+ All Categories
Home > Documents > Lecture 172 19

Lecture 172 19

Date post: 03-Jun-2018
Category:
Upload: darnellreyes
View: 221 times
Download: 0 times
Share this document with a friend

of 65

Transcript
  • 8/12/2019 Lecture 172 19

    1/65

    Chapter 19Electric Force and Electric Field

  • 8/12/2019 Lecture 172 19

    2/65

    Interaction of Electric Charge

  • 8/12/2019 Lecture 172 19

    3/65

    Charging an object A glass rod is rubbed with

    silk

    Electrons are transferredfrom the glass to the silk

    Each electron adds a

    negative charge to the silk

    An equal positive charge isleft on the rod

  • 8/12/2019 Lecture 172 19

    4/65

    Charge

    Unit:

    C, Coulomb

    +

  • 8/12/2019 Lecture 172 19

    5/65

    Electric ChargeElectric charge is one of the fundamental attributes of the

    particles of which matter is made.

    qproton e

    qelectron e

    e

    1.6

    10

    19

    C

  • 8/12/2019 Lecture 172 19

    6/65

    Electric Field

    Like charges (++)

    Electric dipole:

    Opposite charges (+)

  • 8/12/2019 Lecture 172 19

    7/65

    Vectors are arrows

    i

    j

    v1 2

    i

    j

    v3 i j

    v2

    1.5i 0.5 j

    v4 2i j

  • 8/12/2019 Lecture 172 19

    8/65

    What are these vectors?

    i

    jv1

    2 i

    v3 i 2 j

    v2i 1.5 j

    v4 3

    i 2

    j

  • 8/12/2019 Lecture 172 19

    9/65

    Magni tudeof a vector

    = Length of the arrow

    4

    3

    v 4 i 3 j

    v 42 32 5

    If v ai bj

    v

    v a2

    b2

  • 8/12/2019 Lecture 172 19

    10/65

    What are the magnitudes?

    i

    jv1

    2 i

    v3 i 2 j

    v2i 1.5 j

    v4 3

    i 2

    j

  • 8/12/2019 Lecture 172 19

    11/65

    Magnitudes (solution)

    i

    jv1

    2irv

    1

    2

    v3 i 2 j

    rv

    3

    (1)2 (2)2

    12 22 5 2.24

    v2i 1.5 j

    rv2 1

    2 1.52 1.80

    v4 3i 2 j

    r

    v4 32

    22

    13 3.61

  • 8/12/2019 Lecture 172 19

    12/65

    Adding and subtracting vectors

    u 2i 9

    j

    rv 5i 7.2 j

    ru

    rv 7i 16.2 j

    ru

    rv 3i 1.8 j

  • 8/12/2019 Lecture 172 19

    13/65

    Add and subtract

    i

    jv1 2i

    v3 i 2 j

    v2i 1.5 j

    v4

    3

    i

    2

    j

    Find:rv1

    rv2 ,

    rv1

    rv2 ,

    rv4

    rv3

  • 8/12/2019 Lecture 172 19

    14/65

    v1 2i

    v3 i 2 j

    v4 3i 2 j

    Find v1 v2 , v1 v2 , v4 v3

    Solution

    v2i 1.5 j

    Very important!!!

    rv1rv2

    rv1 rv2

    rv4

    rv3

    rv4

    rv3

    v1

    v2 3i 1.5 j

    r

    v1

    r

    v2 (3)2

    (1.5)2

    32

    1.52

    3.35

    rv4

    rv3 (3i 2 j) (i 2 j)

    3i 2 j i 2 j 2i 4 j

    rv4

    rv3 (2)

    2 (4)2 22 42 4.47

  • 8/12/2019 Lecture 172 19

    15/65

    Notations

    The following are all common notations of a vector:rv,v,v

    The following are common notations of the magnitude

    (i.e. the length of the arrow):

    v,rv

  • 8/12/2019 Lecture 172 19

    16/65

    Vector Components

    5

    4

    -3

    i

    j

    v 4 i 3 j

  • 8/12/2019 Lecture 172 19

    17/65

    Terminology

    v 4

    i 3

    j

    Thex-component ofrv is 4, not 4 i .

    They-component of

    r

    v is -3, not -3

    j.

    Usually written as:

    vx 4,vy 3

  • 8/12/2019 Lecture 172 19

    18/65

    Decomposing a vector

    v

    Given v 7, 40o,

    what are thex,ycomponents ofrv?

    vx

    vy

    It means finding vx ,vy !

    Hint: Once you know

    one side of a right-

    angle triangle and

    one other angle, you

    can find all the

    lengths using cos,sin or tan.

  • 8/12/2019 Lecture 172 19

    19/65

  • 8/12/2019 Lecture 172 19

    20/65

    Trigonometry

    cosb

    h

    sin ah

    tana

    b

  • 8/12/2019 Lecture 172 19

    21/65

    Solution

    v 7

    Given v 7, 40o,

    what are thex,ycomponents ofrv?

    vx v cos

    7cos40o 5.36

    vy v sin

    7sin40o

    4.50

    v 5.36i 4.5j

  • 8/12/2019 Lecture 172 19

    22/65

    CheckOn the other hand, given

    rv 5.36i 4.50 j,

    you can deduce rv and .

    v

    vx

    vy

    v 5.362

    4.52

    7 (as expected)

    tan

    opposite

    adjacent

    vy

    vx

    4.5

    5.36 0.8396

    tan1(0.8396) 40o (as expected)

    A l f

  • 8/12/2019 Lecture 172 19

    23/65

    Angles of a vector

    x

    Find the angles the four vectors make with the positivex-axis.

    1 30o

    2 180o 30o 150o

    3 180o 30o 210oor 3 (180

    o 30o) 150o

    4 360o 30o 330oor 4 30

    o

    y

    v1

    v4

    v2

    v3

    30

  • 8/12/2019 Lecture 172 19

    24/65

    Calculating the angles

    v ai bj

    tan1(b

    a) , where

    0oif a 0

    180 oif a 0

    Examples :

    rv 2i 3j tan1(32

    ) 0o 56.3o

    rv 2i 3j tan1(

    3

    2) 180o 123.7o

    r

    v 2

    i 3

    j tan1

    (

    3

    2) 180o

    236.3o

    rv 2i 3j tan1(

    3

    2) 0o 56.3o( 360o 56.3o 303.7o)

  • 8/12/2019 Lecture 172 19

    25/65

  • 8/12/2019 Lecture 172 19

    26/65

    (-1) times a vector?

    5

    4

    3 i

    jv 4

    i 3

    j

    i

    j

    What is - v?

  • 8/12/2019 Lecture 172 19

    27/65

    v 4i 3

    j vv 4i 3

    j

    Points in the OPPOSITE direction!

    What is - v?

    5

    4

    3

    v 4

    i 3

    j5

    4

    3v

    v

    4

    i

    3

    j

  • 8/12/2019 Lecture 172 19

    28/65

    In General

    If this is v

    This is -v

  • 8/12/2019 Lecture 172 19

    29/65

    Adding Vectors Diagrammatically

    u

    vu v

    v

    You are allowed to move an arrow around as

    long as you do not change its direction andlength.

    Method for adding vectors:

    1. Move the arrows until

    the tail of one arrow is at

    the tip of the other

    arrow.

    2. Trace out the resultant

    arrow.

  • 8/12/2019 Lecture 172 19

    30/65

    Addition of vectors

    You are allowed to move an arrow around as

    long as you do not change its direction.

  • 8/12/2019 Lecture 172 19

    31/65

    Adding in a different order

  • 8/12/2019 Lecture 172 19

    32/65

    Order does not matter

  • 8/12/2019 Lecture 172 19

    33/65

    Subtracting Vectors Diagrammatically

    u

    v

    u

    v

    v

    u v

    u v

    What about uv?

    v

    u v u (v)

    If we know (rv) we know

    ru

    rv

  • 8/12/2019 Lecture 172 19

    34/65

    Example

  • 8/12/2019 Lecture 172 19

    35/65

    Example

    What isA B C?

    A

    C

    B

    D

    A B C

    AB

    C

    D

    Addi t 1

  • 8/12/2019 Lecture 172 19

    36/65

    Adding vectors 1Add the three vectors to find the

    total displacement.

    s1 2.6 jrs2 4i

    s3

    3.1cos(45

    o

    )

    i

    3.1sin(45

    o

    )

    j

    2.19

    i

    2.19

    j

    stotal

    s1

    s2

    s3 (4 2.19)i (2.6 2.19) j 6.19i 4.79j

    or more precisely:r

    stotal (6.19

    i 4.79

    j)km

    Adding Vectors 2

  • 8/12/2019 Lecture 172 19

    37/65

    Adding Vectors 2

    FindA 2

    B.

    A 2.8cos(60o

    )

    i 2.8sin(60o

    )

    j 1.40

    i 2.42

    jrB 1.9cos(60o)i 1.9sin(60o) j 0.95i 1.65j

    2

    B 2(0.95i 1.65 j) 1.90i 3.30 j

    r

    A 2r

    B (1.40 1.90)

    i (2.42 3.30)

    j

    0.50i 5.72 j

  • 8/12/2019 Lecture 172 19

    38/65

    Vector Notation of E field

  • 8/12/2019 Lecture 172 19

    39/65

    Vector Notation of E field

    r: Unit vector pointing from the charge to the observer.

    r 1

    q

    r

    rE

    q

    40r2r

    Charges produce electric field. The closer you are to the

    charge, the stronger is the electric field.

    Unit: V/m = N/C

    0

    8.85

    10

    12

    C

    2

    N

    1

    m

    2

    : Permittivity

  • 8/12/2019 Lecture 172 19

    40/65

    Store k in your calculator

  • 8/12/2019 Lecture 172 19

    41/65

    Store kin your calculator

    Type:

    8.99E9 then STO

    then ALPHA then K

    then ENTER

    If q=2C, r=1.3m, to

    find the Efield, type:K*2/1.32

    Electric Field (Magnitude)

  • 8/12/2019 Lecture 172 19

    42/65

    Electric Field (Magnitude)The magnitudeof the electric field produced by a single

    point charge qis give by:

    Eq

    40

    r2

    Dont forget the absolute value!

    Magnitude is alwayspositive.

    Warnings

  • 8/12/2019 Lecture 172 19

    43/65

    WarningsDo not confuse the displacement vector rwithE.

    r(blue arrow) points from the charge to the observer.rE(red arrow) is ALWAYS drawn with its tail at the obeserver,

    and can point either away from OR toward the charge.

    +Observerr E

    r E

    rec on o one

  • 8/12/2019 Lecture 172 19

    44/65

    rec on o onecharge)

    If q 0,Eis in the SAME direction as r.

    If q 0,r

    Eis in the OPPOSITE direction as r.

    rE

    q

    40r2r

  • 8/12/2019 Lecture 172 19

    45/65

    What is

    r?

    Example

    q1 1nC

    Observer atP.rrP1is the displacement vector from q1toP.

    rP1is the corresponding unit vector.

    rP1 1i 0.5 jrrP1 1

    2 0.52 1.12

    rP11i 0.5 j

    1.12 0.89i 0.45 j

    rP1

    rP1rrP1

  • 8/12/2019 Lecture 172 19

    46/65

    Example (Continued)

    The electric field vector is given by the red

    arrow.

    q1 1nCr

    E1 q1

    40rP12 rP1

    109

    40(1.12)2

    (0.89i 0.45 j)

    (6.38i 3.22j)V/m

    f f

  • 8/12/2019 Lecture 172 19

    47/65

    The strategy in finding the electric field vector

    1. Draw an arrow from the charge to the observer

    2. Write down the vector rrand its magnitude rr

    3. Calculate r

    rrrr

    4. CalculaterE q

    40r2r

    5. If there are more than one charge, repeat for each one

    6.rEtotal

    rE1

    rE2L

    rEN

    Fi d th it t

  • 8/12/2019 Lecture 172 19

    48/65

    Find the unit vectors

    A

    B

    C

    D

    E

    q1

    Find :r

    rA1rrA1

    rA1

    then do the same

    for the other point

  • 8/12/2019 Lecture 172 19

    49/65

    Warnings

    Do not confuse the displacement vector rwithE.

    rr(blue arrow) points from the charge to the observer, and is

    used to calculate

    r.rE(red arrow) is ALWAYS drawn with its tail at the obeserver.

    q1 1nC

  • 8/12/2019 Lecture 172 19

    50/65

    Example - Two Charges

    See supplementary notes

    -1nC

    +1nC

  • 8/12/2019 Lecture 172 19

    51/65

    Example

  • 8/12/2019 Lecture 172 19

    52/65

    Example

    4 cm 3 cm

    q1 q2P

    q1 1 108C, q2 2 10

    8C

    Find the E field at point P

    S l ti Pr1 r2

  • 8/12/2019 Lecture 172 19

    53/65

    Solution

    4 cm 3 cm

    q1 q2P

    q1 1 108C, q2 2 10

    8CE1

    q1

    40r12r1

    q1

    40r12i

    (1 108 )

    4(8.85 1012 )(0.04)2

    i (56.2

    i )kV/ m

    E1E2

    E2q2

    40r22r2

    q2

    40r22

    (i )

    (2 10

    8 )

    4(8.85 1012 )(0.03)2(i ) (199.8i )kV/ m

    1 r2

    r1i , r2

    i

    EtotalE1E2 (56.2i 199.8i )kV/ m (256.0i )kV/ m

    Example

  • 8/12/2019 Lecture 172 19

    54/65

    Example

    x 7-x

    q1 q2P

    q1 1 108C, q2 2 10

    8C

    Find the point P such that E = 0.

    7 cm

    xamp q1 1 108C, q2 2 108C

  • 8/12/2019 Lecture 172 19

    55/65

    xampe

    x 7-x

    q1 q2P

    q1 , q2

    q1

    40x2

    q2

    40 (7 x)2

    q1

    x2

    q2

    (7 x)2

    (7 x)2

    x2 q

    2

    q1 7 x

    x q

    2

    q1 2

    7 x 2x

    x 71 2

    16.9cm(rejected) or 2.9cm

    Th diff b t

  • 8/12/2019 Lecture 172 19

    56/65

    The difference between

    field vectors and field lines

    Field vectors Field lines

  • 8/12/2019 Lecture 172 19

    57/65

    Properties of field lines

    Field lines never cross each other

    Field lines never terminate in vacuum

    Field lines originate from positive charges andterminate at negative charge

    Field lines may go off to infinity

    The tangent of a field line gives the direction of

    the E field at that particular point

    Dipole

  • 8/12/2019 Lecture 172 19

    58/65

    Dipole

    Field vectors Field lines

    Similar to this

  • 8/12/2019 Lecture 172 19

    59/65

    Similar to this

    You connects the field vectors tofind the field lines.

    Electric Field and Electric Force

  • 8/12/2019 Lecture 172 19

    60/65

    Electric Field and Electric Force

    Electric field can be used to calculate the electric forc

    F q E

    FandEare parallel when qis positive.

    FandEare opposite when qis negative.

    Example :

    A chargeq 2Cin an electric fieldrE (2i 3j)N/Cwill feel a force:

    rF (2C)(2i 3j)N/C (4i 6 j)N

    Two point charges

  • 8/12/2019 Lecture 172 19

    61/65

    Two point charges

    q1 q2r

    E21E12

    The E field (magnitude) at

    point 2 due to charge 1:

    E21q1

    40r2

    The force (magnitude) on

    charge 2 due to charge 1:

    F21 q2E21 q1q2

    40r2

    The E field (magnitude) at

    point 1 due to charge 2:

    E12q2

    40r2

    The force (magnitude) on

    charge 1 due to charge 2:

    F12 q1E12 q1q2

    40r2

  • 8/12/2019 Lecture 172 19

    62/65

  • 8/12/2019 Lecture 172 19

    63/65

    Another Notation

    Fq1q2

    40r2

    F kq1q2

    r2

    k1

    40 8.99 109Nm2C2

    Finding the Electric Force

  • 8/12/2019 Lecture 172 19

    64/65

    Finding the Electric Force

    q1

    q2

    q3

    There are two (equivalent) methods of

    finding the force on a charge (say, q1).

    Method 1 (usingEfield - recommended) :

    Find the electric field at point 1 due to the other two chargesrE1

    rE12

    rE13 (Field at point 1 due to q2 and q3)

    rF1 q1

    rE1

    Method 2 (using Coulomb's Law):

    Find the forcevectorson charge 1 due to the other two charges using Coulomb's LawrF1

    rF12

    rF13 (Forces at point 1 due toq2 and q3)

    Note that you must first write the forces as vectors,cannotadd the magnitude instearF1

    rF12

    rF13

    n ng e orce on a

  • 8/12/2019 Lecture 172 19

    65/65

    n ng e orce on acharge

    At pointP:rE (9.60i 3.16 j)N/C

    P

    -1nC

    +1nCIf a charge q3 2nCis placed at point P,

    the force on it will be given by :rF3 q3

    rE (2nC)(9.60i 3.16 j)N/C

    (19.20i 6.32 j) 109N


Recommended