+ All Categories
Home > Documents > Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin ,...

Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin ,...

Date post: 03-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
14
18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 1(14) Review of Fourier Series Why Fourier series? Want to make analysis simple. Complex exponents are the eigenfunctions of LTI systems, x(t) is presented as linear combination of complex exponents (with different frequencies) LTI system response is the same linear combination of individual responses! () () () ()( ) yt xt ht h xt d +∞ -∞ = * = τ τ ( ) ( ) ( ) j t j t xt e yt H j e ω ω = = ω ( ) H j ω () yt () j t xt e ω = Lecture 2
Transcript
Page 1: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 1(14)

Review of Fourier Series

• Why Fourier series? Want to make analysis simple.

• Complex exponents are the eigenfunctions of LTI systems,

• x(t) is presented as linear combination of complex exponents (with different frequencies)

• LTI system response is the same linear combination of individual responses!

( ) ( ) ( ) ( ) ( )y t x t h t h x t d

+∞

−∞

= ∗ = τ − τ τ∫

( ) ( ) ( )j t j tx t e y t H j e

ω ω

= ⇒ = ω

( )H jω( )y t( )

j tx t e

ω=

Lecture 2

Page 2: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 2(14)

Periodic Signals• Periodic signals are very important class of signals

(widely used), where smallest T is a period,

• Examples: & . Period

• Introduce a set of harmonically-related complex

exponents,

• Construct a periodic signal,

( ) ( ),x t x t T= + for all t

0cos( )tω 0j te

ω

02 /T = π ω

0

2

( ) , 0, 1, 2,...jn t

jn t Tn t e e n

π

ωφ = = = ± ±

( ) 0jn tn

n

x t c e

+∞

ω

=−∞

′ = ∑

DC 1st harmonic

Lecture 2

Page 3: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 3(14)

• Can be made the same as ?

• Yes, by adjusting cn ,

• {cn} – Fourier series coefficients (or spectral coefficients,

or discrete spectrum of the signal)

• c0 – DC component or average value of x(t),

Fourier Series of Periodic Signal

( )x t′ ( )x t

( )21

nj t

Tn

Tc x t e dt

T

− π

= ∫ ( ) 0

0

2,

jn tn

n

x t c eT

+∞

ω

=−∞

π

= ω =∑

( )0

1

T

c x t dtT

= ∫

Lecture 2

Page 4: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 4(14)

Example of Fourier Series

( ) ( )0 0

0

1cos( )

2

j t j tx t t e e

ω − ω

= ω = +

1 1

1 1, ,

2 2

0, 1k

c c

c k

= =

= ≠ ±

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

1

1

. 4 3 2 1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

.

1T =

f

Lecture 2

Page 5: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 5(14)

Example of Fourier Series

( )1, / 2

0, / 2 / 2

tx t

t T

< τ=

τ < <

sinc ,

sin( )sinc( )

n

nc

T T

tt

t

τ τ =

π=

π

Lecture 2

Q.: How does cn

scale with

the pulse amplitude?

Duration? Period?

Page 6: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 6(14)

Example of Fourier SeriesLecture 2

14T T=

18T T=

116T T=

Periodic signal

Its spectrum

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.

Q.: How does cn

scale with

the pulse amplitude?

Duration? Period?

Page 7: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 7(14)

Convergence of Fourier Series

• Dirichlet conditions:

– x(t) must be absolutely integrable (finite power)

– x(t) must be of bounded variation; that is the number of maxima

and minima during a period is finite

– In any finite interval of time, there are only a finite number of

discontinuities, which are finite.

• Dirichlet conditions are only sufficient, but are not

necessary.

• All physically-reasonable (practical) signals meet these

conditions.

( )Tx t dt < ∞∫

Lecture 2

Page 8: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 8(14)

Gibbs Phenomenon

increasing the number of

terms does not decrease

the ripple maximum!

Lecture 2

Q.: reproduce

these graphs

using a computer

Page 9: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 9(14)

Fourier Series of Real Signals

( ) ( ) ( )

{ } ( ) ( ) { } ( ) ( )

0

0 0 0

1

0 0

2cos sin ,

2

2 22Re cos , 2 Im sin

n n

n

n n n nT T

ax t a n t b n t

T

a c x t n t dt b c x t n t dtT T

=

π= + ω + ω ω =

= = ω = − = ω

∫ ∫

( ){ } *Im 0

n nx t c c

= ⇒ =• For a real signal,

• Then obtain the trigonometric Fourier series,

• Another form of it is

( ) ( )

( ) ( )

0 0

1

2 2 1

cos

, arg tan /

n n

n

n n n n n n n n

x t x A n t

A c a b c b a

=

= + ω + ϕ

= = + ϕ = − = −

Lecture 2

Page 10: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 10(14)

Properties of Fourier Series

• Linearity:

• Time shifting:

• Time reversal:

• Time scaling:

[ ] [ ] [ ]1 2 1 2( ) ( ) ( ) ( )x t x t x t x tα +β = α +βF F F

0 0

0( ) ( )F F jn t

n nx t c x t t e c− ω

←→ ⇔ − ←→

( ) ( )F F

n nx t c x t c

−←→ ⇔ − ←→

( ) 0( )jn tn

n

x t c e

+∞

αω

=−∞

α = ∑

Lecture 2

Q.: prove these properties

Page 11: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 11(14)

Properties of Fourier Series

• Multiplication:

• Convolution:

• Differentiation:

• Integration: for

( ) ( )F

k n kkx t y t c c

−=−∞

′ ′′←→∑

( ) ( )F

n nTx y t d Tc c′ ′′τ − τ τ←→∫

0

( ) F

n

dx tjn c

dt←→ ω

0

( ) ,t F ncx d

jn−∞

τ τ←→

ω∫ 0 0c =

Lecture 2

Q.: prove these properties

Page 12: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 12(14)

Properties of Fourier Series

• Real x(t):

• Real & even x(t):

• Real & odd x(t):

• Parseval’s Theorem:

*

n nc c−

=

{ }, Im 0n n n

c c c−

= =

{ },Re 0n n n

c c c−

= − =

221( )

nT

n

x t dt cT

=−∞

= ∑∫

Lecture 2

Q.: prove these properties

Page 13: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 13(14)

Signal Synthesis via FS

Couch, Digital and Analog Communication Systems, Seventh Edition.

( ) ( )n n

n

x t a t

+∞

=−∞

= ϕ∑

( )x t

Page 14: Lecture 2 Review of Fourier Seriessite.uottawa.ca/~sloyka/elg3175/Lec_2_ELG3175.pdf · 2 cos sin , 2 2 2 2Re cos , 2Im sin n n n n n T n n T a x t a n t b n t T a c x t n t dt b c

18-Jan-12 Lecture 2, ELG3175 : Introduction to Communication Systems © S. Loyka 14(14)

Summary

• Review of Fourier series

• Periodic signals & complex exponents

• Series expansion of a periodic signal

• Trigonometric form of Fourier series

• Properties of Fourier series

• Reading: the Couch text, Sec. 2.1-2.5; Oppenheim & Willsky text,

Sec. 3.0-3.5. Study carefully all the examples (including end-of-

chapter study-aid examples), make sure you understand and can

solve them with the book closed.

• Do some end-of-chapter problems. Students’ solution manual

provides solutions for many of them.

Lecture 2


Recommended