+ All Categories
Home > Documents > Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers,...

Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers,...

Date post: 06-Mar-2021
Category:
Upload: others
View: 3 times
Download: 2 times
Share this document with a friend
60
1 Physics 1230: Light and Color Chuck Rogers, [email protected] Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Lecture 16: Refraction in more complex cases! Online and Written HW9 due THURSDAY
Transcript
Page 1: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

1

Physics 1230: Light and Color

Chuck Rogers, [email protected] Henley, Valyria McFarland, Peter Siegfried

physicscourses.colorado.edu/phys1230

Lecture 16:

Refraction in more complex cases!

Online and Written HW9 due THURSDAY

Page 2: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Last Time: Refraction…

… is the bending of light rays due to the slowing of light in a medium.

PhET bending light

Page 3: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

• Wavefronts illustrate peaks and troughs in wave

• Right part of the wavefront hits the medium first and is slowed down first.

• Causes the wave to bend.

• Also makes wavelength shorter (since v = f )

Last Time: Wavefronts bend at faster/slower medium

slower medium

faster medium

Page 4: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Concrete Sand

v

v

Last time: Parts of wave-front hitting an interface

turn, like a car turns when it hits sand. Wheels on

right hit sand first, slowing down, and turning.

(like glass)

slower

speed

(like air)

faster

speed

Page 5: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Last Time: What does my eye see when an object is within or behind medium?

Page 6: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Page 7: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Page 8: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Page 9: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Where does this ray appear to have come from?

Page 10: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Page 11: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Try sketching this: Draw refracted rays from bottom of pencil, towards the observer

Page 12: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

The observer will see the underwater part of body being

a) Shorter than it really is;

b)Taller than it really is;

c) Of natural size;

Page 13: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Feet look like they’re here

The observer will see the underwater part of body being

a) Shorter than it really is;

b)Taller than it really is;

c) Of natural size;

Page 14: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Good place for Questions!

Page 15: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

15

Air

Water

Refracted out to Air

Reflectedinternally

Case 1near normal incidence (light comes out)

Case 2, far from normal incidence(internal reflection)

There is a critical angle at which this happens

Refraction out OR Total internal reflection!

Last Time: Light coming out of water: 2 possibilities

Page 16: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

I

II

Page 17: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

I

II

Page 18: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

θcritical

I

II

θ1 =90

Page 19: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

θ>θcritical

I

II

Total Internal Reflection!

Law that allows quantitative understanding of all these angles:Snell’s Law – we won’t cover, involves ratios of Sine of angles

Page 20: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Feet look like they’re here

The observer will see the underwater part of body being

a) Shorter than it really is;

b)Taller than it really is;

c) Of natural size;

Page 21: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Feet look like they’re here

• If the critical angle condition is satisfied, will the snorkler see the upper part of the swimmer’s body?a) Yes;

b) No.

Page 22: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Feet look like they’re here

• If the critical angle condition is satisfied, will the snorkler see the upper part of the swimmer’s body?a) Yes;

b) No.

Legs up and down!

Page 23: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

23

Total internal reflection makesfiber optic communication possible

In a high “n” material, light bounces around inside and doesn’t exit until the end of the fiber. Demo: lucite light pipe water pipe

Page 24: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Good place for a demo!

Page 25: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Prisms demonstrate refraction and dispersion

25

Reflection at a transparent surface occurs because the n values are different. Only a few percent of the light is reflected this way.

Page 26: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Prisms demonstrate refraction and dispersion

26

Dispersion = different colors refracted at different angles.

Page 27: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Different colors bend at different angles. Why could this be?

A. Different colors travel at different speeds through the material

B. Different colors have different values of “n” in the material

C. Both A and B

D. None of the aboveIndex of refraction, n:

OR c c

n vv n

Page 28: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

28

color n (index of refraction)

(blue) 1.523 (bent more)

(yellow) 1.517

(deep red) 1.514 (bent less)

Ordinary glass

Called “dispersion”

Both “n” and speed varies with color

Page 29: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

29

180 degree rainbow is possible. Double rainbow (woah!) is possible.

Both together is very rare.

Rainbow: Dispersion via water droplets

Page 30: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Good place for a demo!

Page 31: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

31

180 degree rainbow is possible. Double rainbow (woah!) is possible.

Both together is very rare.

Rainbow: Dispersion via water droplets

Page 32: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Notice: Things get more complex

and interesting as you increase

the number of surfaces…

Water drops, prisms, and more.

Page 33: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Refraction all the way through block

Page 34: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Refraction all the way through block

Page 35: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

What was happening in Activity 8?

U2L05 35

Page 36: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 36

PHET simulation

Page 37: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

37

• First draw the normal to each surface• Then start with how the light leaves the source and hits the first

surface, then the second surface, then leaves the block• Where does the eye think it came from?

Ray tracing

Page 38: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 38

Ray tracing

Page 39: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 39

Ray tracing

Page 40: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 40

Ray tracing

Page 41: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 41

Ray tracing

Page 42: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 42

Ray tracing

Apparent Position is (below actual position)

Sight line

Page 43: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

U2L05 43

Apparent Position is (below actual position)

Sight line

Ray tracing

The observer perceives an image of the source

below the actual source position. The image is:

A) Real B) Virtual

Page 44: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Where are we at?

Unit 1: What is light?

Unit 2: Light as a wave

Unit 3: Color in nature and technology (light sources and the spectrum)

Unit 4: Reflection

Unit 5: Refraction

Unit 6: Lenses

Unit 7: Eye and camera

Unit 8: Color perception

Unit 9: Visual perception, illusion, art

Page 45: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

• Mirrors reflect light and do not transmit light –glass coated with silver at back.

• Lenses are made of materials that transmit light, e.g., glass.

Examples of lenses: eyeglass, amplifying glass, reading glass, camera, ...

45

Lenses

Page 46: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Convex and concave lenses

46

• Each of the two surfaces has a spherical shape.

• Light can penetrate through the lenses and bend at the air-lens interface.

Concave and convex lenses

Page 47: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Light (the red ray) enters (and exits!) a thin window

pane (with parallel edges)

Which ray continues the red ray?

A B

C

D

Page 48: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

A B

C

D

Light (the red ray) enters (and exits!) a thin window

pane (with parallel edges)

Which ray continues the red ray?

Page 49: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

But what if the sides are NOT parallel? The ray bends which way:

A

B

C

Page 50: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

A

B

C

But what if the sides are NOT parallel? The ray bends which way:

Page 51: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Glass

We build lenses out of glass with non-parallel sides

Page 52: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Which ray of light will have changed direction the most upon exiting the glass?

Glass

A

C

B

If slabs aren’t parallel - lens

Page 53: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

53

We build lenses out of glass with non-parallel sides

Put film, Retina here!

Page 54: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

54

• Light rays bent towards each other… CONVERGING LENS. • The less parallel the two sides, the more the light ray changes

direction.• Rays from a single point, converge to a single point on the other

side of the lens (and then start diverging again).

We build lenses out of glass with non-parallel sides

Put film, Retina here!

Page 55: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Definition: Focal pointWhen light rays approach a lens, parallel to the axis of a lens, they come to a focus at the focal point.

Page 56: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Parallel light rays coming in from an object

Converging (convex) lens

http://www.colorado.edu/physics/phet/dev/html/optics-lab/1.0.0-dev.9/optics-lab_en.html

PHET

Page 57: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Focus

f

optical axis

Light rays coming in parallel focus to a point, called the focal point

Converging (convex) lens

Page 58: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

58

A good light collector or solar oven; can also fry

your hand very nicely (but please don’t do that)

and please do not look at the Sun (YIKES!)

Light focusing properties of converging lens

Page 59: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

59

The “backwards” light collector:

Create a collimated light beam like in a

flashlight or headlight on a car.

Light focusing properties of converging lens

Page 60: Lecture 16: Refraction in more complex cases!...1 Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230

Good place for a break!


Recommended