VM − VTn)

2

−IDp =1

2

Wp

LpµpCox(VDD − VM + VTp)

2

Page 10: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-10

Define:

kn =Wn

LnµnCox, kp =

Wp

LpµpCox

Since:

IDn = −IDp

Then:

1

2kn(VM − VTn)

2 =1

2kp(VDD − VM + VTp)

2

Solve for VM :

VM =VTn +

√√√√kp

kn(VDD + VTp)

1 +√√√√kp

kn

Usually, VTn and VTp fixed and VTn = −VTp

⇒ VM engineered through kp/kn ratio

Page 11: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-11

• Symmetric case: kn = kp

VM =VDD

2

This implies:

kp

kn= 1 =

Wp

LpµpCox

WnLn

µnCox'

Wp

Lpµp

WnLn

2µp⇒ Wp

Lp' 2

Wn

Ln

Since usually Lp ' Ln ⇒ Wp ' 2Wn.

• Asymmetric case: kn � kp, or WnLn

� Wp

Lp

VM ' VTn

NMOS turns on as soon as VIN goes above VTn.

• Asymmetric case: kn � kp, or WnLn

� Wp

Lp

VM ' VDD + VTp

PMOS turns on as soon as VIN goes below VDD + VTp.

Can engineer VM anywhere between VTn and VDD + VTp.

Page 12: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-12

2 Calculate Av(VM)

Small-signal model:

VIN VOUT

VDD

CL

G1

G1=G2

S1

S1=S2

D1

D1=D2

+

-

vin

+

-

vgs1

+

-

voutgmnvgs1 ron

+

-

vin

+

-

voutgmnvin gmpvin ron//rop

G2

S2

D2

+

-

vsg2=-vin gmpvsg2 rop

Av = −(gmn + gmp)(ron//rop)

This can be rather large.

Page 13: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-13

2 Noise margins

VOUT

VIN0

0 VDDVMVIL VIH

VM

VDD

Av(VM)

NML

NMH

• Noise-margin-low:

VIL = VM − VDD − VM

|Av|

Therefore:

NML = VIL − VOL = VIL = VM − VDD − VM

|Av|

In the limit of |Av| → ∞:

NML → VM

Page 14: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-14

• Noise-margin-high:

VOUT

VIN0

0 VDDVMVIL VIH

VM

VDD

Av(VM)

NML

NMH

VIH = VM(1 +1

|Av|)

and

NMH = VOH − VIH = VDD − VM(1 +1

|Av|)

In the limit of |Av| → ∞:

NMH → VDD − VM

Page 15: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-15

3. CMOS inverter: propagation delay

Inverter propagation delay: time delay between input andoutput signals; key figure of merit of logic speed.

Typical propagation delays: < 1 ns.

Complex logic system has 20-50 propagation delays perclock cycle.

Estimation of tp: use square-wave at input

VDD

VDD

0

VIN

VOUTtPHL tPLH

0

50%

t

t

tCYCLE

tCYCLE

Average propagation delay:

tp =1

2(tPHL + tPLH)

Page 16: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-16

2 Propagation delay high-to-low:

VIN:LO HI

VOUT:HI LO

VDD

CL

VIN=0 VOUT=VDD

VDD

t=0-t=0+

CL

VIN=VDD VOUT=VDD

VDD

CL

t

VIN=VDD VOUT=0

VDD

CL

During early phases of discharge, NMOS is saturated andPMOS is cut-off.

Time to discharge half of CL:

tPHL '12charge of CL@t = 0−

discharge current

Page 17: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-17

Charge in CL at t = 0−:

QL(t = 0−) = CLVDD

Discharge current (NMOS in saturation):

IDn =Wn

2LnµnCox(VDD − VTn)

2

Then:

tPHL ' CLVDDWnLn

µnCox(VDD − VTn)2

VOUT

VIN

00

VDD-VIN

ID

Page 18: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-18

2 Propagation delay low-to-high:

VIN:HI LO

VOUT:LO HI

VDD

CL

VIN=VDD VOUT=0

VDD

t=0-t=0+

CL

VIN=0 VOUT=0

VDD

CL

t

VIN=0 VOUT=VDD

VDD

CL

During early phases of charge, PMOS is saturated andNMOS is cut-off.

Time to charge half of CL:

tPLH '12charge of CL@t = ∞

charge current

Page 19: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-19

Charge in CL at t = ∞:

QL(t = ∞) = CLVDD

Charge current (PMOS in saturation):

−IDp =Wp

2LpµpCox(VDD + VTp)

2

Then:

tPLH ' CLVDDWp

LpµpCox(VDD + VTp)2

VOUT

VIN

00

VDD-VIN

ID

Page 20: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-20

Key dependencies of propagation delays:

• VDD ↑⇒ tp ↓Reason: VDD ↑⇒ Q(CL) ↑, but also ID ↑↑Trade-off: VDD ↑, more power usage.

• L ↓⇒ tp ↓Reason: L ↓⇒ ID ↑Trade-off: manufacturing costs!

Page 21: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-21

Components of load capacitance CL:

• following logic gates: must add capacitance presentedby each gate of every transistor the output is con-nected to

• interconnect wire that connects output to input offollowing logic gates

• own drain-to-body capacitances

CL = CG + Cwire + CDBn + CDBp

VIN VOUT

Cwire

VDD

[See details in Howe & Sodini §5.4.3]

Page 22: Lecture 14 - Digital Circuits (III) · 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 2003 Contents: 1.

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 14-22

Key conclusions

• Key features of CMOS inverter:

– no current while idling in any logic state

– ”rail-to-rail” logic: logic levels are 0 and VDD

– high |Av| around logic threshold ⇒ good noisemargins

• CMOS inverter logic threshold and noise margins en-gineered through Wn/Ln and Wp/Lp.

• Key dependences of propagation delay:

– VDD ↑ ⇒ tp ↓– L ↓ ⇒ tp ↓


Recommended