+ All Categories
Home > Documents > Lecture 8: Convolutional Codes

Lecture 8: Convolutional Codes

Date post: 14-Feb-2017
Category:
Upload: ngoxuyen
View: 294 times
Download: 6 times
Share this document with a friend
25
Lecture 8: Convolutional Codes Copyright G. Caire (Sample Lectures) 255
Transcript
Page 1: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire Lecture 8:

Convolutional Codes

Copyright G. Caire (Sample Lectures) 255

Page 2: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Introducing memory

• A binary linear block encoder is a linear transformation Fk2

! Fn2

.

• What about using a Linear time-invariant linear system for encoding?

• Convolutional codes consider small k and n, but introduce memory into theencoding process of a sequence of consecutive blocks.

• We may see this a the convolution of a sequence of information blocks {ui}with a matrix G of impulse responses, in order to generate a sequence ofcoded blocks {ci}.

Copyright G. Caire (Sample Lectures) 256

Page 3: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

“MA” k ⇥ n linear systems

• A k ⇥ n Moving Average (MA) system is defined by:

c(1)

i =

m1,1

X

`=0

g(1,1)` u(1)

i�` + · · · +

mk,1X

`=0

g(k,1)` u(k)

i�`

c(2)

i =

m1,2

X

`=0

g(1,2)` u(1)

i�` + · · · +

mk,2X

`=0

g(k,2)` u(k)

i�`

...

c(n)

i =

m1,n

X

`=0

g(1,n)

` u(1)

i�` + · · · +

mk,nX

`=0

g(k,n)

` u(k)

i�`

Copyright G. Caire (Sample Lectures) 257

Page 4: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

• Defining a vector output sequence c0

, c1

, c2

, . . . such that ci = (c(1)

i , . . . , c(n)

i )

and a vector input sequence u0

,u1

,u2

, . . . such that ui = (u(1)

i , . . . , u(k)

i ), wecan write

ci =

mX

`=0

ui�`G`

where we let m = max{m(i,j)}.

• We obtain a block-Toeplitz notation

(c0

, c1

, c2

, c3

, . . .) = (u0

,u1

,u2

,u3

, . . .)

2

6

6

6

6

4

G0

G1

· · · Gm 0 · · ·0 G

0

Gm�1

Gm... 0

. . . ... Gm�1

. . .G

0

...0 G

0

. . .

3

7

7

7

7

5

• The impulse responses g(i,j) are called the code generators.

Copyright G. Caire (Sample Lectures) 258

Page 5: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

D-transform

• D-transform domain

ui ! u(D) =

X

i

uiDi (Laurent series)

• Convolutional encoding in the D-transform domain:

c(D) = u(D)G(D)

or, equivalently,

(c1

(D), . . . , cn(D)) = (u1

(D), . . . , uk(D))

2

6

6

4

g1,1(D) g

1,2(D) · · · g1,n(D)

g2,1(D) g

2,2(D) · · · g2,n(D)

... ...gk,1(D) gk,2(D) · · · gk,n(D)

3

7

7

5

Copyright G. Caire (Sample Lectures) 259

Page 6: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: a (2, 1) convolutional code

+

+

ui

c(2)

i = ui + ui�1

+ ui�2

c(1)

i = ui + ui�2

• Generator matrix:G(D) = [1 + D2, 1 + D + D2

]

Copyright G. Caire (Sample Lectures) 260

Page 7: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Encoder canonical forms

• A code C is defined as the set of all output sequences (code sequences).

• As for block codes, a convolutional code C may have several input-ouputencoder implementations.

• We seek encoders in canonical form: a general problem in system theory isfor a given system, defined as the ensemble of all its output sequences, whatis the minimal canonical realization?

• State-space representation (ABCD):

si+1

= siA + uiB, ci = siC + uiD

a minimal representation is a representation with the minimum number ofstate variables.

Copyright G. Caire (Sample Lectures) 261

Page 8: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

More on the (2, 1) example

• In the (2, 1) example of before, the state is defined as the content of thememory elements,

si = (ui�1

, ui�2

)

therefore we have

si+1

= si

0 1

0 0

| {z }

A

+ui

1 0

| {z }

B

andci = si

0 1

1 1

| {z }

C

+ui

1 1

| {z }

D

Copyright G. Caire (Sample Lectures) 262

Page 9: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Generalization ...

• A convolutional code can be seen as a block code defined on the field Fq(D)

of rational functions over Fq.

• Roughly speaking: rational functions are to polynomials as rationals Q to theintegers Z.

• Generalizing what seen before, we can consider G(D) with rational elementsgi,j(D).

• In system theory, this corresponds to AR-MA linear systems.

• The code is preserved by elementary row operations.

• It follows that for any G(D), we can find a systematic generator matrix in theform

G(D) = [I|P(D)]

where I is the k ⇥ k identity, and P(D) is a k ⇥ (n � k) matrix of rationalfunctions.

Copyright G. Caire (Sample Lectures) 263

Page 10: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: systematic convolutional encoders

• For the (2, 1) example with memory m = 2 and generator matrix:

G(D) = [1 + D2, 1 + D + D2

]

we have:G0

(D) =

1,1 + D + D2

1 + D2

+

ui+

c(1)

i = ui

ai

c(2)

i = ai + ai�1

+ ai�2

Copyright G. Caire (Sample Lectures) 264

Page 11: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

State diagram

• A state-space realization with m binary state variables is a finite-statemachine (FSM) with a state space ⌃ = Fm

2

.

• In general, a FSM is described by its state transition diagram, i.e., by agraph with |⌃| vertices, corresponding to all possible state configurations,and edges connecting those states for which a transition is possible.

• Each edge (s, s0) 2 ⌃ ⇥ ⌃ is labeled by input and output vectors b 2 Fk

2

andc 2 Fn

2

, corresponding to the state transition between s and s0.

Copyright G. Caire (Sample Lectures) 265

Page 12: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: the (2, 1) 4-state code

• The input-output labels of the state diagram depend on the encoding function:this example corresponds to the feedforward (non-systematic) encoder forthe (2, 1) example seen before.

(0, 0)

(1, 0)

(1, 1)

(0, 1)

0/00

1/11

1/10

0/01

0/11

1/00

1/01

0/10

Copyright G. Caire (Sample Lectures) 266

Page 13: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Trellis diagram

• An alternative representation consists of the trellis section, i.e., by a bipartitegraph with |⌃| state vertices on the left and |⌃| state vertices on the right.

• Left vertices represent the possible states at time i, and right verticesrepresent the possible states at time i + 1. Edges represent the possiblestate transitions corresponding to input ui and output ci.

• The trellis representation follows from the state transition diagram byintroducing the time axis.

• A trellis diagram for a convolutional code consists of the concatenation of aninfinite number of trellis sections.

• Given an initial state at time i = 0, an input sequence u(D) determines anoutput sequence c(D) and a state sequence s(D) that correspond to a pathin the trellis.

Copyright G. Caire (Sample Lectures) 267

Page 14: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: the (2, 1) 4-state code

(0, 0) (0, 0)

(1, 0) (1, 0)

(1, 1) (1, 1)

(0, 1) (0, 1)

0/00

1/11

1/10

0/01

1/01

0/10

1/00

0/11

Copyright G. Caire (Sample Lectures) 268

Page 15: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

The Factor Graph for a convolutional code

• Three types of variable nodes: information bitnodes ui, coded bitnodes ci

and states nodes si.

• The function nodes correspond to the state and output mappings

si+1

= siA + uiB, ci = siC + uiD

Copyright G. Caire (Sample Lectures) 269

Page 16: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Finding G(D) from the state equation

• Consider the ABCD minimal state space realization:

si+1

= siA + uiB, ci = siC + uiD

• By applying D-transform we obtain

D�1s(D) = s(D)A + u(D)B, c(D) = s(D)C + u(D)D

• Eliminating the state s(D), we arrive at c(D) = u(D)G(D) with

G(D) = B�

D�1I + A��1

C + D

Copyright G. Caire (Sample Lectures) 270

Page 17: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

MAP decoding of convolutional codes

• We consider the transmission of the block code CN obtained by trellistermination of a convolutional code, over a memoryless channel with inputci 2 Fn

2

and output yi 2 Y.

• Block MAP decoding rule (aka, Maximum Likelihood (ML) decoding rule):

bc = arg max

c2CN

N�1

X

i=0

log PY |X(yi|ci)

• Since |CN | = 2

k(N�⌫max

) and N � ⌫max

is generally large, the brute-forceevaluation of the MAP decoding rule is intractable.

Copyright G. Caire (Sample Lectures) 271

Page 18: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

The Viterbi Algorithm

• The ML decision metric is additive and that the codewords are representedby paths in the code trellis.

• In this case, the ML decoding rule can be computed efficiently by the ViterbiAlgorithm (VA).

• For a state transition (s0, s), let c(s0, s) = (c(1)

(s0, s), . . . , c(n)

(s0, s)) denote thecorresponding block of coded symbols.

• We define the branch metric at trellis section i as

Mi(c) = ↵ log PY |X(yi|c) � �, c 2 Fn2

where ↵ > 0 and � are suitable constant.

Copyright G. Caire (Sample Lectures) 272

Page 19: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

• The VA maintains one path metric for each surviving path terminating at eachstate, and recursively updates the path metrics as follows:

1. Initialization: M0

(0) = 0, M(s) = �1 for all s 6= 0.2. Add Compare and Select (ACS) recursion: for i = 1, 2, . . . , N , and for all

states s 2 ⌃, let

Mi(s) = max

s02P(s){Mi�1

(s0) + Mi�1

(c(s0, s))}

where P(s) is the set of “parent” states of s, i.e., the set of states s0 2 ⌃

for which there exists a transition (s0, s) in the code state diagram.3. The n-tuple of symbols c(s0, s) achieving the maximum in the ACS step is

added to the survivor path terminating in state s at time i.4. Final decision (trace-back): the maximum of the total metric is obtained

as MN(0). The MAP decoded codeword bc is the corresponding survivorpath.

Copyright G. Caire (Sample Lectures) 273

Page 20: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: the (2, 1) 4-state code over the BSC

00 00 00 00 00 00 0011

11

0110

001001

01 00 10 00 00 01 00

0 11

1322

2223

2233

2333

3

3

3

Copyright G. Caire (Sample Lectures) 274

Page 21: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Example: the (2, 1) 4-state code over the BSC

00 00 00 00 00 00 0011

11

0110

001001

01 00 10 00 00 11 00

0 11

1322

2223

2233

2333

3

4

Copyright G. Caire (Sample Lectures) 275

Page 22: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Practical implementation issues

• Path metric re-normalization: the output of the VA does not change if at eachstep the maximum path metric is subtracted from all path metrics.

• Minimizing instead of maximizing: the output of the VA does not change if wechoose ↵ < 0 and min instead of max in the ACS step.

• Register exchange vs. traceback: .... better explained through an example ...

• Handling puncturing: the contribution to the branch metric of a punctured bitis zero.

• Handling ties: if two competing candidate paths terminating in the same statehave the same metric, the VA takes an arbitrary, or random, decision, with noimpact on the average error probability.

Copyright G. Caire (Sample Lectures) 276

Page 23: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

Optimality of the VA

Theorem 13. The final surviving path in the VA is the ML-decoded codeword.⇤

Proof:M�(a)

M�(b) M+

(b)

M+

(a)

• Claim: if M�(b) < M�(a) then the semi-path b� cannot be part of the MAPcodeword and can be dropped from the metric count.

Copyright G. Caire (Sample Lectures) 277

Page 24: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

• Compare the 4 path metrics

M�(b) + M+

(b), M�(b) + M+

(a), M�(a) + M+

(b), M�(a) + M+

(a)

• If M�(b) < M�(a) then

max {M�(b) + M+

(b), M�(b) + M+

(a)}<

max {M�(a) + M+

(b), M�(a) + M+

(a)}

Copyright G. Caire (Sample Lectures) 278

Page 25: Lecture 8: Convolutional Codes

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected]

Firma xy Herrn Mustermann Beispielstraße 11 12345 Musterstadt

Berlin, 1. Month 2014

Subject: Text…& Prof. Dr. Giuseppe Caire

End of Lecture 8

Copyright G. Caire (Sample Lectures) 279


Recommended