+ All Categories
Home > Documents > Lecture 4: Dynamical and Hybrid Systems

Lecture 4: Dynamical and Hybrid Systems

Date post: 18-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
42
University of Illinois at Urbana-Champaign Lecture 4: Dynamical and Hybrid Systems Sayan Mitra
Transcript

University of Illinoisat Urbana-Champaign

Lecture4:DynamicalandHybridSystems

SayanMitra

Plan

• Dynamicalsystemmodels– notionsofsolutions– Lineardynamicalsystems

[email protected]

IntroductiontodynamicalsystemsBehaviorsofphysicalprocessesaredescribedintermsofinstantaneouslaws

Commonnotation: ÇÈ »Ç»

= 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 − 1 ,wheretime𝑡 ∈ ℝ;state𝑥 𝑡 ∈ ℝ�; 𝑖𝑛𝑝𝑢𝑡𝑢 𝑡 ∈ℝÊ; 𝑓: ℝ�×ℝÊ×ℝ → ℝ�

Initialvalueproblem:Givensystem(1)andinitialstate𝑥[ ∈ ℝ�, 𝑡[ ∈ ℝ,andinputu:ℝ → ℝÊ, findastatetrajectoryorsolutionof(1).

[email protected]

NotionsofsolutionWhatisasolution?Manydifferentnotions.

Definition1.(Firstattempt)Given 𝑥[ and 𝑢, 𝜉: ℝ → ℝ�isasolutionortrajectoryiff (1)𝜉 𝑡[ = 𝑥[ and(2)ÇÇ»𝜉 𝑡 = 𝑓(𝜉 𝑡 , 𝑢 𝑡 , 𝑡)), ∀𝑡 ∈ ℝ.

Mathematicallymakessense,buttoorestrictive.Assumesthat𝜉 isnotonlycontinuous,butalsodifferentiable.Thisdisallowsu(𝑡) tobediscontinuous,whichisoftenrequiredforoptimalcontrol.

[email protected]

ModifiednotionDefinition.𝑢 ⋅ isapiece-wisecontinuouswithsetofdiscontinuitypoints𝐷 ⊆ ℝÊ if(1) ∀𝜏 ∈ 𝐷, lim

»→Ñ�𝑢 𝑡 < ∞; lim

»→ÑÓ𝑢 𝑡 < ∞

(2) Continuousfromright lim»→Ñ�

𝑢 𝑡 = 𝑢 𝑡(3) ∀𝑡[ < 𝑡M , 𝑡[, 𝑡M ∩ 𝐷 isfinite

𝑃𝐶( 𝑡[, 𝑡M , ℝÊ)isthesetofallpiece-wisecontinuousfunctionsoverthedomain 𝑡[, 𝑡M

Define𝑝 𝜉 𝑡 , 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 , foragiven𝑢 𝑡 . Since𝑢 𝑡 isPCin𝑡 sois𝑝 inthesecondargument.

Definition2.Given𝑥[ and𝑢, 𝜉: ℝ → ℝ� isasolutionortrajectoryiff (1)𝜉 𝑡[ = 𝑥[ and(2)ÇÇ»𝜉 𝑡 = 𝑝(𝜉 𝑡 , 𝑡), ∀𝑡 ∈ ℝ\D.

𝜏M 𝜏P

𝑢 𝑡

[email protected]

IsPCinput𝑢 𝑡 adequateforguaranteeingexistenceofsolutions?

Example.�� 𝑡 = −𝑠𝑔𝑛 𝑥 𝑡 ; 𝑥[ = 𝑐; 𝑡[ = 0; 𝑐 > 0Solution:𝜉 𝑡 = 𝑐 − 𝑡 for𝑡 ≤ 𝑐;check𝜉 = −1Problem:𝑓 discontinuousis𝑥

Example.�� 𝑡 = 𝑥P; 𝑥[ = 𝑐; 𝑡[ = 0; 𝑐 > 0Solution:𝜉 𝑡 = �

M#»�worksfor𝑡 < 1/𝑐;check𝜉

Problem:As𝑡 → M�then𝑥 𝑡 → ∞;𝑝 growstoofast

[email protected]

Lipschitzcontinuity

Afunction𝑓:ℝ� → ℝ isLipschitzcontinuousifthereexist𝐿 > 0 suchthatforanypair𝑥, 𝑥′ ∈ℝ�, 𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝐿 𝑥 − 𝑥t

Examples:6𝑥 + 4; 𝑥 ; alldifferentiablefunctionswithboundedderivatives

Non-examples: 𝑥� ; 𝑥P (locallyLipschitz)

[email protected]

Existenceanduniquenessofsolutions

Theorem.If𝑝(𝑥 𝑡 , 𝑥) isLipschitzcontinuousinthefirstargumentthen(1)hasuniquesolutions.

Transitionsystemmodel

[email protected]

Lineartime-varyingsystemsIngeneral,fornonlineardynamicalsystemswedonothaveclosedformsolutionsfor𝜉 𝑡 , buttherearenumericalsolverslikeCAPD,VNODE

�� 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢 𝑡 --- (2)𝑦 𝑡 = 𝐶 𝑡 𝑥 𝑡 + 𝐷 𝑡 𝑢 𝑡

continuouseverywhereexcept𝐷È

Theorem.Let𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 bethesolutionfor(2)withpointsofdiscontinuity, 𝐷È1. ∀𝑡[ ∈ ℝ, 𝑥[ ∈ ℝ�, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 ⋅, 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ� iscontinuousand

differentiable∀𝑡 ∈ ℝ ∖ 𝐷È2. ∀𝑡, 𝑡[ ∈ ℝ, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 𝑡, 𝑡[,⋅, 𝑢 : ℝ� → ℝ� iscontinuous3. ∀𝑡, 𝑡[ ∈ ℝ, 𝑥[M, 𝑥[P ∈ ℝ�, 𝑢M,𝑢P ∈ 𝑃𝐶 ℝ,ℝÊ , 𝑎M, 𝑎P ∈ ℝ, 𝜉(𝑡, 𝑡[, 𝑎M𝑥[M +

𝑎P𝑥[P, 𝑎M𝑢M + 𝑎P𝑢P) = 𝑎M𝜉 𝑡, 𝑡[, 𝑥[M, 𝑢M + 𝑎P𝜉 𝑡, 𝑡[, 𝑥[P, 𝑢P4. ∀𝑡, 𝑡[ ∈ ℝ, 𝑥[ ∈ ℝ�, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 = 𝜉 𝑡, 𝑡[, 𝑥[, 𝟎 +

𝜉 𝑡, 𝑡[, 0, 𝑢 [email protected]

Linearsystemandsolutions

�� 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)

Foragiveninitialstate𝑥[ ∈ ℝ�, 𝑡[ ∈ℝ 𝑎𝑛𝑑𝑢(. ) ∈ 𝑃𝐶(ℝ,ℝ�) thesolution isafunction𝜉 . , 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ�

Westudiedseveralpropertiesof𝜉 inthelastlecture:continuitywithrespecttofirstandthirdargument,linearity,decomposition

[email protected]

Linearsystemandsolutions

• Since𝜉 . , 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ� isalinearfunctionoftheinitialstateandinput,

• 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 =𝜉 𝑡, 𝑡[, 0, 𝑢 +𝜉 . , 𝑡[, 𝑥[, 0• Letusfocusonthelinearfunction𝜉 . , 𝑡[, 𝑥[, 0

• DefineΦ . , 𝑡[ 𝑥[ = 𝜉 . , 𝑡[, 𝑥[, 𝑢• ThisΦ . , 𝑡[ :ℝ → ℝ�×� iscalledthestatetransitionmatrix

[email protected]

PropertiesofΦ

• Φ . , 𝑡[ : ℝ → ℝ�×Þ istheuniquesolutionof(2)andisdefinedbya(Peano-Baker)infinitesequenceofintegrals

• ßß»Φ 𝑡, 𝑡[ = 𝐴 𝑡 Φ(𝑡, 𝑡[) withΦ 𝑡, 𝑡 = 𝐼

– Continuouseverywhere

– Differentiableeverywhereexcept𝐷È (𝐴 𝑡 isn’t)

• ∀𝑡[, 𝑡M, 𝑡 Φ 𝑡, 𝑡[ = Φ 𝑡, 𝑡M Φ 𝑡M, 𝑡[

• Φ 𝑡, 𝑡[ isinvertible Φ 𝑡, 𝑡[ #M = Φ 𝑡[, 𝑡

[email protected]

SolutionoflinearsystemsinΦ

Theorem.𝜉 𝑡, 𝑡[, 𝑥[, 𝑢

= Φ 𝑡, 𝑡[ 𝑥[ + à Φ 𝑡, 𝜏 𝐵 𝜏 𝑢 𝜏 𝑑𝜏»

ȇ

[email protected]

Lineartimeinvariantsystem

�� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

Matrixexponential:

𝑒�» = 1 + 𝐴𝑡 +12! 𝐴𝑡

P +… =ã1𝑘! 𝐴𝑡

 ä

[

Theorem.Φ 𝑡, 𝑡[ = 𝑒� »#»á ,thatis

𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 = 𝑥[e�(»#»á) + à e�(»#Ñ)𝐵𝑢 𝜏 𝑑𝜏»

ȇ

[email protected]

Discretetimemodels/discretetransitionsystems

• 𝑥 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝑢 𝑡• 𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 ) autonomous• Execution:𝑥[, 𝑓 𝑥[ , 𝑓P 𝑥[ , …• 𝑨 = ⟨𝑄, 𝑄[, 𝑇⟩– 𝑄 = ℝ�, 𝑄[ = 𝑥[– 𝑇:ℝ� → ℝ�;T(𝑥) = 𝑓(𝑥)

[email protected]

Discretizedorsampled-timemodel

• �� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡• Assume:𝑢 ∈ 𝑃𝐶 ℝ,𝑈 𝑤ℎ𝑒𝑟𝑒𝑈 ⊆ ℝÊ isafiniteset• 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢• Fixasamplingperiod𝛿 > 0• 𝑨𝜹 = ⟨𝑄, 𝑄[, 𝑈, 𝑇⟩– 𝑄 = ℝ�, 𝑄[ = 𝑥[ , 𝐴𝑐𝑡 = 𝑈,– 𝑇 ⊆ ℝ�×𝑈×ℝ�; 𝑥, 𝑢, 𝑥t ∈ Tiff𝑥t = 𝜉(𝛿, 0, 𝑥, 𝑢)

[email protected]

Propertiesfordynamicalsystems

Whattypeofpropertiesareweinterestedin?• Invariance• Stateremainsbounded• Convergestotarget• Boundedinputgivesboundedoutput(BIBO)

[email protected]

Aleksandr M.LyapunovAleksandr MikhailovichLyapunov (Russian:June61857–November3,1918)wasaRussianmathematicianandphysicist.

Hismethods,whichhedevelopedin1899,makeitpossibletodefinethestabilityofsetsofordinarydifferentialequations.Hecreatedthemoderntheoryofthestabilityofadynamicsystem.Inthetheoryofprobability,hegeneralizedtheworksofChebyshevandMarkov,andprovedthe CentralLimitTheorem undermoregeneralconditionsthanhispredecessors.

[email protected]

Requirements:Stability

• Wewillfocusontimeinvariantautonomoussystems(closedsystems,systemswithoutinputs)

• �� 𝑡 = 𝑓 𝑥 𝑡 , 𝑥[ ∈ ℝ�, 𝑡[ = 0 –(1)• 𝜉 𝑡 isthesolution• |𝜉 𝑡 | norm• 𝑥∗ ∈ ℝ� isanequilibriumpointif𝑓 𝑥∗ = 0.• Foranalysiswewillassume0tobeanequilibriumpointof(1)withoutlossofgenerality

[email protected]

Example:PendulumPendulumequation𝑥M = 𝜃𝑥P = ��

𝑥P = ��M

��P = −𝑔𝑙 sin 𝑥M −

𝑘𝑚𝑥P

𝑥P𝑥M

= −ìísin 𝑥M −  

Ê𝑥P

𝑥P

𝑘: frictioncoefficient

Twoequilibriumpoints: 0,0 , (𝜋, 0)

𝑙𝜃

𝑚

[email protected]

Lyapunov stability

Lyapunov stability:Thesystem(1)issaidtobeLyapunov stable(attheorigin)ifforevery𝜀 >0thereexists𝛿ð > 0suchthatforeveryif𝜉 0 ≤ 𝛿ð thenforallt ≥ 0, 𝜉 𝑡 ≤ 𝜀.

Howisthisrelatedtoinvariantsandreachablestates?

𝛿ð

[email protected]

Asymptoticallystability

Thesystem(1)issaidtobeAsymptoticallystable(attheorigin)ifitisLyapunov stableandthereexists𝛿P > 0suchthatforeveryif 𝜉 0 ≤ 𝛿P thent → ∞, 𝜉 𝑡 → 𝟎.Ifthepropertyholdsforany𝛿P thenGloballyAsymptoticallyStable

[email protected]

Example:PendulumPendulumequation𝑥M = 𝜃𝑥P = ��

𝑥P = ��M

��P = −𝑔𝑙 sin 𝑥M −

𝑘𝑚𝑥P

𝑥P𝑥M

= −ìísin 𝑥M −  

Ê𝑥P

𝑥P

Twoequilibriumpoints: 0,0 , (𝜋, 0)

𝒙 = 𝟎, 𝟎asymptoticallystable

𝒙 = 𝝅, 𝟎unstable

𝑥M

𝑥 P

[email protected]

Example:Pendulum

Pendulumequation

𝑥M = 𝜃𝑥P = ��

𝑥P = ��M

��P = −𝑔𝑙 sin 𝑥M −

𝑘𝑚 𝑥P

𝑥P𝑥M

= −ìísin 𝑥M −  

Ê𝑥P

𝑥P

𝑘 = 0 nofriction𝒙∗ = 𝟎, 𝟎

stablebutnotasymptoticallystable

𝒙∗ = 𝝅, 𝟎unstable

[email protected]

Vanderpoloscillator

Vanderpoloscillator𝑑𝑥P

𝑑𝑡P − 𝜇 1 − 𝑥P𝑑𝑥𝑑𝑡 + 𝑥 = 0

𝑥M = 𝑥; 𝑥P = ��M;couplingcoefficient𝜇 = 20.1

𝑥P𝑥M

= 𝜇 1 − 𝑥MP 𝑥P −𝑥M𝑥P

stable?LectureSlidesbySayanMitra

[email protected]

Stabilityofsolutions*(insteadofpoints)

• Forany𝜉 ∈ PC ℝö[, ℝ� definethes-norm 𝜉 ÷ = sup»∈ℝ

| 𝜉 𝑡 |

• Adynamicalsystemcanbeseenasanoperatorthatmapsinitialstatestosignals𝑇:ℝ� → 𝑃𝐶 ℝö[, ℝ�

• Lyapunov stabilityrequiredthatthisoperatoriscontinuous

• Thesolution𝜉∗ isLyapunov stableif𝑇 iscontinuousas𝜉∗(0). i. e. ,forevery𝜀 > 0thereexists𝛿ð > 0suchthatforevery𝑥[ ∈ ℝ� if 𝜉∗ 0 − 𝑥[ ≤ 𝛿ð then 𝑇 𝜉∗ 𝑡 − 𝑇 𝑥[ ÷

≤ 𝜀.

*Notdiscussedinclass [email protected]

Butterfly*

𝑥P𝑥M

=2𝑥M𝑥P𝑥MP − 𝑥PP

Allsolutionsconvergeto0buttheequilibriumpoint(0,0)isnotLyapunov stable

*Notdiscussedinclass [email protected]

VerifyingStabilityforLinearSystems

Considerthelinearsystem�� = 𝐴𝑥

Theorem.1.Itisasymptoticallystableiff alltheeigenvaluesofAhavestrictly negativerealparts(Hurwitz).

1.ItisLyapunov stableiff alltheeigen valuesofAhaverealpartsthatareeitherzeroornegativeandtheJordanblockscorrespondingtotheeigenvalueswithzerorealpartsareofsize1.

[email protected]

Example1:Simplelinearmodelofaneconomy

• 𝑥:nationalincome𝑦: rateofconsumerspending;𝑔:rategovernmentexpenditure

• �� = 𝑥 − 𝛼𝑦• �� = 𝛽 𝑥 − 𝑦 − 𝑔• 𝑔 = 𝑔[ + 𝑘𝑥 𝛼, 𝛽, 𝑘 arepositiveconstants• Whatistheequilibrium?• 𝑥∗ = ìáú

ú#M# ú𝑦∗ = ìáú

ú#M# ú• Dynamics:

• ���� = 1 −𝛼

𝛽(1 − 𝑘) −𝛽𝑥𝑦

[email protected]

Example:Simplelinearmodelofaneconomy

• 𝛼 = 3, 𝛽 = 1, 𝑘 = 0

• 𝜆M, 𝜆M∗ = (−.25 ± 𝑖1.714)

• Negativerealparts,therefore,asymptoticallystableandthenationalincomeandconsumerspendingrateconvergeto𝑥 = 1.764 𝑦 = 5.294

[email protected]

Stabilityofnonlinearsystems• Foranypositivedefinitefunctionofstate𝑉:ℝ� → ℝ– 𝑉 𝑥 ≥ 0 and𝑉 𝑥 = 0iff𝑥 = 0

• Sublevelsetsof𝐿þ = {𝑥 ∈ ℝ� |𝑉 𝑥 ≤ 𝑝}• 𝑉(𝜉 𝑡 )Vdifferentiablewithcontinuousfirstderivative

• �� = 𝑑 ÿ ! »Ç»

=?

• ßÿßÈ. ÇÇ»

𝜉 𝑡 = ßÿßÈ. 𝑓(𝑥) isalsocontinuous

• 𝑉 isradiallyunboundedif 𝑥 → ∞ ⇒ 𝑉 𝑥 → ∞

[email protected]

VerifyingStability

Theorem.(Lyapunov)Considerthesystem(1)withstatespace𝜉 𝑡 ∈ ℝ� andsupposethereexistsapositivedefinite,continuouslydifferentiablefunction𝑉:ℝ� → ℝ.Thesystemis:

1.Lyapunov stableif�� 𝜉 𝑡 = ßÿßÈ𝑓 𝑥 ≤ 0

2.Asymptoticallystableif�� 𝜉 𝑡 < 03.ItisgloballyASifVisalsoradiallyunbounded.

[email protected]

Proofsketch:Lyapunovstableif�� ≤ 0

• Assume�� ≤ 0• ConsideraballBðaroundtheoriginof

radius𝜀 > 0.• Pickapositivenumber𝑏 < min

È Zð𝑉 𝑥 .

• Let𝛿 bearadiusofballaroundoriginwhichisinsideB$ = 𝑥 𝑉 𝑥 ≤ 𝑏}

• SincealongalltrajectoriesVisnon-increasing,startingfrom𝐵$ eachsolutionsatisfies𝑉 𝜉 𝑡 ≤ 𝑏andthereforeremainsinBð

Bð𝐿% 𝐵$

[email protected]

Proofsketch:Asymptoticallystableif�� 𝜉 𝑡 < 0

• Assume�� < 0• Takearbitrary 𝜉 0 ≤ 𝛿,wherethis𝛿

comesfromsome𝜀 forLyapunov stability• Since𝑉 𝜉 . > 0 anddecreasingalong𝜉it

hasalimit𝑐 ≥ 0at𝑡 → ∞• Itsufficestoshowthatthislimitisactually0• Supposenot,c>0thenthesolutionevolves

inthecompactset𝑆 = 𝑥 𝑟 ≤ 𝑥 ≤ 𝜀} forsomesufficientlysmall𝑟

• Let𝑑 = maxÈ∈&

��(𝑥) [slowestrate]• Thisnumberiswell-definedandnegative• �� 𝜉 𝑡 ≤ 𝑑forallt• 𝑉 𝑡 ≤ 𝑉 0 + 𝑑𝑡• Buttheneventually𝑉 𝑡 < 𝑐

𝑟

[email protected]

Example2

• ��M = −𝑥M + 𝑔 𝑥P ; ��P = −𝑥P + ℎ 𝑥M

• 𝑔 𝑢 ≤ 'P, ℎ 𝑢 ≤ '

P

• Use𝑉 = MP𝑥MP + 𝑥PP ≥ 0

• �� = 𝑥M��M + 𝑥P��P=−𝑥MP −𝑥PP +𝑥M𝑔 𝑥P + 𝑥Pℎ 𝑥M≤ −𝑥MP −𝑥PP +

MP|𝑥M𝑥P| + |𝑥P𝑥M|

≤ − MP(𝑥MP + 𝑥PP) = −𝑉

Weconcludeglobalasymptoticstability(infactglobalexponentialstability)withoutknowingsolutions

𝑥M − 𝑥PP≥ 0

𝑥MP + 𝑥PP ≥ 2 𝑥M𝑥P

𝑥M𝑥P ≤12 (𝑥M

P + 𝑥PP)

[email protected]

Proposition. EverysublevelsetofVisaninvariant

Proof.𝑉 𝜉 𝑡 == 𝑉 𝜉 0 + ∫ �� 𝜉 𝜏 𝑑𝜏»

[≤ 𝑉(𝜉(0))

[email protected]

Anaside:Checkinginductiveinvariants

• 𝑨 = 𝑋,𝑄[, 𝑇– 𝑋: setofvariables– 𝑄[ ⊆ 𝑣𝑎𝑙 𝑋– 𝑇 ⊆ 𝑣𝑎𝑙 𝑋 ×𝑣𝑎𝑙 𝑋 writtenasaprogram𝑥′ ⊆ 𝑇(𝑥)

• Howdowecheckthat𝐼 ⊆ 𝑣𝑎𝑙(𝑋) isaninductiveinvariant?– 𝑄[ ⇒ 𝐼(𝑋)– 𝐼 𝑋 ⇒ 𝐼(𝑇 𝑋 )

• Impliesthat𝑅𝑒𝑎𝑐ℎ𝑨 𝑄[ ⊆ 𝐼withoutcomputingtheexecutionsorreachablestatesofA

• Thekeyistofindsuch𝐼LectureSlidesbySayanMitra

[email protected]

FindingLyapunov Functions

• ThekeytousingLyapunov theoryistofindaLyapunov functionandverifythatithastheproperties

• Ingeneralfornonlinearsystemsthisishard• Thereareseveralapproaches– LinearquadraticLyapunov functionsforlinearsystems– Decidetheform/templateofthefunction(e.g.,quadratic),parameterizedbysomeparameters

– Trytofindvaluesoftheparameterssothattheconditionshold

[email protected]

Linearautonomoussystems

• �� = 𝐴𝑥, 𝐴 ∈ ℝ�×�

• TheLyapunov equation:𝐴)𝑃 + 𝑃𝐴 + 𝑄 = 0where𝑃, 𝑄 ∈ ℝ�×� aresymmetric

• Interpretation:𝑉 𝑥 = 𝑥)𝑃𝑥 then�� 𝑥 = 𝐴𝑥 )𝑃𝑥 + 𝑥)𝑃(𝐴𝑥)

[usingß'*�+ß»

= ß'ß»𝑃𝑣 + ß+

ß»𝑃)𝑢]

=𝑥) 𝐴)𝑃 + 𝑃𝐴 𝑥 = −𝑥)𝑄𝑥

• If𝑥)𝑃𝑥 isthegeneralizedenergythen−𝑥)𝑄𝑥 istheassociateddissipation

[email protected]

QuadraticLyapunov Functions

• If𝑃 > 0 (positivedefinite)• 𝑉 𝑥 = 𝑥)𝑃𝑥 = 0 ⇔ 𝑥 = 0• Thesub-levelsetsareellipsoids• If𝑄 > 0 thenthesystemisgloballyasymptoticallystable

[email protected]

SameexampleLyapunovequationsaresolvedasasetof� ��M

Pequationsin

𝑛 𝑛 + 1 /2 variables.CostO(𝑛,)

Choose𝑄 = 1 00 1 solving

Lyapunov equationsweget𝑃 = 2.59 −2.29−2.29 4.92 andwegetthe

quadraticLyapunov function𝑥 − 𝑥∗ 𝑃 𝑥 − 𝑥∗ ) anasequenceofinvariants

[email protected]

ConverseLyapunov

ConverseLyapunov theoremsshowthatconditionsoftheprevioustheoremarealsonecessary.Forexample,ifthesystemisasymptoticallystablethenthereexistsapositivedefinite,continuouslydifferentiablefunctionV,thatsatisfiestheinequalities.

ForexampleiftheLTIsystem�� = 𝐴𝑥 isgloballyasymptoticallystablethenthereisaquadraticLyapunov functionthatprovesit.

[email protected]


Recommended