+ All Categories
Home > Documents > Lecture 9 Noise

Lecture 9 Noise

Date post: 05-Apr-2018
Category:
Upload: chul-min-ahn
View: 230 times
Download: 0 times
Share this document with a friend

of 44

Transcript
  • 8/2/2019 Lecture 9 Noise

    1/44

    Noise

  • 8/2/2019 Lecture 9 Noise

    2/44

    Resistor Thermal Noise

  • 8/2/2019 Lecture 9 Noise

    3/44

    Example

    Vnr1sqr=2.3288 x 10-19

    Vnr3sqr=7.7625 x 10-20

    Vnoutsqr=3.1050 x10-19

  • 8/2/2019 Lecture 9 Noise

    4/44

  • 8/2/2019 Lecture 9 Noise

    5/44

    Popular Interview Question

  • 8/2/2019 Lecture 9 Noise

    6/44

    Noise Spectrum Shaping by a

    Low Pass Filter

    As R increases, 4kTR increases, but the bandwidth decreases.Therefore, the bandwidth is constant.

    Pn,out can only be decreased by increasing C.

  • 8/2/2019 Lecture 9 Noise

    7/44

    Alternative Representation of

    Resistor Thermal Noise

  • 8/2/2019 Lecture 9 Noise

    8/44

    MOSFETS

    (Typically 2/3, not to be confused withbody effect coefficient)

  • 8/2/2019 Lecture 9 Noise

    9/44

    as a function of length

  • 8/2/2019 Lecture 9 Noise

    10/44

    Noise Voltage Generated Per

    Device

    gm/ID gm(mS) gm/gds Vn(nV/sqrt(Hz)) Gamma

    5 0.5 12.045 84.83 1.4976

    10 1 15.707 64.5 1.018

    15 1.5 17.19 52.40 0.84

    20 2 17.55 44.27 0.76

    25 2.5 17.05 38.22 0.76

    VDS=0.6I1=100 uA

  • 8/2/2019 Lecture 9 Noise

    11/44

    Flicker Noise

  • 8/2/2019 Lecture 9 Noise

    12/44

    Flicker Noise Model

    The flicker noise is modeled as a voltage source in series with the gate:

    The trap-and-release phenomenon associated with the danglingbond occurs at low frequencies more often.

    Device area can be increased todecrease noise due to flicker noise.

  • 8/2/2019 Lecture 9 Noise

    13/44

    Corner Frequency

    Definition: the frequency at which thethermal noise equals the flicker noise.

  • 8/2/2019 Lecture 9 Noise

    14/44

    Corner Frequency (fco)

  • 8/2/2019 Lecture 9 Noise

    15/44

    fco as a function of length

  • 8/2/2019 Lecture 9 Noise

    16/44

    Representation of Noise in

    Circuits

    Output noise

    Input noise

    Voltage noise source

    Current noise source

  • 8/2/2019 Lecture 9 Noise

    17/44

    Output Noise

  • 8/2/2019 Lecture 9 Noise

    18/44

    Problem of Output Noise

    Output noise depends on the gain ofthe amplifier, for example.

  • 8/2/2019 Lecture 9 Noise

    19/44

    Input-Referred Noise Voltage

    Problem: only valid for when source impedance is low.

  • 8/2/2019 Lecture 9 Noise

    20/44

    Input Voltage Calculation

  • 8/2/2019 Lecture 9 Noise

    21/44

    Calculation of Input-Referred

    NoiseLow sourceimpedance

    High source impedance

  • 8/2/2019 Lecture 9 Noise

    22/44

    Input Current

    More significant atHigh frequencies!

  • 8/2/2019 Lecture 9 Noise

    23/44

    Noise in Single Stage Amplifier

    Equivalent CS Stages

    CS

    CG SF

    Cascode

    Differential Pairs

  • 8/2/2019 Lecture 9 Noise

    24/44

    Equivalent CS Stages

  • 8/2/2019 Lecture 9 Noise

    25/44

    Common Source Amplifier

    The transconductance of M1 must be maximized in order tominimize input-referred noise.

  • 8/2/2019 Lecture 9 Noise

    26/44

    Input Referred Thermal Noise

    Voltage

    M2 acts as the current source.

    The gm of M2 should be minimized.

    M1 acts as the amplifier.The gm of M1 should be maximized.

  • 8/2/2019 Lecture 9 Noise

    27/44

    Noise Simulation

    Thermalnoise

    3.758 nV/sqrt(Hz)

    Av=28.711

  • 8/2/2019 Lecture 9 Noise

    28/44

    Noise Simulation

    3.126 nV/sqrt(Hz)

    Av=33.42

  • 8/2/2019 Lecture 9 Noise

    29/44

    Comparison

    Av=33.42

    (simulated input-referredthermal noise)

  • 8/2/2019 Lecture 9 Noise

    30/44

    Flicker Noise

    Dominated byFlicker noise Dominated byThermal noise

  • 8/2/2019 Lecture 9 Noise

    31/44

    Common Gate Amplifier

    Need to consider

    Input referred voltage source

    Input referred current source

  • 8/2/2019 Lecture 9 Noise

    32/44

    Gain of CG

    If RS=0 and channel length modulation is ignored, Av is

  • 8/2/2019 Lecture 9 Noise

    33/44

    Input-Referred Voltage Source

  • 8/2/2019 Lecture 9 Noise

    34/44

    Input-Referred Current Source

    Does not producea current to the output

  • 8/2/2019 Lecture 9 Noise

    35/44

    Input-Referred Thermal Noise

  • 8/2/2019 Lecture 9 Noise

    36/44

    Input-Referred Flicker Noise

  • 8/2/2019 Lecture 9 Noise

    37/44

    Design Example

    Design criteria:gm/ID=5 for M0, M2, M3 and M4.gm/ID=20 for M1.I1=10 uAI2=10 uAI(M1)=40 uA

  • 8/2/2019 Lecture 9 Noise

    38/44

    Source Follower with a NMOS CS

    Load (Review)

  • 8/2/2019 Lecture 9 Noise

    39/44

    Source Followers

    High Input impedance,noise current source is negligible.

  • 8/2/2019 Lecture 9 Noise

    40/44

    Cascode Stage

    (At Low Frequencies)

  • 8/2/2019 Lecture 9 Noise

    41/44

    Cascode Stage

    (At High Frequencies)

  • 8/2/2019 Lecture 9 Noise

    42/44

    Differential Pair

    (negligible)

  • 8/2/2019 Lecture 9 Noise

    43/44

  • 8/2/2019 Lecture 9 Noise

    44/44

    Analysis


Recommended