+ All Categories
Home > Documents > Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2....

Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2....

Date post: 23-Aug-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
31
CSE 222A: Computer Communication Networks Alex C. Snoeren Lecture 9: Hybrid Networks Thanks: Nathan Farrington
Transcript
Page 1: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

CSE 222A: Computer Communication Networks Alex C. Snoeren

Lecture 9:Hybrid Networks

Thanks: Nathan Farrington

Page 2: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Lecture 9 Overview

●  Project discussion ●  Overview optical technology

●  Helios paper discussion

2 CSE 222A – Lecture 9: Hybrid Networks

Page 3: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

The Case for Optics

3

●  Electrical Packet Switch

●  $400/port ●  10 Gb/s fixed rate ●  12 W/port ●  Requires transceivers ●  Per-packet switching ●  For bursty, uniform traffic

●  Optical Circuit Switch

●  $400/port ●  Rate free ●  240 mW/port ●  No transceivers ●  1-ms switching time ●  For stable, pair-wise traffic

3 CSE 222A – Lecture 9: Hybrid Networks

Page 4: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Optical Circuit Switch

Lenses Fixed Mirror

Mirrors on Motors

Glass Fiber Bundle

Input 1 Output 2 Output 1

Rotate Mirror 1.  Full crossbar switch 2.  Does not decode packets 3.  Needs external scheduler

4 CSE 222A – Lecture 9: Hybrid Networks

Page 5: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Electrical Packet Switch 1 2 3 4 5 6 7 8

WDM MUX WDM DEMUX

Optical Circuit Switch

Superlink

10G WDM Optical Transceivers

No Transceivers Required 80G

Wavelength Division Mux

5 CSE 222A – Lecture 9: Hybrid Networks

Page 6: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Bisection Bandwidth

10% Electrical (10:1

Oversubscribed)

100% Electrical

Helios Example 10% Electrical + 90%

Optical

Cost $6.3 M

Power 96.5 kW

Cables 6,656

Example: N=64 pods * k=1024 hosts/pod = 64K hosts total; 8 wavelengths

N pods, k-ports each

k switches, N-ports each

Page 7: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Bisection Bandwidth

10% Electrical (10:1

Oversubscribed)

100% Electrical

Helios Example 10% Electrical + 90%

Optical

Cost $6.3 M $62.3 M

Power 96.5 kW 950.3 kW

Cables 6,656 65,536

Example: N=64 pods * k=1024 hosts/pod = 64K hosts total; 8 wavelengths

N pods, k-ports each

k switches, N-ports each

Page 8: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Bisection Bandwidth

10% Electrical (10:1

Oversubscribed)

100% Electrical

Helios Example 10% Electrical + 90%

Optical

Cost $6.3 M $62.2 M $22.1 M 2.8x Less

Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less

Cables 6,656 65,536 14,016 4.7x Less

Example: N=64 pods * k=1024 hosts/pod = 64K hosts total; 8 wavelengths

Fewer Core Switches

N pods, k-ports each

Less than k switches, N-ports each

Page 9: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 10G •  Demand = 10G •  Throughput = 10G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G •  Throughput = 80G

OCS EPS

Setup a Circuit

Pod 1 Pod 2 Pod 3

9 CSE 222A – Lecture 9: Hybrid Networks

Page 10: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 10G •  Demand = 10G •  Throughput = 10G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G •  Throughput = 80G

OCS EPS

Traffic Patterns Change

Pod 1 Pod 2 Pod 3

10 CSE 222A – Lecture 9: Hybrid Networks

Page 11: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 10G •  Demand = 10G 80G •  Throughput = 10G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G 10G •  Throughput = 10G

OCS EPS

Traffic Patterns Change

Pod 1 Pod 2 Pod 3

11 CSE 222A – Lecture 9: Hybrid Networks

Page 12: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 10G •  Demand = 10G 80G •  Throughput = 10G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G 10G •  Throughput = 10G

OCS EPS

Pod 1 Pod 2 Pod 3

Break a Circuit

12 CSE 222A – Lecture 9: Hybrid Networks

Page 13: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 10G •  Demand = 10G 80G •  Throughput = 10G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G 10G •  Throughput = 10G

OCS EPS

Pod 1 Pod 2 Pod 3

Setup a Circuit

13 CSE 222A – Lecture 9: Hybrid Networks

Page 14: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 80G •  Demand = 80G •  Throughput = 80G Pod 1 -> 3: •  Capacity = 80G •  Demand = 80G 10G •  Throughput = 10G

OCS EPS

Pod 1 Pod 2 Pod 3

14 CSE 222A – Lecture 9: Hybrid Networks

Page 15: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

Pod 1 -> 2: •  Capacity = 80G •  Demand = 80G •  Throughput = 80G Pod 1 -> 3: •  Capacity = 10G •  Demand = 10G •  Throughput = 10G

OCS EPS

Pod 1 Pod 2 Pod 3

15 CSE 222A – Lecture 9: Hybrid Networks

Page 16: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

10G 10G 10G 80G 80G 80G

OCS EPS

Pod 1 Pod 2 Pod 3

Pod Switch Manager

Pod Switch Manager

Pod Switch Manager

Circuit Switch Manager

Topology Manager

16 CSE 222A – Lecture 9: Hybrid Networks

Page 17: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Outline of Control Loop1.  Estimate traffic demand 2.  Compute optimal topology for maximum throughput 3.  Program the pod switches and circuit switches

17 CSE 222A – Lecture 9: Hybrid Networks

Page 18: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

1. Estimate Traffic DemandQuestion: Will this flow use more bandwidth if we give it

more capacity?

1.  Identify elephant flows (mice don’t grow) Problem: Measurements are biased by current topology

2.  Pretend all hosts are connected to an ideal crossbar switch

3.  Compute the max-min fair bandwidth fixpoint

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center Networks. In NSDI’10.

18 CSE 222A – Lecture 9: Hybrid Networks

Page 19: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

2. Compute Optimal Topology1.  Formulate as instance of max-weight perfect matching

problem on bipartite graph 2.  Solve with Edmonds algorithm

1

2

3

4

1

2

3

4

Source Pods Destination Pods

a)  Pods do not send traffic to themselves b)   Edge weights represent interpod

demand c)  Algorithm is run iteratively for each

circuit switch, making use of the previous results

19 CSE 222A – Lecture 9: Hybrid Networks

Page 20: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Example: Compute Optimal Topology

20 CSE 222A – Lecture 9: Hybrid Networks

Page 21: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Example: Compute Optimal Topology

21 CSE 222A – Lecture 9: Hybrid Networks

Page 22: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Example: Compute Optimal Topology

22 CSE 222A – Lecture 9: Hybrid Networks

Page 23: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Traditional Network Helios Network

100% bisection bandwidth (240 Gb/s)

23 CSE 222A – Lecture 9: Hybrid Networks

Page 24: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Hardware●  24 servers

◆  HP DL380 ◆  2 socket (E5520)

Nehalem ◆  Dual Myricom 10G NICs

●  7 switches ◆  One Dell 1G 48-port ◆  Three Fulcrum 10G 24-

port ◆  One Glimmerglass 64-

port optical circuit switch ◆  Two Cisco Nexus 5020

10G 52-port

24 CSE 222A – Lecture 9: Hybrid Networks

Page 25: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

25 CSE 222A – Lecture 9: Hybrid Networks

Page 26: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Hash Collisions TCP/IP Overhead

190 Gb/s Peak 171 Gb/s Avg

Traditional Network

26 CSE 222A – Lecture 9: Hybrid Networks

Page 27: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

160 Gb/s Peak 43 Gb/s Avg

Helios Network (Baseline)

27 CSE 222A – Lecture 9: Hybrid Networks

Page 28: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Port Debouncing

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Time (s)

1. Layer 1 PHY signal locked (bits are detected) 2. Switch thread wakes up and polls for PHY status

•  Makes note to enable link after 2 seconds 3. Switch thread enables Layer 2 link

28 CSE 222A – Lecture 9: Hybrid Networks

Page 29: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Without Debouncing

160 Gb/s Peak 87 Gb/s Avg

29 CSE 222A – Lecture 9: Hybrid Networks

Page 30: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

Without EDCTh

roug

hput

(Gb/

s)

Time (s)

160 Gb/s Peak 142 Gb/s Avg

Software Limitation

Thro

ughp

ut (G

b/s)

Time (s)

27 ms Gaps

30 CSE 222A – Lecture 9: Hybrid Networks

Page 31: Lecture 9: Hybrid Networkscseweb.ucsd.edu/classes/wi15/cse222A-a/lectures/222A-wi... · 2015. 2. 4. · Power 96.5 kW 950.3 kW 157.2 kW 6.0x Less Cables 6,656 65,536 14,016 4.7x Less

For Next Class…

●  Read and review FairCloud paper

●  Keep moving on term projects!

31 CSE 222A – Lecture 9: Hybrid Networks


Recommended