+ All Categories
Home > Documents > Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal...

Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal...

Date post: 31-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
35
Lecture 3 Encryption Suggested Readings: • Chs 3 & 4 in KPS (recommended) • Ch 3 in Stinson (optional) A cryptosystem has (at least) five ingredients: Plaintext Secret Key Ciphertext Encryption Algorithm Decryption Algorithm Security usually depends on the secrecy of the key, not the secrecy of the algorithms Enc r yp tio n Princ iples
Transcript
Page 1: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

Lecture3

Encryption

SuggestedReadings:

• Chs3&4inKPS(recommended)• Ch3inStinson(optional)

��

��

�  Acryptosystemhas(atleast)fiveingredients:�  Plaintext�  SecretKey�  Ciphertext�  EncryptionAlgorithm�  DecryptionAlgorithm

�  Securityusuallydependsonthesecrecyofthekey,notthesecrecyofthealgorithms

Encryption Principles

Page 2: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

��

Crypto Basics

��

Average Time Required for Exhaustive Key Search (for Brute Force Attacks)

KeySize(bits)

NumberofAlternativeKeys

Timerequiredat106Decr/µs

32 232=4.3x109 2.15milliseconds

56 256=7.2x1016 10hours

128 2128=3.4x1038 5.4x1018years

168 2168=3.7x1050 5.9x1030years

Page 3: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

��

Types of Attainable Security

� Perfect,unconditionalor“informationtheoretic”:thesecurityisevidentfreeofany(computational/hardness)assumptions� Reducibleor“provable”:securitycanbeshowntobebasedonsomecommon(oftenunproven)assumptions,e.g.,theconjectureddifficultyoffactoringlargeintegers� Adhoc:thesecurityseemsgoodoften->“snakeoil”…Takealookat: http://www.ciphersbyritter.com/GLOSSARY.HTM

��

Computational Security �  Encryptionschemeiscomputationallysecureif

�  costofbreakingit(viabruteforce)exceedsthevalueoftheencryptedinformation;or

�  timerequiredtobreakitexceedsusefullifetimeoftheencryptedinformation

�  Mostmodernschemeswewillseeareconsideredcomputationallysecure�  Usuallyrelyonverylargekey-space,impregnabletobruteforce

�  Mostadvancedschemesrelyonlackofknowledgeofeffective

algorithmsforcertainhardproblems,notonaproveninexistenceofsuchalgorithms(reduciblesecurity)!�  Suchas:factoring,discretelogarithms,etc.

Page 4: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

��

Cryptosystems

Classifiedalongthreedimensions:�  Typeofoperationsusedfortransformingplaintextinto

ciphertext�  Binaryarithmetic:shifts,XORs,ANDs,etc.

�  Typicalforconventional(orsymmetric)encryption�  Integerarithmetic

�  Typicalforpublickey(orasymmetric)encryption

�  Numberofkeysused�  Symmetricorconventional(singlekeyused)�  Asymmetricorpublickey(2keys:1toencrypt,1todecrypt)

�  Howplaintextisprocessed:�  Onebitatatime�  Astringofanylength�  Ablockofbits

Conventional (Symmetric) Cryptography

� AliceandBobshareakeyKABwhichtheysomehowagreeupon(how?)� keydistribution/keymanagementproblem� ciphertextisroughlyaslongasplaintext� examples:Substitution,VernamOTP,DES,AES

��

plaintextciphertext

KAB

encryptionalgorithm

decryptionalgorithm

KAB

plaintextm

K(m)AB

K(m)ABm=K()

AB

Page 5: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

Uses of Conventional Cryptography

� MessageTransmission(confidentiality):� Communicationoverinsecurechannels

� SecureStorage:cryptonUnix� StrongAuthentication:provingknowledgeofasecretwithoutrevealingit:� Seenextslide� Evecanobtainchosen<plaintext,ciphertext>pair� Challengeshouldbechosenfromalargepool

� IntegrityChecking:fixed-lengthchecksumformessageviasecretkeycryptography� SendMACalongwiththemessageMAC=H(m,K)

��

Challenge-Response Authentication Example

���

KAB

challenge

KAB

ra

KAB(ra) challengereply

rb

KAB(rb)

challenge

challengereply

Page 6: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

���

Conventional Cryptography

Ø Advantagesl  highspeed(throughput)l  relativelyshortkeysizel  canbeusedtoconstructvariouscryptographicmechanisms

Ø Disadvantagesl  keymustbesecretatbothendsl  keymustbedistributedsecurelyandefficientlyl  relativelyshortkeylifetime

l  efficiency/securitytradeoff?

� akaAsymmetricCryptography

� Inventedin1974-1978�  Merkle,Diffie-HellmanandRivest-Shamir-Adleman

� Twokeys:private(SK),public(PK)�  Encryption:withpublickey;�  Decryption:withprivatekey�  DigitalSignatures:Signingbyprivatekey;Verificationbypublickey.i.e.,“encrypt”messagedigest/hash--h(m)--withprivatekey�  Authorship(authentication)�  Integrity:SimilartoMAC

�  Non-repudiation:cannotdowithsecretkeycryptography

� Muchslower(~1000x)thanconventionalcryptography�  Oftenusedtogetherwithconventionalcryptography,e.g.,toencryptsessionkeys

���

Public Key Cryptography

Page 7: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

���

Genesis of Public Key Cryptography: Diffie- Hellman Paper

Public Key Cryptography

���

plaintextmessage,m

ciphertextencryptionalgorithm

decryptionalgorithm

Bob’spublickey

plaintextmessagePK(m)

B

PKB

Bob’sprivatekey

SKB

m=SK(PK(m))BB

Page 8: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

Uses of Public Key Cryptography

�DataTransmission(confidentiality):� AliceencryptsmausingPKB,BobdecryptsittoobtainmausingSKb.

�SecureStorage:encryptwithownpublickey,laterdecryptwithownprivatekey�Authentication:� Noneedtostoresecrets,onlyneedpublickeys.� Secretkeycryptography:needtosharesecretkeyforeverypersononecommunicateswith

�DigitalSignatures(authentication,integrity,non-repudiation)

���

���

Ø Advantagesl  onlytheprivatekeymustbekeptsecretl  relativelylonglifetimeofthekeyl  moresecurityservicesl  relativelyefficientdigitalsignaturesmechanisms

Ø  Disadvantagesl lowdatathroughputl muchlargerkeysizesl distribution/revocationofpublickeysl securitybasedonconjecturedhardnessofcertaincomputationalproblems

Public Key Cryptography

Page 9: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

��

���

Ø  PublicKeyl  Encryption,signatures(esp.,non-repudiation)andkeymanagement

Ø  Conventionall  Encryptionandsomedataintegrityapplications

Ø  KeySizesl  Keysinpublickeycryptomustbelarger(e.g.,2048bitsforRSA)thanthoseinconventionalcrypto(e.g.,112bitsfor3-DESor256bitsforAES)•  mostattackson“good”conventionalcryptosystemsareexhaustivekeysearch(bruteforce)

•  publickeycryptosystemsaresubjectto“short-cut”attacks(e.g.,factoringlargenumbersinRSA)

Comparison Summary

“Modern” Block Ciphers

Data Encryption Standard (DES)

Page 10: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Generic Example of Block Encryption

���

Feistel Cipher Structure

� Virtuallyallconventionalblockencryptionalgorithms,includingDES,haveastructurefirstdescribedbyHorstFeistelofIBMin1973

� SpecificrealizationofaFeistelNetworkdependsonthechoiceofthefollowingparametersandfeatures:

���

Page 11: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Feistel Cipher Structure

� BlockSize:largerblocksizesmeangreatersecurity

� KeySize:largerkeysizemeansgreatersecurity

� NumberofRounds:multipleroundsofferincreasingsecurity

� SubkeyGenerationAlgorithm: greatercomplexityleadstogreaterdifficultyofcryptanalysis

���

���

Classic Feistel Network

“RoundKeys”aregeneratedfromoriginalkeyvia

subkeygenerationalgorithm

Page 12: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Block Ciphers

���

�  Originatedwithearly1970'sIBMefforttodevelopbankingsecuritysystems

�  FirstresultwasLucifer,mostcommonvarianthas128-bitkeyandblocksize

�  Wasnotsecureinanyofitsvariants

�  CalledaFeistelorproductcipher

�  F()-functionisasimpletransformation,doesnothavetobereversible

�  Eachstepiscalledaround;themorerounds,thegreaterthesecurity(toapoint)

�  MostfamousexampleofthisdesignisDES

Conventional Encryption Standard

DataEncryptionStandard(DES)� Mostwidelyusedencryptionmethod

� ThoughAESisprobablytakingoverbynow� Blockcipher(innativeECBmode)� Plaintextprocessedin64-bitblocks� Keyis56bits

���

Page 13: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

� 64bitinputblock� 64bitoutputblock� 16rounds� 64(effective56)bitkey� Keyschedulecomputedatstartup� Aimedatbulkdata� >16roundsdoesnothelp� >56bitkeydoesnothelp� OtherS-boxesusuallyhurt…

Data Encryption Standard (DES)

���

���

Basic Structure of DES

Page 14: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

���

Encryption vs Decryption in DES

64BitPlaintext

InitialPermutation

32BitL0 32BitR0

F(R0,K1)+

32BitL1 32BitR1

32BitL15 32BitR15

F(R15,K16)+

32BitL16 32BitR16

FinalPermutation

64BitCiphertext

EncryptionProcess DES System 64BitKey

PermutationChoice1

56BitKey

28BitC0 28BitD0

LeftShift RightShift

C1 D1

BuildingBlocks

PermutedChoice2

K1(48bits)

C16 D16

PermutedChoice2

KeySchedule

K16(48bits)

27

Page 15: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Li-132bits

Ri-1

32bits

S-BoxSubstitutionchoses32bits

P-boxPermutation

Li32bits

Ri

32bits

56bitsKeyPermutedChoice

48bits

Function F

Expansion(E)Permutation48bits

28

���

DES Substitution Boxes Operation

29

Page 16: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

���

Operation Tables of DES (IP, IP-1, E and P)

30

��� 31

Page 17: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

��� 32

Breaking DES (Cryptanalysis)

DESKeysize=56bits• Bruteforce=255attemptsonavg• Differentialcryptanalysisè247chosenplaintexts• Linearcryptanalysisè247knownplaintexts

� Longerthan56bitkeysdonotmakeitanystronger� Morethan16roundsdonotmakeitanystronger� DESKeyProblems:� Weakkeys(all0s,all1s,afewothers)� Keysize=56bits=8*7-bitASCII� Alphanumeric-onlypasswordconvertedtouppercase

8*~5-bitchars=40bits33

Page 18: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Breaking DES (Cryptanalysis) DifferentialCryptanalysis

�  LooksforcorrelationsinF()-functioninputandoutput

LinearCryptanalysis

�  Looksforcorrelationsbetweenkeyandcipherinputandoutput

Related-keyCryptanalysis

�  Looksforcorrelationsbetweenkeychangesandcipherinput/output

Differentialcryptanalysisdiscoveredin1990;virtuallyallblockciphersfrombeforethattimearevulnerable...

...exceptDES.IBM(andtheNSA)knewaboutit15yearsearlier34

Modes of Operation (not just for DES, for any block cipher)

ENCRYPTION

P1 P2 Pi Pi+1 Pn-1 Pn

C1 C2 Ci Ci+1 Cn-1 Cn

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation35

Page 19: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

"Native” ECB Mode ElectronicCode-Book(ECB)Mode� Inputtoencryptionalgorithmiscurrentplaintextblock:

Ci=E(K,Pi)Pi=D(K,Ci)

� Duplicateplaintextblocks(patterns)visibleinciphertext� WhatifAliceencryptsonewordper plaintextblock?

� Ciphertextblockrearrangementispossible�  Todetectit,needexplicitblocknumberinginplaintext

� Parallelencryptionanddecryption(randomaccess)� Errorinoneciphertextblockèone-blockloss� One-blocklossinciphertext?

36

CBC Mode Cipher-BlockChaining(CBC)Mode� InputtoencryptionalgorithmistheXORofcurrentplaintextblockandprecedingciphertextblock:

Ci=E(K,PiXORCi-1)C0=IV

Pi=D(K,Ci)XORCi-1

� Duplicateplaintextblocks(patterns)NOTexposed� Blockrearrangementisdetectable� Noparallelencryption� Howaboutparalleldecryption?

� Errorinoneciphertextblockètwo-blockloss� One-blockciphertextloss? 37

Page 20: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

39

OFB ModeOutput Feedback (OFB) Mode• Key-stream is produced by repeated encryption of V

o:

Ci = E ( K, V

i-1 ) XOR P

i V

0=IV

Pi = E ( K, V

i-1 ) XOR C

i

• Duplicate plaintext blocks (patterns) NOT exposed

• Block rearrangement is detectable

• Key-stream is independent of plaintext • How does that affect speed of encryption? Parallelism?

• Bit error in one ciphertext block ➔ one-bit error in plaintext

• Can encrypt less than block size

39

Page 21: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

CFB ModeCipher Feedback (CFB) Mode•Key-stream is produced by re-encryption of preceding ciphertext -- C

i-1:

Ci = P

i XOR E (K, C

i-1) C

0=IV

Pi = E ( K, C

i-1 ) XOR C

i•Duplicate plaintext blocks (patterns) NOT exposed

•Block rearrangement is detectable

•Key-stream is dependent on plaintext •How does that affect speed of encryption? Parallelism?

•Bit error in one ciphertext block ➔ one-bit + one-block loss in plaintext •Adversary can still selectively flip/change bits

•One-block ciphertext loss ➔ 1-extra-block loss

•Can encrypt less than block size

40

CTR ModeCounter (CTR) Mode•Key-stream is produced by encryption increasing counter:

Ci = E ( K, CTR ) XOR P

i CTR

++

Pi = E ( K, CTR

) XOR C

i

•Duplicate plaintext blocks (patterns) NOT exposed, unless?

•Block rearrangement is detectable

•Key-stream is independent of plaintext

•Parallel encryption and decryption (random access)

•Bit error in one ciphertext block ➔ one-bit error in plaintext

•Can encrypt less than block size

41

Page 22: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

MAC Mode MessageAuthenticationCode(MAC)Mode� EncryptionisthesameasinCBCmode,but,ciphertextisNOTsent!

Ci=E (K,PiXORCi-1)C0=IV

Whatissentorstored:P1,...,Pn,Cn=MAC

ReceiverrecomputesCnwithKandcompares

� AnychangeinplaintextresultsinunpredictablechangesinMAC

42

How to strengthen DES: the case of double DES

�  2DES:C=DES(K1,DES(K2,P))

�  Seemstobehardtobreakby“bruteforce”,approx.2111trials

�  AssumeEveistryingtobreak2DESandhasasingle(P,C)pair

Meet-in-the-middle(orRendesvouz)ATTACK:

I.  ForeachpossibleK’i(where0<i<256)1.  ComputeC’i=DES(K’i,P)2.  Store:[K’i,C’i]intableT(sortedbyC’i)

II.  ForeachpossibleK”i(where0<i<256)1.  ComputeC”i=DES-1(K”i,C)2.  LookupC”iinTçnotexpensive!3.  Iflookupsucceeds,output:K1=K’i,K2=K”i

TOTALCOST:O(256)operations+O(256)storage 43

Page 23: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

DES Variants � 3-DES(TripleDES)

� C=E(K1,D(K2,E(K1,P)))à112effectivekeybits

� C=E(K3,D(K2,E(K1,P)))à168effectivekeybits

� DESx

� C=K3XORE(K2,(K1XORP))àseemslike184keybits

� Effectivekeybitsàapprox.118

� 2-DES:

� C=E(K2,E(K1,P))àrendezvous(meet-in-the-middleattack)

� Anothersimplevariation:

� C=K1XORE(K1’,P)àweak!

NOTE:Thesamevariantscanbeconstructedoutofanycipher

44

DES Variants

Whydoes3-DES(orgenerallyn-DES)work?

Because,asafunction,DESisnotagroup…

A“group”isanalgebraicstructure.Oneofitspropertiesisthat,takingany2

elementsofthe group (a,b)andapplyinganoperatorF()yieldsanotherelementc

inthegroup.

Suppose:C=DES(K1,DES(K2,P))

ThereisnoK,suchthat:

foreachpossibleplaintextP,DES(K,P)=C

45

Page 24: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

DES Summary

� Permutation/substitutionblockcipher

� 64-bitdatablocks

� 56-bitkeys(8paritybits)

� 16rounds(shifts,XORs)

� Keyschedule

� S-boxselectionsecret…

� DES“aging”

� 2-DES:rendezvousattack

� 3-DES:112-bitsecurity

� DESx:118-bitsecurity

46

Skipjack� ClassifiedalgorithmoriginallydesignedfortheNSA-sponsoredClipperchip� declassifiedin1998� 32rounds,breakablewith31rounds� 80bitkey,inadequateforlong-termsecurityGOST� GOST28147,RussiananswertoDES� 32rounds,256bitkey� Incompletelyspecified

Other Old Symmetric Ciphers

47

Page 25: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

� IDEA(X.ILai,J.Massey,ETH)� DevelopedasPES(proposedencryptionstandard),� adaptedtoresistdifferentialcryptanalysis� GainedpopularityviaPGP,128bitkey� Patented(AscomCH)

� Blowfish(B.Schneier,Counterpane)� Optimizedforhigh-speedexecutionon32-bitprocessors� 448bitkey,relativelyslowkeysetup� FastforbulkdataonmostPCs/laptops� Easytoimplement,runsinca.5Kofmemory

Other Symmetric Ciphers

48

�  RC4(Ron’sCipher#4)StreamCipher:

�  Optimizedforfastsoftwareimplementation

�  Characterstreaming(notbit)

�  8-bitoutput

�  FormertradesecretofRSADSI,

�  Reverse-engineeredandpostedtothenetin1994:

�  2048-bitkey

�  Usedinmanyproductsuntilabout1999-2000

Other Symmetric Ciphers

49

Page 26: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

x=y=0;

while(length--)

{/*state[0-255]containskeybytes*/

sx=state[++x&0xFF];

y+=sx&0xFF;

sy=state[y];

state[y]=sx;

state[x]=sy;

*data++^=state[(sx+sy)&0xFF];

}

Takesaboutaminutetoimplementfrommemory

Other Symmetric Ciphers (RC4)

50

Other Symmetric Ciphers � RC5(Ron’sCipher#5)� Suitableforhardwareandsoftware� Fast,simple� Adaptabletoprocessorsofdifferentwordlengths� Variablenumberofrounds� Variable-lengthkey(0-256bytes)� Verylowmemoryrequirements� Highsecurity(noeffectiveattacks,yet…)� Data-dependentrotations

52

Page 27: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Other Symmetric Ciphers

� RC5singleroundpseudocode:

52

Advanced Encryption Standard (AES): The Rijndael Block Cipher

55

Page 28: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

�  NationalInstituteofScienceandTechnology(NIST)regulatesstandardizationintheUS

�  Bymid-90s,DESwasanagingstandardthatnolongermettheneedsforstrongcommercial-gradeencryption

�  Triple-DES:EndorsedbyNISTasa“defacto”standard

�  But…slowinsoftwareandlargefootprint(codesize)�  AdvancedEncryptionStandard(AES)

�  Finalizedin2001�  GoalistodefinetheFederalInformationProcessingStandard(FIPS)byselectinganewencryptionalgorithmsuitableforencrypting(non-classifiednon-military)governmentdocuments

�  Candidatealgorithmsmustbe:�  Symmetric-keycipherssupporting128,192,and256bitkeys�  Royalty-Free�  Unclassified(i.e.,publicdomain)�  Availableforworldwideexport

Introduction and History

56

Introduction and History �  AESRound-3FinalistAlgorithms:� MARS

�  CandidateofferingfromIBMResearch

� RC6�  ByRonRivestofMIT&RSALabs,creatorofthewidelyusedRC4/RC5algorithmand“R”inRSA

� Twofish�  FromCounterpaneInternetSecurity,Inc.(MN)

� Serpent�  byRossAnderson(UK),EliBiham(ISR)andLarsKnudsen(NO)

� Rijndael�  byJoanDaemenandVincentRijmen(B)

57

Page 29: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

TheWinner:Rijndael�  JoanDaemen(ofProtonWorldInternational)andVincentRijmen(of

KatholiekeUniversiteitLeuven).�  Pronounced“Rhine-doll”�  Allowsonly128,192,and256-bitkeysizes(unlikeothercandidates)�  Variableinputblocklength:128,192,or256bits.Allninecombinationsofkey-blocklengthpossible.�  Ablockisthesmallestdatasizethealgorithmwillencrypt

�  VastspeedimprovementoverDESinbothhwandswimplementations�  8,416bytes/secona20MHz8051�  8.8Mbytes/secona200MHzPentiumPro

Rijndael

58

P r1

Key

r2 Rn-1 rnr3 CRn-2

k1 k2 Kn-1 knk3 Kn-2

K

KE KeyExpansion

RoundKeys

EncryptionRoundsr1…rn

�  Keyisexpandedtoasetofnroundkeys�  InputblockPputthrunrounds,eachwithadistinctroundsub-key.�  Strengthofalgorithmreliesondifficultyofobtainingintermediateresults(or

state)ofroundifromroundi+1withouttheroundkey.

Rijndael

59

Page 30: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Rijndael

Detailedviewofroundn

�  Eachroundperformsthefollowingoperations:�  Non-linearLayer:Nolinearrelationshipbetweentheinputandoutputofaround�  LinearMixingLayer:Guaranteeshighdiffusionovermultiplerounds

�  Verysmallcorrelationbetweenbytesoftheroundinputandthebytesoftheoutput

�  KeyAdditionLayer:BytesoftheinputaresimplyXOR’edwiththeexpandedroundkey

ByteSub ShiftRow MixColumn AddRoundKey

Kn

Resultfromroundn-1

Passtoroundn+1

60

Rijndael �  Threelayersprovidestrengthagainstknowntypesofcryptographicattacks:Rijndaelprovides“fulldiffusion”afteronlytworounds

�  Immuneto:�  Linearanddifferential cryptanalysis�  Related-keyattacks�  Squareattack�  Interpolationattacks�  Weakkeys

�  Rijndaelhasbeen“shown”secure:�  Nokeyrecoveryattacksfasterthanexhaustivesearchexist�  Noknownsymmetrypropertiesintheroundmapping�  Noweakkeysidentified�  Norelated-keyattacks:Notwokeyshaveahighnumberofexpandedroundkeysincommon

61

Page 31: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Rijndael: ByteSub

Eachbyteattheinputofaroundundergoesanon-linearbytesubstitutionaccordingtothefollowingtransform:

Substitution(“S”)-box

62

Rijndael: ShiftRow

Dependingontheblocklength,each“row”oftheblockiscyclicallyshiftedaccordingtotheabovetable

63

Page 32: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Rijndael: MixColumn

EachcolumnismultipliedbyafixedpolynomialC(x)=’03’*X3+’01’*X2+’01’*X+’02’

Thiscorrespondstomatrixmultiplicationb(x)=c(x)⊗a(x):

NotXOR

64

Rijndael: Key Expansion and Addition

EachwordissimplyXOR’edwiththeexpandedroundkey

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

KeyExpansionalgorithm:

65

Page 33: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Rijndael: Implementations �  Well-suitedforsoftwareimplementationson8-bitprocessors(importantfor“SmartCards”)�  Atomicoperationsfocusonbytesandnibbles,not32-or64-bitintegers�  LayerssuchasByteSubcanbeefficientlyimplementedusingsmalltablesinROM(e.g.,<256bytes).

�  Nospecialinstructionsarerequiredtospeedupoperation,e.g.,barrelrotates

�  For32-bitimplementations:�  Anentireroundcanbeimplementedviaafasttablelookuproutineonmachineswith32-bitorhigherwordlengths

�  Considerableparallelismexistsinthealgorithm�  EachlayerofRijndaeloperatesinaparallelmanneronthebytesoftheroundstate,allfourcomponenttransformsactonindividualpartsoftheblock�  AlthoughtheKeyexpansioniscomplicatedandcannotbenefitmuchfromparallelism,itonlyneedstobeperformedonceuntilthetwopartiesswitchkeys.

66

Rijndael: Implementations �  HardwareImplementations

�  Rijndaelperformsverywellinsoftware,buttherearecaseswhenbetterperformanceisrequired(e.g.,serverandVPNapplications).

�  MultipleS-Boxengines,round-keyXORs,andbyteshiftscanallbeimplementedefficientlyinhardwarewhenabsolutespeedisrequired

�  Smallamountofhardwarecanvastlyspeedup8-bitimplementations

�  InverseCipher�  Exceptforthenon-linearByteSubstep,eachpartofRijndaelhasastraightforwardinverseandtheoperationssimplyneedtobeundoneinthereverseorder.

�  However,Rijndaelwasspeciallywrittensothatthesamecodethatencryptsablockcanalsodecryptthesameblocksimplybychangingcertaintablesandpolynomialsforeachlayer.Therestoftheoperationremainsidentical.

67

Page 34: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

Conclusions and The Future

�  Rijndael isanextremely fast, state-of-the-art,highlysecurealgorithm

�  Amenable to efficient implementation in both hwand sw; requires no special instructions to obtaingoodperformanceonanycomputingplatform

�  Triple-DES,stillhighlysecureandsupportedbyNIST,isexpectedtobecommonfortheforeseeablefuture.

68

Reminder: World’s Best Cipher!

69

Page 35: Lecture 3 - University of California, Irvinesconce.ics.uci.edu/134-W18/slides/LEC3-4.pdfFinal Permutation 64 Bit Ciphertext Encryption Process DES System 64 Bit Key Permutation Choice

���

One-Time Pad (OTP)

Foreachcharacter:

�� �� �� �� �� �� �� �� �� �� ���

pad(key)

�� �� �� �� �� �� �� �� �� �� ���

ciphertext(encryptedmsg)

⊕�� �� �� �� �� �� �� �� �� �� ��

msg(plaintext)

70

One-Time Pad (cont.)

� Symmetric� Padisselectedatrandom� Padisaslongasplaintext� Perfectlysecure,but...� Onetimeonly:

sosendingthepadisjustashardassendingthemsg

71


Recommended