+ All Categories
Home > Documents > Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS...

Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS...

Date post: 18-Oct-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
23
Lecture 20 ANNOUNCEMENTS HW#11 is due in 2 weeks on 11/20 HW#11 is due in 2 weeks, on 11/20. Review session: Fri. 11/9, 35PM in 306 Soda (HP Auditorium) Midterm #2 (Thursday 11/15 in Sibley Auditorium): Material of Lectures 1118 (HW# 710; Chapters 6,9,11) 4 pgs of notes (doublesided, 8.5”×11”), calculator allowed OUTLINE Review of MOSFET Amplifiers MOSFET Cascode Stage MOSFET Current Mirror EE105 Fall 2007 Lecture 20, Slide 1 Prof. Liu, UC Berkeley Reading: Chapter 9
Transcript
Page 1: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Lecture 20

ANNOUNCEMENTS• HW#11 is due in 2 weeks on 11/20• HW#11 is due in 2 weeks, on 11/20.• Review session: Fri. 11/9, 3‐5PM in 306 Soda (HP Auditorium)• Midterm #2 (Thursday 11/15 in Sibley Auditorium):

• Material of Lectures 11‐18 (HW# 7‐10; Chapters 6,9,11)• 4 pgs of notes (double‐sided, 8.5”×11”), calculator allowed

OUTLINE• Review of MOSFET Amplifiers• MOSFET Cascode Stage• MOSFET Current Mirror

EE105 Fall 2007 Lecture 20, Slide 1 Prof. Liu, UC Berkeley

Reading: Chapter 9

Page 2: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Review: MOSFET Amplifier Design• A MOSFET amplifier circuit should be designed to

1. ensure that the MOSFET operates in the saturation region, p g ,2. allow the desired level of DC current to flow, and3. couple to a small‐signal input source and to an output “load”.

Proper “DC biasing” is required!(DC analysis using large‐signal MOSFET model)

• Key amplifier parameters:  (AC analysis using small‐signal MOSFET model)

Voltage gain A ≡ v /v– Voltage gain Av ≡ vout/vin– Input resistance Rin ≡ resistance seen between the input node 

and ground (with output terminal floating)O t t i t R i t b t th t t

EE105 Fall 2007 Lecture 20, Slide 2 Prof. Liu, UC Berkeley

– Output resistance Rout ≡ resistance seen between the output node and ground (with input terminal grounded)

Page 3: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

MOSFET Models• The large‐signal model is used to determine the DC operating point (VGS, VDS, ID) of the MOSFET.p g p ( GS, DS, D)

• The small‐signal model is used to determine how the output responds to an input signal.

EE105 Fall 2007 Lecture 20, Slide 3 Prof. Liu, UC Berkeley

Page 4: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Comparison of Amplifier TopologiesCommon Source

L A 0

Common Gate

L A 0

Source Follower

0 A 1• Large Av < 0‐ degraded by RS

• Large Ri

• Large Av > 0‐degraded by RS

• Small Ri

• 0 < Av ≤ 1

• Large Rin– determined byLarge Rin

– determined by biasing circuitry

Small Rin‐ decreased by RS

• Rout ≅ RD

determined by biasing circuitry

• Small Rout 

• Rout ≅ RD

• ro decreases Av & Rout

• ro decreases Av & Routbut impedance seenlooking into the drain

‐ decreased by RS

• ro decreases Av & Rbut impedance seen

looking into the draincan be “boosted” by 

d ti

looking into the drain can be “boosted” by source degeneration

Rout

EE105 Fall 2007 Lecture 20, Slide 4 Prof. Liu, UC Berkeley

source degeneration

Page 5: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Common Source Stage

RRR ||

0=λ

S

D

Gv

Rg

RRRR

RRA+

−⋅

+=

21

21

1||||

0≠λ

in

m

RRRRR

g= 21 ||

0≠λ

( )RrgrRR +≅

EE105 Fall 2007 Lecture 20, Slide 5 Prof. Liu, UC Berkeley

Dout RR = ( )SOmODout RrgrRR +≅

Page 6: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Common Gate Stage

0=λ

( )mS RggRA ⋅=/1||

( ) DmGmS

v RgRgR

A+

=/1||

RR 1 0λSm

in Rg

R ≈

RR ( )RrgrRR +≅

0≠λ

EE105 Fall 2007 Lecture 20, Slide 6 Prof. Liu, UC Berkeley

Dout RR = ( )SOmODout RrgrRR +≅

Page 7: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Source Follower

0=λ 0≠λ

Sv

RA = 1SO

vRrA 1

||=

Sm

v

Rg

+1

RR

SOm

v

Rrg

||1+

Gin RR =Gin

RrR

RR

||||1=

=

SRR ||1=

EE105 Fall 2007 Lecture 20, Slide 7 Prof. Liu, UC Berkeley

Som

out Rrg

R ||||=Sm

out Rg

R ||

Page 8: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

CS Stage Example 1• M1 is the amplifying device; M2 and M3 serve as the load.

Equivalent circuit for small-signal analysis, q g y ,showing resistances connected to the drain

||||||1A⎞

⎜⎛

1233

1

||||||1

|||||| OOOm

mv

rrrR

rrrg

gA⎠

⎜⎜⎝

−=

EE105 Fall 2007 Lecture 20, Slide 8 Prof. Liu, UC Berkeley

1233

|||||| OOOm

out rrrg

R =

Page 9: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

CS Stage Example 2• M1 is the amplifying device; M3 serves as a source (degeneration) 

resistance; M2 serves as the load.  ; 2 

Equivalent circuit for small-signal analysis

01 =λ

331

2

||11O

Ov

rgg

rA+

−=

EE105 Fall 2007 Lecture 20, Slide 9 Prof. Liu, UC Berkeley

31 mm gg

Page 10: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

CS Stage vs. CG Stage• With the input signal applied at different locations, these circuits 

behave differently, although they are identical in other aspects.

Common source amplifier Common gate amplifier

01 ≠λ

02 =λ

Ov

R

rA+

= 1

1[ ]{ }12221 ||)1( OOSOmmv rrRrggA ++−=

EE105 Fall 2007 Lecture 20, Slide 10 Prof. Liu, UC Berkeley

Sm

Rg

+2

Page 11: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Composite Stage Example 1• By replacing M1 and the current source with a Thevenin 

equivalent circuit, and recognizing the right side as a CG stage, q , g g g g ,the voltage gain can be easily obtained. 

0λ 0λ

11D

vRA+

=01 =λ 02 =λ

EE105 Fall 2007 Lecture 20, Slide 11 Prof. Liu, UC Berkeley

12 mm gg

Page 12: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Composite Stage Example 2• This example shows that by probing different nodes in a circuit, 

different output signals can be obtained.• Vout1 is a result of M1 acting as a source follower, whereas Vout2

is a result of M1 acting as a CS stage with degeneration.1

221

||11

||1O

m

in

out

r

rg

vv

+=

101 =λ

221

|| Omm

rgg

+

2

4332

||11

||||1

O

OOm

in

out

r

rrg

vv

+−=

1

EE105 Fall 2007 Lecture 20, Slide 12 Prof. Liu, UC Berkeley

221

|| Omm

rgg

+

Page 13: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

NMOS Cascode Stage

( ) 12111 OOOt rrrgR ++= ( )211

12111

OOmout

OOOmout

rrgRrrrgR

≈++

EE105 Fall 2007 Lecture 20, Slide 13 Prof. Liu, UC Berkeley

• Unlike a BJT cascode, the output impedance is not limited by β.

Page 14: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

PMOS Cascode Stage

( )211

12111

OO

OOOmout

rrgRrrrgR

≈++=

EE105 Fall 2007 Lecture 20, Slide 14 Prof. Liu, UC Berkeley

211 OOmout rrgR ≈

Page 15: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Short‐Circuit Transconductance• The short‐circuit transconductance is a measure of the 

strength of a circuit in converting an input voltage signal into g g p g gan output current signal:

i

0=

≡vin

outm v

iG0=outv

• The voltage gain of a linear circuit is outmv RGA −=

EE105 Fall 2007 Lecture 20, Slide 15 Prof. Liu, UC Berkeley

(Rout is the output resistance of the circuit)outmv

Page 16: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Transconductance Example

1mm gG =

EE105 Fall 2007 Lecture 20, Slide 16 Prof. Liu, UC Berkeley

1mm g

Page 17: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

MOS Cascode Amplifier

[ ]outmv RGA −=[ ]

2211

21221 )1(

OmOmv

OOOmmv

rgrgArrrggA

−≈++−≈

EE105 Fall 2007 Lecture 20, Slide 17 Prof. Liu, UC Berkeley

Page 18: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

PMOS Cascode Current Source as Load• A large load impedance can be achieved by using a PMOS 

cascode current source.

OOmoN

RrrgR 122≈

oPoNout

OOmoP

RRRrrgR

||433

=≈

EE105 Fall 2007 Lecture 20, Slide 18 Prof. Liu, UC Berkeley

Page 19: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

MOS Current Mirror• The motivation behind a current mirror is to duplicate a 

(scaled version of the) “golden current” to other locations.

Current mirror concept Generation of required VGS Current Mirror Circuitry

( )221

THXoxnREF VVLWCI −⎟

⎠⎞

⎜⎝⎛= µ ( )21 2

1THXoxncopy VV

LWCI −⎟

⎠⎞

⎜⎝⎛= µ

( )( ) REFILWI / 1

1 =( ) 11/

2TH

REFX V

LWCIV +=

µ

2 REFL ⎠⎝ 12py L ⎠⎝

EE105 Fall 2007 Lecture 20, Slide 19 Prof. Liu, UC Berkeley

( ) REFREF

copy ILW

I/1( )1/oxn LWCµ

Page 20: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

MOS Current Mirror – NOT!• This is not a current mirror, because the relationship between 

VX and IREF is not clearly defined.

• The only way to clearly define VXwith IREF is to use a diode‐

EE105 Fall 2007 Lecture 20, Slide 20 Prof. Liu, UC Berkeley

y y y X  REF connected MOS since it provides square‐law I‐V relationship. 

Page 21: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Example:  Current Scaling • MOS current mirrors can be used to scale IREF up or down 

– I = 0 2mA; I = 0 5mAI1 = 0.2mA; I2 = 0.5mA

:0=λ

EE105 Fall 2007 Lecture 20, Slide 21 Prof. Liu, UC Berkeley

Page 22: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

Impact of Channel‐Length Modulation

0≠λ ( ) ( )[ ]satDDSTHXoxncopy VVVVLWCI −+−⎟

⎠⎞

⎜⎝⎛= ,1

2

11 1

21 λµ

( ) ( )[ ]THGSDSTHXoxn VVVVVLWC +−+−⎟

⎠⎞

⎜⎝⎛= 1

2

1

121 λµ

( ) ( )[ ]satDGSTHXREF

oxnREF VVVVLWCI λµ −+−⎟

⎠⎞

⎜⎝⎛= 1

21

,2

( ) [ ]THTHXREF

oxn VVVLWC λµ +−⎟

⎠⎞

⎜⎝⎛= 1

21 2

( )( )

( ) ( )( )

( )⎟⎠

⎞⎜⎜⎝

⎛+

−+=

++−+

= GSDSREF

THGSDSREFcopy V

VVILWLW

VVVVI

LWLWI

λλ

λλ

11

//

11

// 1111

1

EE105 Fall 2007 Lecture 20, Slide 22 Prof. Liu, UC Berkeley

( ) ( ) ⎠⎝ ++ THREFTHREF VLWVLW λλ 1/1/

Page 23: Lecture 20 - inst.eecs.berkeley.eduee105/fa07/lectures/Lecture 20.pdf · Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks, onon 11/2011/20 . • Review session: Fri.

CMOS Current Mirror

EE105 Fall 2007 Lecture 20, Slide 23 Prof. Liu, UC Berkeley


Recommended