+ All Categories
Home > Documents > Lecture 25

Lecture 25

Date post: 31-Dec-2015
Category:
Upload: kirby-terrell
View: 11 times
Download: 0 times
Share this document with a friend
Description:
Lecture 25. OUTLINE The BJT (cont’d) Ideal transistor analysis Narrow base and narrow emitter Ebers-Moll model Base-width modulation Reading : Pierret 11.1-11.2; Hu 8.2-8.6. Notation (PNP BJT). N E  N AE D E  D N t E  t n L E  L N n E0  n p0 = n i 2 / N E. N B  N DB - PowerPoint PPT Presentation
Popular Tags:
21
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis Narrow base and narrow emitter Ebers-Moll model Base-width modulation Reading : Pierret 11.1-11.2; Hu 8.2-8.6
Transcript

Lecture 25

OUTLINE

The BJT (cont’d) • Ideal transistor analysis• Narrow base and narrow emitter• Ebers-Moll model• Base-width modulation

Reading: Pierret 11.1-11.2; Hu 8.2-8.6

Notation (PNP BJT)

NE NAE

DE DN

E n

LE LN

nE0 np0 = ni2/NE

NB NDB

DB DP

B p

LB LP

pB0 pn0 ni

2/NB

NC NAC

DC DN

C n

LC LN

nC0 np0 ni2/NC

EE130/230M Spring 2013 Lecture 25, Slide 2

“Game Plan” for I-V Derivation• Solve the minority-carrier diffusion equation in each quasi-neutral

region to obtain excess minority-carrier profiles– different set of boundary conditions for each region

• Find minority-carrier diffusion currents at depletion region edges

• Add hole & electron components together terminal currents

0""

xdx

ndEEn

EqADI0

xdx

pdBEp

BqADI

Wxdxpd

BCpBqADI

0''

xdx

ndCCn

CqADI

EE130/230M Spring 2013 Lecture 25, Slide 3

Emitter Region Analysis• Diffusion equation:

• General solution:

• Boundary conditions:

• Solution:

E

EE n

dx

ndED

2

2

"0

EE LxLxE eAeAxn /"

2/"

1)"(

)1()0"(

0)"(/

0

kTqV

EE

E

EBenxn

xn

EEB LxkTqVEE eenxn /"/

0 )1()"(

)1( /00""

kTqVEL

D

xdxnd

EEnEB

E

EE enqAqADI

EE130/230M Spring 2013 Lecture 25, Slide 4

Collector Region Analysis

CC LxLxC eAeAxn /'

2/'

1)'(

CCB LxkTqVCC eenxn /'/

0 )1()'(

C

CC n

dx

ndCD

2

2

'0

)1()0'(

0)'(/

0

kTqV

CC

C

CBenxn

xn

• Diffusion equation:

• General solution:

• Boundary conditions:

• Solution:

)1( /00''

kTqVCL

D

xdxnd

CCnCB

C

CC enqAqADI

EE130/230M Spring 2013 Lecture 25, Slide 5

Base Region Analysis

BB LxLxB eAeAxp /

2/

1)(

B

BB p

dx

ndBD

2

2

0

)1()(

)1()0(/

0

/0

kTqV

BB

kTqVBB

CB

EB

epWp

epp

BLWBLW

BLxBLxCB

BLWBLW

BLxWBLxWEB

eeeekTqV

B

eeeekTqV

BB

ep

epxp

//

//

//

/)(/)(

)1(

)1()(/

0

/0

• Diffusion equation:

• General solution:

• Boundary conditions:

• Solution:

EE130/230M Spring 2013 Lecture 25, Slide 6

Since

we can write

as

2sinh ee

BLWBLW

BLxBLxCB

BLWBLW

BLxWBLxWEB

eeeekTqV

B

eeeekTqV

BB

ep

epxp

//

//

//

/)(/)(

)1(

)1()(

/0

/0

B

BCB

B

BEB

LW

Lx

kTqVB

LW

LxW

kTqVBB

ep

epxp

sinh

sinh)1(

sinh

sinh)1()(

/0

/0

EE130/230M Spring 2013 Lecture 25, Slide 7

1)1( /)/sinh(

1/)/sinh(

/cosh(

0

0

)

kTqVLW

kTqVLW

LW

BLD

xdxpd

BEp

CB

B

EB

B

B

B

B

B

eepqA

qADI

1)1( /)/sinh(

/cosh(/)/sinh(

10

)

kTqVLW

LWkTqVLWBL

D

Wxdxpd

BCp

CB

B

BEB

BB

B

B

eepqA

qADI

cosh22

sinh

eeee

d

d

d

d

B

BCB

B

BEB

LW

Lx

kTqVB

LW

LxW

kTqVBB epepxp

sinh

sinh)1(

sinh

sinh)1()( /

0/

0

EE130/230M Spring 2013 Lecture 25, Slide 8

BJT Terminal Currents• We know:

• Therefore:

1)1( /)/sinh(

1/)/sinh(

/cosh(

0) kTqV

LWkTqV

LW

LW

BLD

EpCB

B

EB

B

B

B

B eepqAI

)1( /0 kTqVEL

DEn

EB

E

E enqAI

1)1( /)/sinh(

/cosh(/)/sinh(

10

) kTqVLW

LWkTqVLWBL

DCp

CB

B

BEB

BB

B eepqAI

)1( /0 kTqV

CLD

CnCB

C

C enqAI

1)1( /)/sinh(

10

/)/sinh(

/cosh(

00) kTqV

LWBLDkTqV

LW

LW

BLD

ELD

ECB

BB

BEB

B

B

B

B

E

E epepnqAI

1)1( /)/sinh(

/cosh(

00/

)/sinh(1

0) kTqV

LW

LW

BLD

CLDkTqV

LWBLD

CCB

B

B

B

B

C

CEB

BB

B epnepqAI

EE130/230M Spring 2013 Lecture 25, Slide 9

BJT with Narrow Base• In practice, we make W << LB to achieve high current gain.

Then, since

we have:

1for 1cosh

1for sinh

2

2

WxkTqV

B

WxkTqV

BB

CB

EB

ep

epxp

)1(

1)1()(/

0

/0

EE130/230M Spring 2013 Lecture 25, Slide 10

BJT Performance Parameters

221

221

221

2

2

2

2

2

2

1

1

1

1

1

1

1

BEE

B

B

E

Bi

Ei

BEE

B

B

E

Bi

Ei

B

EE

B

B

E

Bi

Ei

LW

LW

NN

DD

n

dc

LW

LW

NN

DD

n

dc

LWT

LW

NN

DD

n

n

n

n

Assumptions: • emitter junction forward

biased, collector junction reverse biased

• W << LB

EE130/230M Spring 2013 Lecture 25, Slide 11

BJT with Narrow Emitter

221

221

221

2

2

2

2

2

2

1

1

1

1

1

1

1

BEE

B

B

E

Bi

Ei

BEE

B

B

E

Bi

Ei

B

EE

B

B

E

Bi

Ei

LW

LW

NN

DD

n

dc

LW

LW

NN

DD

n

dc

LWT

LW

NN

DD

n

n

n

n

Replace with WE’ if emitter is narrow

EE130/230M Spring 2013 Lecture 25, Slide 12

Ebers-Moll Model

The Ebers-Moll model is a large-signal equivalent circuit which describes both the active and saturation regions of BJT operation.•Use this model to calculate IB and IC given VBE and VBC

EE130/230M Spring 2013 Lecture 25, Slide 13

increasing

(npn) or VEC (pnp)

If only VEB is applied (VCB = 0):

)1(1

)1(

)1(

/0

/0

/0

kTqVFFB

kTqVFFC

kTqVFE

EB

EB

EB

eII

eII

eII

If only VCB is applied (VEB = 0): :

)1)(1(

)1(

)1(

/0

/0

/0

kTqVRRB

kTqVRRE

kTqVRC

CB

CB

CB

eII

eII

eII

aR : reverse common base gainaF : forward common base gain

I C

V CBV EB

I B

E B C

1)1( /)/sinh(

10

/)/sinh(

/cosh(

00) kTqV

LWBLDkTqV

LW

LW

BLD

ELD

ECB

BB

BEB

B

B

B

B

E

E epepnqAI

1)1( /)/sinh(

/cosh(

00/

)/sinh(1

0) kTqV

LW

LW

BLD

CLDkTqV

LWBLD

CCB

B

B

B

B

C

CEB

BB

B epnepqAI

)/sinh(0

00B

B

B

BRRFF LW

p

L

DqAII

Reciprocity relationship:

EE130/230M Spring 2013 Lecture 25, Slide 14

)1()1( /0

/0 kTqV

RRkTqV

FECBEB eIeII

In the general case, both VEB and VCB are non-zero:

IE: E-B diode current + fraction of C-B diode current that makes it to the E-B junction

)1()1( /0

/0 kTqV

RkTqV

FFCCBEB eIeII

IC: C-B diode current + fraction of E-B diode current that makes it to the C-B junction

Large-signal equivalent circuit for a pnp BJT

EE130/230M Spring 2013 Lecture 25, Slide 15

Base-Width Modulation

WNDn

LNDn

I

I

BEiE

EEBiB

LW

LW

NN

DD

n

ndcB

C

BEE

B

B

E

iB

iE

2

2

2

21

1

2

2

P+

N P

W

W(VBC)x

pB(x)

1/0 kTqVB

EBep(VCB=0)

0

+ VEB

IE IC

Common Emitter Configuration, Active Mode Operation

VEC

IC

EE130/230M Spring 2013 Lecture 25, Slide 16

Ways to Reduce Base-Width Modulation

1. Increase the base width, W

2. Increase the base dopant concentration NB

3. Decrease the collector dopant concentration NC

Which of the above is the most acceptable action?

EE130/230M Spring 2013 Lecture 25, Slide 17

Early Voltage, VA

Output resistance:C

A

EC

C

I

V

V

Ir

1

0

A large VA (i.e. a large ro ) is desirable

IB3

IC

VEC0

IB2

IB1

VA

EE130/230M Spring 2013 Lecture 25, Slide 18

Derivation of Formula for VA

00

g

IV

V

I

dV

dIg C

AA

C

EC

C Output conductance:

for fixed VEBBC

C

EC

CoBCEBEC dV

dI

dV

dIgVVV so

BC

nCC

BC

Co dV

dx

dW

dI

dV

dW

dW

dIg

where xnC is the width of the collector-junction depletion region on the base side

P+ N P

xnC

EE130/230M Spring 2013 Lecture 25, Slide 19

W

Ie

NW

DqAn

dW

dI

eWN

DqAnI

CkTqV

B

BiC

kTqV

B

BiC

EB

EB

1

1

/2

2

/2

B

JC

BC

nC

BC

nCB

BC

nCB

BC

depCJC

qN

C

dV

dx

dV

dxqN

dV

xqNd

dV

dQC

)(

1)1( /)/sinh(

/cosh(

00/

)/sinh(1

0) kTqV

LW

LW

BLD

CLDkTqV

LWBLD

CCB

B

B

B

B

C

CEB

BB

B epnepqAI

JC

B

B

JCC

C

BC

nCC

CCA C

WqN

qNC

WI

I

dVdx

dWdI

I

g

IV

0

EE130/230M Spring 2013 Lecture 25, Slide 20

• High gain (dc >> 1)

One-sided emitter junction, so emitter efficiency 1• Emitter doped much more heavily than base (NE >> NB)

Narrow base, so base transport factor T 1• Quasi-neutral base width << minority-carrier diffusion length (W << LB)

• IC determined only by IB (IC function of VCE,VCB) One-sided collector junction, so quasi-neutral base width W does

not change drastically with changes in VCE (VCB)• Based doped more heavily than collector (NB > NC)

(W = WB – xnEB – xnCB for PNP BJT)

Summary: BJT Performance Requirements

EE130/230M Spring 2013 Lecture 25, Slide 21


Recommended