+ All Categories
Home > Documents > Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of...

Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of...

Date post: 31-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
27
Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2010 E. J. N. Wilson
Transcript

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 1

Lecture 4 - Transverse Optics II

ACCELERATOR PHYSICS

MT 2010

E. J. N. Wilson

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 2

Contents of previous lecture -Transverse Optics I

Transverse coordinatesVertical FocusingCosmotronWeak focusing in a synchrotron The “n-value”Gutter Transverse ellipseCosmotron peopleAlternating gradients Equation of motion in transverse co-

ordinates

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 3

Lecture 4 - Transverse Optics II Contents

Equation of motion in transverse co-ordinates

Check Solution of Hill Twiss Matrix Solving for a ring The lattice Beam sections Physical meaning of Q and beta Smooth approximation

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 4

Relativistic H of a charged particle in an electromagnetic field

Remember from special relativity:

i.e. the energy of a free particle

Add in the electromagnetic field» electrostatic energy» magnetic vector potential has same dimensions

as momentum

px =mvx

1− β2 , x

py =mvy

1− β 2 , y

pz =mvz

1− β 2 , z

H = px2c2 + py

2c2 + pz2c2 + m0

2c4

eφeA

H q,p,t( ) = eφ + c p − eA( )2 + m02c4[ ]

12

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 5

Hamiltonian for a particle in an accelerator

Note this is not independent of q because

Montague (pp 39 – 48) does a lot of rigorous, clever but confusing things but in the end he just turns H inside out

is the new Hamiltonian with s as the independent variable instead of t (see M 48)

Wilson obtains

» assumes curvature is small» assumes» assumes magnet has no ends» assumes small angles» ignores y plane

Dividing by

Finally (W Equ 8)

A = A x, y, s( )

ps

φ = 0 Ax = Ay = 0px << ps

H =

px2

2− eAs

P = px2 + py

2 + pz2

H =

p2

2−

eP

As =′ x ( )2

2−

As

Bρ( )

H q,p,t( ) = eφ + c p − eA( )2 + m02c4[ ]

12

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 6

Multipoles in the Hamiltonian

We said contains x (and y) dependance

We find out how by comparing the two expressions:

We find a series of multipoles:

For a quadrupole n=2 and:

H =

′ x ( )2

2−

As

Bρ( )As

As = Ann∑ xn

H =

′ x ( )2

2+

k(s)x2

2

By ( y= 0)= −

∂As

∂x= − nAnn∑ xn−1

By ( y= 0)=

1(n −1)!

∂ (n −1)By

∂x(n−1) xn −1

H =

′ x ( )2

2+

1Bρ( )n

∑ 1n!

∂ (n −1)By

∂x(n −1) xn

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 7

Hill’s equation in one ( or two) lines

Hamilton’s equations give an equation of motion (remember independent coordinate is now s not t )

and:

′ ′ x + kx = 0

Ý p x = −

∂H∂x

⇒ d( ′ x )

ds= −

∂H∂x

∴ ′ ′ x = −

∂H∂x

= −kx

H =

′ x ( )2

2+

k(s)x2

2

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 8

Other interesting forms

H =

p2

2+

k s( ) x2

2

H =

px2

2+

1Be( )n=0

∑ 1n!

∂ n −1( )Bz∂x n −1( )

xn

eAsp

=1Be

1n!

∂ n −1( )Bz∂x n −1( )

x n∑

H ≈ −

eAsp

+p x

2

2

H ≈ −

eAsp

− 1− p x2( )1/ 2

In x plane

Small divergences:

Substitute a Taylor series:

Multipoles each have a term:

Bz z = 0( ) =

∂As∂x

= n An x n−1( )

Quadrupoles:

But:

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 9

Equation of motion in transverse co-ordinates

Hill’s equation (linear-periodic coefficients)

– where at quadrupoles

– like restoring constant in harmonic motion Solution (e.g. Horizontal plane)

Condition

Property of machine Property of the particle (beam) ε Physical meaning (H or V planes)

EnvelopeMaximum excursions

k = − 1

Bρ( )dBzdx

β s( ) ϕ = ds

β s( )∫

y = εβ s( ) ′ ˆ y = ε / β s( )

ε β s( )

y = β s( ) ε sin φ s( ) + φ0[ ]

d 2 yds 2 + k s( )y = 0

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 10

Check Solution of Hill

Differentiatesubstituting

Necessary condition for solution to be true

so

Differentiate again

add both sides

w = β , φ = φ(s) + φo

′ y = ε1

2 ′ w (s) cosφ −dφds

w(s)sin φ

dφds

=1

β (s)=

1w2(s)

′ y = ε1

2 ′ w (s) cosφ −1

w (s)sin φ

′ ′ y = ε1

2 ′ ′ w (s)cosφ −′ w (s)

w2(s)sin φ +

′ w (s)w2(s)

sin φ

−1

w3(s)cosφ

+ky +kw(s)cosφ

cancels to 0

must be zero 0

y = β(s)ε cos φ(s) + φo( )

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 11

Continue checking

The condition that these three coefficientssum to zero is a differential equation for the envelope

′ ′ y = ε1

2 ′ ′ w (s)cosφ −′ w (s)

w2(s)sin φ +

′ w (s)w2(s)

sin φ

−1

w3(s)cosφ

+ky +kw(s)cosφ

cancels to 0

must be zero 0

′ ′ w (s) + kw(s) −1

w3(s)= 0

12

β ′ ′ β −14

′ β 2 + kβ 2 = 1

alternatively

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 12

All such linear motion from points 1 to 2 can be described by a matrix like:

To find elements first use notationWe knowDifferentiate and remember

Trace two rays one starts “cosine” The other starts with “sine”We just plug in the “c” and “s” expression

for displacement an divergence at point 1 and the general solutions at point 2 on LHS

Matrix then yields four simultaneous equations with unknowns : a b c d which can be solved

y'= ε1/2w' cos ϕ + φ0( ) −

εw

1/2sin ϕ + φ0( )

Twiss Matrix

y s2( )y' s2( )

=

a bc d

y s1( )y' s1( )

= M12

y s1( )y' s1( )

.

w = β

y = ε1/2w cos ϕ + φ0( )

ϕ =

=1

w2

φ = 0φ = π / 2

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 13

Twiss Matrix (continued)

Writing The matrix elements are

Above is the general case but to simplify we consider points which are separated by only one PERIOD and for which

The “period” matrix is then

If you have difficulty with the concept of a period just think of a single turn.

φ = φ2 − φ1

M12 =

w2w1

cos ϕ − w2w1' sin ϕ , w1w2 sin ϕ

−1 + w1w1

' w2w2'

w1w2 sin ϕ −

w1'

w2−

w2'

w1

cos ϕ , w1

w2 cos ϕ + w1w2

' sin ϕ

w1 = w2 = w , ′ w 1 = ′ w 2 = ′ w , µ = φ2 − φ1 = 2πQ

M = cos µ − ww ' sin µ , w2 sin µ

−1 + w2w '2

w2 sin µ , cos µ + ww' sin µ

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 14

Twiss concluded

Can be simplified if we define the “Twiss” parameters:

Giving the matrix for a ring (or period)

M = cos µ − ww ' sin µ , w2 sin µ

−1 + w2w '2

w2 sin µ , cos µ + ww' sin µ

β = w2 , α = −12

′ β , γ = 1+ α 2

β

M = cos µ + α sin µ , β sin µ

−γ sin µ, cos µ − α sin µ

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 15

The lattice

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 16

Beam sections

after,pct

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 17

Physical meaning of Q and βετα

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 18

Smooth approximation

dsβ∫ = dφ∫

2πRβ

= 2πQ

∴β = RQ

γ tr ≈ Q1

γ tr2 =

D R

∴ D = RQ2

Nµ = 2πQ

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 19

Principal trajectories

( ) ( ) ( )0

00)(ppsDysSysCsy ∆

+′+=

( ) ( ) ( )0

00)(ppsDysSysCsy ∆′+′′+′=′

=

′′ 10

01

00

00

SCSC

=

′ 0

0DD

+

=

′′

′ D

Dpp

yy

SCSC

yy

s

0

0100

′=

′′′

ppyy

DSCDSC

ppyy

s ∆∆

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 20

Effect of a drift length and a quadrupole

θ =

1f

⋅ x

x2x2

'

=

1 , 0−1 f , 1

x1x1

'

Quadrupole

Drift length

x2

x2'

=

1 , 0−kl , 1

x1

x1'

=

′ 1

1

2

2

101

xx

xx

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 21

Focusing in a sector magnet

Mx = cos θ , ρ sin θ

−1ρ

sin θ, cos θ

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 22

The lattice (1% of SPS)

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 23

Calculating the Twiss parameters

M =

cos µ + α sin µ , β sin µ− γ sin µ, cos µ − α sin µ

=

a bc d

THEORY COMPUTATION(multiply elements)

Real hard numbers

Solve to get Twiss parameters:

µ = cos−1 Tr M2

= cos−1 a + d

2

β = b / sin µ

α =a − d

2sin µγ = −c / sin µ

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 24

Meaning of Twiss parameters

ε is either :» Emittance of a beam anywhere in the ring» Courant and Snyder invariant fro one particle

anywhere in the ring

ε=′β+′α+γ 22 )()(2)( ysyysys

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 25

Example of Beam Size Calculation

Emittance at 10 GeV/cε = 20π mm.mrad = 20π ×10−6 m.radˆ β = 108 m

= 46 10−6

= 46.10−3 m= 46 mm.

εβ = 108.20.10−6

= 0.43 10−6

= 0.43.10−3 rad= 0.43 mrad.

εβ = 20.10−6

108

x

′ x

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 26

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 27

Summary

Equation of motion in transverse co-ordinates

Check Solution of Hill Twiss Matrix Solving for a ring The lattice Beam sections Physical meaning of Q and beta Smooth approximation


Recommended