+ All Categories
Home > Documents > Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by...

Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by...

Date post: 15-Jan-2016
Category:
Upload: maxim-stringer
View: 221 times
Download: 0 times
Share this document with a friend
30
Lecture 2 Hidden Markov Model
Transcript
Page 1: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Lecture 2

Hidden Markov Model

Page 2: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Hidden Markov Model

Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want to write a program that can tell the which part was written by Shakespeare and which part by the monkey .

Page 3: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

21 century human-like monkey typing

Page 4: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Probability of event X occurring is P(X)• Conditional probability

– P(X|Y) : the probability of X occurring given Y

• Joint probability– P(X,Y) = P(X|Y)P(Y)– P(X,Y|Z) = P(X|Y,Z)P(Y|Z)

• Marginal probability– P(X) = Y P(X|Y)P(Y)

Review on Probabilities

Page 5: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Usually we want to know probability of observation O given supposition (model) M; P(O|M)

• Reverse problem: given O we want to know probability that M is correct: the posterior probability P(M|O)

• Baye’s theorem: for any two event X, Y– P(X|Y) = P(Y|X)P(X)/P(Y)– P(M|O) = P(O|M)P(M)/P(O)

Posterior Probability

Page 6: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Definition of Hidden Markov ModelThe Hidden Markov Model (HMM) is a finite set of states, each of which is associated with a probability distribution.

Transitions among the states are governed by a set of probabilities called transition probabilities.

In a particular state an outcome or observation can be generated, according to the associated probability distribution.

It is only the outcome, not the state visible to an external observer and therefore states are ``hidden'' from the observer; hence the name Hidden Markov Model.

Page 7: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Examples

• Text written by Shakespeare and monkey

• Dice thrown by a dealer with two dice, one fair and one loaded

• A DNA sequence with coding and non-coding segments

Page 8: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Case Observed Hidden state symbols

Text alphabet Shakespeare/monkey

Dice 1-6 (rolled fair dice/loaded dice numbers)

DNA A,C,G,T coding/non-coding (bases)

Examples (cont’d)

Page 9: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

In order to define an HMM completely, following elements are needed.

•The number of states of the model, {qi|i=1,2,..,N}.

•The number of observation symbols in the alphabet, {ok |k=1,2,…,M}.

• A set of state transition probabilities

where qt denotes the current state. Transition probabilities should satisfy the normal stochastic constraints,

and

A

Page 10: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

•A emission probability distribution in each of the states,

wherek denotes the kth observation symbol in the alphabet, and ot the current parameter vector. Following stochastic constraints must be satisfied

and

B

bj(k) is the probability of state j taking the symbol k

Page 11: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• The initial state distribution, , where

Therefore we can use the compact notation

(A,B,)

to denote an HMM with discrete probability distributions.

Notation

Sequence of observations: O = o1, o2, …, oT

Sequence of (hidden) states: Q = q1, q2, …, qT

Page 12: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

[Mx ] Match state x. Has K emission probabilities. [Dx ] Delete state x. Non-emitter. [Ix ] Insert state x. Has K emission probabilities. [B] Begin state (for entering main model). Non-emitter. [E] End state (for exiting main model).[S] Start state. Non-emitter. [N] N-terminal unaligned sequence state. Emits on transition with K emission probabilities. Non-emitter. [C] C-terminal unaligned sequence state. Emits on transition with K emission probabilities. [J] Joining segment unaligned sequence state. Emits on transition with K emission probabilities.

HMM scheme with K (DNA 4/protein 20) symbols

© 2001 Per Kraulis

Page 13: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

(1) The Markov assumption First order transition probabilities are

Model with only 1st order transition probabilities are called 1st order Markov model. Kth order Markov model involves kth order transition probabilities

(2) The stationarity assumption State transition probabilities are independent of time. For any t1 and t2

Page 14: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

(Cont’d)

(3) The output independence assumption Current observation is statistically independent of the previous observations. Given a sequence of observations,

Then, for an HMM set A,B,the probability for O to happen is

This assumption has limited validity and in some cases may become a severe weakness of HMM.

Page 15: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Given the HMM set (A,B,), and the observe sequence O = o1, o2,…oT, there are three problems of interest.

(1)The Evaluation Problem: what is the probability p={O} that the observations are generated by the m

odel?

(3) The Learning Problem: Given a model and a sequence of observations O , how should we adjust the model parameters in order to maximize the probability p={O} ?

(2) The Decoding Problem: Given a model and a sequence of observations O, what is the most likely state sequence Q = q1, q2,…qT that produced the observations?

Three basic problems of HMMs

Page 16: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Example of Decoding Problem

Have observation sequence O, find state sequence Q.

(1) Text Shakespeare (s) or monkey (m) O = ..aefjkuhrgnandshefoundhappinesssdmcamoe… Q = ..mmmmmmssssssssssssssssssssssssssssmmmmmm…

(2) Dice fair (F) or loaded (L) dice O = …132455644366366345566116345621661124536… Q = …LLLLLLLLLLLLFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLL… (3) DNA coding (C) or non-coding (N)

O = …AACCTTCCGCGCAATATAGGTAACCCCGG… Q = …NNCCCCCCCCCCCCCCCCCNNNNNNNN…

Page 17: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

The Viterbi AlgorithmGiven sequence O of observations and a model , we want to find state sequence Q* with the maximum likelihood ofobserving O.

Let Qt = q1, q2,…qt and Ot = o1, o2,…ot.

Suppose Qt-1 is a partial state sequence that gives maximumlikelihood for observing the partial sequence Ot-1 ,Define the quantityt (i) = maxQt-1 p{Qt-1, qt =i, Ot-1 |}

This can be computed recursively by starting with1 (j) = jbj(o1), for every j

t+1 (j) = bj(ot+1) maxk( t (k) akj ) for every j

Page 18: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

The Viterbi Algorithm (cont’d)

Keep trbj(t+1) = arg maxk( t (k) akj )

for later traceback.

The last “best” state is given by

q*T = arg maxk( T (k))

Earlier states in the sequence is obtained by traceback:

q*t-1 = trbt(t)

Then sequence Q* giving the maximum likelihood of observing O is

Q* = q*1, q*2,…q*T

Page 19: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Example: Loaded Die

• Two states: j = fair (F) or loaded (L) die

• Symbols: k = 1,2,3,4,5,6

• Transition probability (for example)– aFF =.95, aFL=.05, aLF=.10 aLL=.90

• Emission probability– bF(k) = 1/6, k = 1,..,6 (all faces equal)– bL(6) = 1/2 , k=6; rest bL(k) = 1/10 (6 face favored)

Page 20: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.
Page 21: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Testing the Viterbi Algorithm A sequence of 300 tosses of fair and loaded dice

Page 22: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Normally, the transition probabilities are not known, and not all the emission probabilities are known.

• If there are data for which even the hidden states are known, then the data can be used to train parameters in the HMM set (A,B,).

• In the case of gene recognition in DNA sequence, we use known genes for training.

Training

Page 23: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• In prokaryotic DNA we have only two kinds of regions (ignore regulatory sequences): coding (+) and non-coding (-), and four letters, A,C,G,T

• So we have 8 states: k= A+,C+,G+,T+,A-,C-,G-,T- and 4 observable symbols: i = A,C,G,T

• Transition probability

akl = Ekl/(m Ekm)

where Ekl is the total number of k to l transitions in all the training sequences

• Emission probability = 0 or 1 e.g. bA+(A) = 1, bA+(C)= 0

(Oversimplified) example: genes in DNA

Page 24: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• For better result, remember that protein genes are coded in (three letter) codons, and letter usage in the 1st, 2nd and 3rd positions in a codon are different. Hence use 12 states:

k = A-,C-,G-,T-,Af+,Cf+,Gf+,Tf+; f=1,2,3

• Transition probability trained as before• Basis for gene-finding software such as GENEMAR

K

(Oversimplified) example: genes in DNA (cont’d)

Page 25: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Assume we are always using HMM, and let denote the parameters (transition and emission probabilities).

• For observation O, determine using the maximum likelihood criterion

ML = argmax P(O|)• If is used to generate a set of observables {Oi},

then the log-likelihood Oi P(Oi|) log P(Oi|) is maximized by = This gives a way to find

ML by iteration (the Baum-Welch Algorithm).

Maximum Likelihood

Page 26: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Suppose there is a probability distribution P() of the parameters . Then from Bayes’ theorem, given the observation O, the posteriori probability

P(|O) = P(O|) P()/P(O)

• Since P(O) is independent of , the best is given by the maximum a posteriori probability estimate

MAP= argmax P(O|) P()

Maximum a posteriori probability

Page 27: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.
Page 28: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• Original papers by Krogh et al.– Krogh, A., Brown, M., Mian, I. S., Sjander, K., & Haussler, D. (1994a).

Hidden Markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235, 1501-1531.

– Krogh, A., Mian, I. S., & Haussler, D. (1994b). A hidden Markov model that finds genes in e. coli DNA. Nucleic Acids Research, 22, 4768-4778.

• Book (that I find most readable)– R. Durbin, S.R. Eddy, A. Krogh and G. Mitchison “Biological sequen

ce analysis”, (Cambridge UP, 1998)

References and books

Page 29: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

• This lecture partly based on article: www.marypat.org/stuff/random/markov.html

• Cold Spring Harbor – Computational Genomics Course - Profile hidde

n Markov models, www.people.virginia.edu/~wrp/cshl97/hmm-lecture.html

• The Center for Computational Biology University of Washington in St. Louis School of Medicine www.ccb.wustl.edu

Good websites for HMM

Page 30: Lecture 2 Hidden Markov Model. Hidden Markov Model Motivation: We have a text partly written by Shakespeare and partly “written” by a monkey, we want.

Where to find software

• www.speech.cs.cmu.edu/comp.speech/Section6/Recognition/myers.hmm.html

• www.netid.com/html/hmmpro.html• Google: Hidden Markov Model Softwa

re• GeneMark

– opal.biology.gatech.edu/GeneMark/


Recommended