+ All Categories
Home > Documents > Lecture 6 - Metabolic Modeling

Lecture 6 - Metabolic Modeling

Date post: 04-Jun-2018
Category:
Upload: rachez
View: 224 times
Download: 0 times
Share this document with a friend
38
USC-MSChE Course: Bioprocess Tec hnology  Metabolic Modeling Engr . Evelyn M. Buque- T aboada Metabolic Modeling**  Introduction  Basic types of reaction and related enzyme kinetics  Biochemical Networks  Thermodynamic description of c hemical networks ** adaptation of the lectures by Prof. J.J. Heijnen, TUDelft, The Netherlands
Transcript

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 1/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Metabolic Modeling**

  Introduction

  Basic types of reaction and related enzyme kinetics

  Biochemical Networks

  Thermodynamic description of chemical networks

** adaptation of the lectures by Prof. J.J. Heijnen, TUDelft, The Netherlands

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 2/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Micro-organisms contain a network of

enzyme-catalyzed reactions:

Substrate, CiProduct, C j

X 1

X 3

X 2

X 4

E1

E3

E6

E5

E4

E2

Ci,C j  extra-cellular substrate or product concentrations

 X i  intra-cellular metabolite concentrationsEi  intra-cellular enzyme concentrations

All reactions are coupled!

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 3/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Basic types of reactions

Metabolic reactions belong to 2 types:

Uni-uni reaction: A P

Bi-bi reactions: A + B P + Q

Mixed forms can also occur:

Bi-uni reactions: A + B P

Uni-bi reactions: B P + Q

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 4/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Rates

Rate of any enzyme-catalyzed reaction: 

V i = [regulatory term] * [ mass-action term]

Consider the reversible M-M equation for the uni-uni reaction:

A P

eq

 P  A

 P 

 P  A A

iii

 K 

C C 

 K C C  K 

 E q 

regulatory mass-action

term term

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 5/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Terms

Mass-action term only contains thedirect reactants and products (A and P).

Regulatory term contains:

  direct reactants and products (A, P)

  modifier concentrations

  enzyme concentration (linear)

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 6/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Linear expressions

Uni-uni reaction:  P  Ai   C k C k  11    

Bi-bi reactions: Q P  B Ai   C C k C C k  11    

Since1

1

k  K 

eq

 

 

 

 

eq

 P  Ai

 K 

C C k 1 

 

 

 

 

eq

Q P 

 B Ai K 

C C C C k 1 

uni -uni reaction

bi-bi reactions

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 7/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Structures in biochemical networks

X1  X2  X3E1  E2

Sequential linkage:

E1

X1  X2

X4  X3

E2

M MGGroup transfer

linkage:

donor couple:

X 1  and X 2

acceptor couple:

X 3  and X 4

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 8/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Basic structures in metabolic systems

(Hofmeyer)

CHAIN

BRANCH

LOOP

MOEITYCONSERVED

CYCLE

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 9/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Metabolites in biochemical networks

A X1  X2  X3  Q

E1  E2  E3  E4

Y+

B P

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 10/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Over-all rate equation

Rates = function of concentrations of:  terminal species

  modifiers

  sum of conserved moeities (enzyme, NAD-/NADH, etc.)

  but, not the concentrations of intermediates,which are not moeity conserved.

Concentration of intermediates = function of the concentrations of:

  terminal species

  modifiers

  sum of conserved moeities (enzyme, NAD-, NADH, etc.)

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 11/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Linear chain of enzymes

A  X1  X2  X3  Pk 1  k 2  k 3  k 4

k -1  k -2  k -3  k -4

E1  E2  E3  E4

1)1(1       iiiiii   X k  X k  E  Rate of reaction:

K i = k +i/k -i Equilibrium constant:

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 12/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Conversion rate of substrate A

44321332122111

4321

1111111

/

 E k  K  K  K  E k  K  K  E k  K  E k 

 K  K  K  K C C r 

  P  A A

 

  

 

 

  

 

 

  

 

Here:

 

  

 

 

 

 

 

44

1

32133

1

2122

1

1

1

11

1111111

 E k 

 K  K  K  E k 

 K  K  E k 

 K  E 

 K 

C C  E k 

  eq

 P  A

 A

  eq K k k k k  / k k k k  K  K  K  K        432143214321

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 13/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Effect of enzyme concentration

On the reaction pathway, effect of enzyme concentration varies:

1

2r A

Ei

1. r  A  proportional to E i2. r  A  independent of E i

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 14/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Flux control coefficient

 Flux control coefficient, C  Ei = relative change in r A upon arelative change in Ei

i

 A

i

i

 A

 A

 Ei

 E 

 E  E 

ln

ln

 Flux

arginine

 Enzyme activity

100%

100%

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 15/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Control coefficient

By proper mathematical differentiation of the rate equation,

the four (4) control coefficients of the involved enzymesare obtained:

122

2

1

 K  E  Dk C  E   

2133

3

1

 K  K  E  Dk 

C  E   

11

1

1

 E  Dk C  E   

32144

4

1

 K  K  K  E  Dk C  E   

S CEi = 1

0 < CEi < 1

* Focus on the slowest enzyme !

Why??

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 16/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Branched pathway

“supply”

branchA

Q

P

Xk 1

k -1k 3

k 2

k -2

k -3E1

E2

E3

two

“output” 

branches

reversible branched pathway

 Equilibrium constants:

21

21

k k 

k k  K  AP 

1

1

k  K  AX 

13

31

k k 

k k  K  AQ

23

32

k k 

k k  K  PQ

2

2

k  K  PX 

3

3

k  K QX 

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 17/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Branched pathway: Rates

221133113322

1133

111

11

 E k  E k  K  E k  E k  K  E k  E k  K 

 K 

C C 

 K  E k  K 

C C 

 K  E k r 

QX  PX  AX 

 PQ

Q

 P QX  AP 

 P 

 A PX 

 P 

 

 

 

 

 

 

 

 

221133113322

1122

111

11

 E k  E k  K  E k  E k  K  E k  E k  K 

 K C C 

 K  E k  K C C 

 K  E k r 

QX  PX  AX 

 PQ

Q

 P 

QX  AQ

Q

 A

QX 

Q

  

  

  

  

221133113322

2233

111

11

 E k  E k  K  E k  E k  K  E k  E k  K 

 K 

C C 

 K  E k  K 

C C 

 K  E k r 

QX  PX  AX 

 AQ

Q

 A

QX  AP 

 P  A

 PX  A

 

 

 

 

 

 

 

 

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 18/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Branched pathway

 Note: r A = r P  + r Q

For the branch flux ratio, R:Q

 P 

r  R 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 PQ

Q

 P 

QX  AQ

Q

 A

QX 

 PQ

Q

 P 

QX  AP 

 P  A

 PX 

 K 

C C 

 K  E k  K 

C C 

 K  E k 

 K 

C C 

 K  E k  K 

C C 

 K  E k 

 R

1122

1133

11

11

Finally, for the branched-point metabolite concentration CX,

QX  PX  AX 

Q P  A

 X 

 K 

 E k 

 K 

 E k 

 K 

 E k 

C  E k C  E k C  E k C 

332211

332211

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 19/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Cyclic structures in the pathway

X1  X3

X2

A P

X1  X3

X1  X2  X3

X4

X5

E3

E2E1

cyclic structures

Cyclic structure, the paral lel substrate loop

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 20/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

The parallel substrate loop

X1  X3

X2

A P

E4

E3E2

k -3

k 3k-2

k 2

k -5

k 5

 Equilibrium constants:

2

2

2

k  K 

3

3

3

k  K 

5

5

5

k  K 

 Equilibrium equation for X 1 and X 3:

K 2K 3 = K 5

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 21/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

The parallel loop

 

  

 

5

31

3322255

111

1

1

1

 K 

C C 

 E k  K  E k  E k 

r    X  X 

Proper derivation of the rate equation at steady-state

and 1st-order kinetics:

X1  X3

k+

k-

The rate equation shows that a parallel cyclic structure can be

lumped into an equivalent linear structure:

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 22/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Moeity conserved cycle

A P

Q B

X1  X2

v1

v2

moeity

conserved

cycle

Coupling of two

different processes:

A to P  and

B to Q

Rates ??

 

  

 

1

2111

 K 

C C C C k v   X  P 

 X  A

 

  

 

2

1

222 K 

C C C C k v  X Q

 X  B

Equilibrium constants?

K 1 = ?K 2 = ?

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 23/38

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 24/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Moeity conserved cycle

A P

Q B

X1  X2

v1

v2

Rate equations for the intermediates:

0211   vv

dt 

dC  X 

0212   vv

dt 

dC  X 

 In steady-state: v1 = v2

Under all conditions: 021

dt 

dC 

dt 

dC   X  X 

CX1 + CX2 = constant = T

“conserved moeity sum”  

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 25/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Moeity conserved cycles

Using the steady-state condition (v1 = v2 ) and the

conserved moeity sum (C  X1 + C  X2 = T), the followingrates are obtained:

  

  

  

  

 

  

 

2

22

1

11

2

1

1

1

 K 

C k C k  K 

C k C k 

C k  K 

C k 

Q

 B P 

 A

 B P 

 X 

  

  

  

  

 

  

 

2

22

1

11

2

21

2

 K 

C k C k  K 

C k C k 

 K 

C k C k 

Q

 B P 

 A

Q

 A

 X 

 

  

 

 

  

 

 

 

 

 

2

2

1

1

2121

 K 

C C k 

 K 

C C k 

 K  K 

C C 

C C T k k r 

Q

 B P 

 A

Q P 

 B A

 A

 B A

 B A A

C k C k 

C C T k k r 

21

21

Simplified to:

When??

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 26/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Metabolite control coefficients

Metabolite control coefficient, CX,ij

  = relative change in

metabolite concentration X i with respect to

the relative change in each enzyme

concentration E  j. 

S CX,ij = 0 Why??

For example: for 3 enzymes

CX1,1 + CX1,2 + CX1,3 = 0

  j

i

i j

 ji

 j

 j

i

i

ij X  E 

 X 

 X  E 

 E  X 

 E 

 E 

 X 

 X 

C ln

ln,

  

  

  

  

  

  

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 27/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Thermodynamic Driving Force

Consider a simple reaction:

A B

The kinetic driving force is:  

  

  K 

 B A where K = equilibrium constant

Thermodynamic theory states that for DGR :

Gibbs energy of reaction

At reference (standard) state:

 

  

 DD

 B

 A RT GG   o

 R R   ln

 K  RT Go

 R   lnD

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 28/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Relation of Kinetics & Thermodynamics

 

  

  

  

  D

 

 

 

 

 RT 

G

 K 

 A

 B

 Rexp11

Combing kinetic and thermodynamic equations:

Close to equilibrium: 1D RT G R using for x << 1, the approximation

  )()exp(1   x x  

Thus,

'1   G RT 

G

 K 

 A

 B

 R D 

  

    D

 

 

 

 

  D

D RT 

GG   R'where dimensionless

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 29/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Consider an example: moeity cycle

A P

Q B

X1  X2

v1

v2

Using mass-action kinetics:

1

2111

 K 

 PX  AX k V    X  AP    K  K 

 X 

 X 

 A

 P  K   

1

21

Then, the rate expression is:

 X  AP  AP    K 

 X  X 

 K 

 P k 

 K 

 P  A X k V    2

11

111

kinetic kinetic driving force

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 30/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Transformation of driving forces

Transforming kinetic and thermodynamic driving forces:

'1  AP 

 AP 

G K 

 A P 

D

 

 

 

    '1

2

1  X 

 X 

G K 

 X  X 

D

 

 

 

 

Then, for V1 and V2:

'

11

'

111   X 

 AP 

 AP    G K 

 P  X k G X k V    D

 

  

 D

'

12

'

222   X 

 BQ

 X  BQ   G

 K 

 K Q X k G B X k V    D

 

 

 

  D

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 31/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Steady-state condition

At steady-state: V1 = V2

Then,

 BQ

 X 

 AP 

 BQ AP 

 X 

 K 

Q K  X k 

 K 

 P  X k 

G B X k G A X k G

1211

'

22

'

11'

DDD

Over-all rate equation of the coupled process:

 P  K  K k 

Q K k 

G K Q

 B X G K 

 P 

 A K  X k k 

r  AP 

 X 

 BQ

 BQ BQ AP  AP  X 

21

'

2

'

121

DD

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 32/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

Equilibrium condition

Close to equilibrium:

1

1

21

 BQ

 AP 

 X 

 K Q

 B

 K  P  A

 X  K  X 

At this condition, the rate equation is reduced to an expressiondescribing the sum driving force of the moiety cycle reactions:

A + B P + Q

 P 

 K  K k 

Q

 K k 

GG X k k r  AP 

 X 

 BQ

 BQ AP 

21

''

221

DD

(simplified form of the over-all rate equation close to equilibrium and at steady-state!!)

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 33/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

FINAL EXERCISE

Metabolic Modeling

Consider the pathway for penicillin production:

AA ACV IPN Penv1

O2

 IPN 

O ACV 

 ACV 

 X ek v

C  X ek v

 K 

 X ek v

333

2222

1

111   1

 

 

 

 

Rate kinetics:

2.0

30

150

1

1.0

2

33

22

11

1

O

o

o

o

ek 

ek 

ek 

 K 

At reference steady-state (   = 0.03 h -1  ):

mmol ACV per C-mol X

mmol ACV per C-mol X per h

 L.mmol -1.h-1

h-1

mM  

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 34/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 35/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 36/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 37/38

USC-MSChE Course: Bioprocess Technology Metabolic Modeling Engr. Evelyn M. Buque-Taboada

8/13/2019 Lecture 6 - Metabolic Modeling

http://slidepdf.com/reader/full/lecture-6-metabolic-modeling 38/38


Recommended