+ All Categories
Home > Documents > Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic...

Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic...

Date post: 25-Feb-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
32
Lecture 9 Physics 2018/2019
Transcript
Page 1: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Lecture 9Physics 2018/2019

Page 2: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetism

Magnetic fields are invisible fields that exert a vector force,characterized by both strength and direction, and are produced bymagnetic objects or changing electric fields.

Bar magnets Earth

S

S S

N

NN

The simplest magnetic structure that can exist in nature is the magnetic dipole.

There exists no separate north or south pole of magnets.

Page 3: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic fields are produced by electric currents, which can bemacroscopic currents in wires, or microscopic currents associatedwith electrons in atomic orbits.

Page 4: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

πœ‡ π‘Ÿ < 1Diamagnetic materials

𝐡 < 𝐡0

Paramagnetic materials𝐡 > 𝐡0

Ferromagneticmaterials

𝐡 ≫ 𝐡0

πœ‡ π‘Ÿ > 1

πœ‡ π‘Ÿ ≫ 1

𝐡 = πœ‡0πœ‡π‘Ÿπ»π΅ = πœ‡π‘Ÿπ΅0

𝑇𝑐 βˆ’ πΆπ‘’π‘Ÿπ‘–π‘’ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’

Page 5: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

1

Page 6: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic flux density (magnetic induction) B, Magnetic field strength H

𝐡0 = πœ‡0𝐻 𝐡 = 1 𝑇(π‘‘π‘’π‘ π‘™π‘Ž) = 1π‘˜π‘”π‘ βˆ’2π΄βˆ’1

𝐡 = πœ‡ π‘Ÿπœ‡ 0𝐻 𝐻 =𝐴

π‘šπ΅ = πœ‡0 1 + πœ’ 𝐻 πœ’ βˆ’ π‘šπ‘Žπ‘”π‘›π‘’π‘‘π‘–π‘ 𝑠𝑒𝑠𝑐𝑒𝑝𝑑𝑖𝑏𝑖𝑙𝑖𝑑𝑦μ0 = 4π×10βˆ’7 N A-2 or TmA-1

ΞΌd <1 diamagnetic materials

ΞΌp >1 paramagnetic materials

ΞΌf >>1 ferromagnetic materials

Page 7: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

south pole

north pole

Magnetic field is represented by field lines:

1. direction of the tangent to a magnetic field line at any point

gives the direction of B at that point

2. the spacing of the lines is a measure of the magnitude of B.

N

S

Vector field, field lines never cross, do not start and stop anywhere –closed loops, field lines direction – from north pole to south pole

Page 8: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Lorentz force – charged particle in magnetic field

πΉπ‘š = π‘žπ‘£π΅π‘ π‘–π‘›π›Ό 𝛼 βˆ’ ∑ 𝑣 π‘Žπ‘›π‘‘ 𝐡

πΉπ‘š = π‘žπΏ

𝑑𝐡sin 𝛼 = 𝐼𝐿𝐡 sin 𝛼

Hendrik Antoon Lorentz(1853 –1928)

Page 9: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Mass spectroscopy

𝐹 = π‘šπ‘Ž = π‘šπ‘£2

π‘Ÿ= π‘žπ‘£π΅π‘ π‘–π‘›π›Ό

π‘£βŠΎπ΅

π‘Ÿ =π‘š

π‘ž

𝑣

𝐡𝑠𝑖𝑛𝛼 = 11

2π‘šπ‘£2 = π‘žπ‘ˆ

𝑣 =2π‘žπ‘ˆ

π‘š

π‘Ÿ =π‘š

π‘ž

2π‘ˆ

𝐡2

parameters of the equipment

Page 10: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic field along a straight wire

Ampere’s law The magnetic field on the perimeter of a region is proportional to the current, that passes through the region.

π‘π‘™π‘œπ‘ π‘’π‘‘π‘π‘Žπ‘‘β„Ž

𝐡βˆ₯βˆ†πΏ = πœ‡0πΌπ‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘ ΰΆ»

𝐢

𝐡𝑑𝑙 = πœ‡0πΌπ‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘

πœ‡0 = 4πœ‹. 10βˆ’7π‘‡π‘š/𝐴

𝐡βˆ₯ = π‘π‘œπ‘›π‘ π‘‘

𝐡2πœ‹π‘Ÿ = πœ‡0𝐼𝑒𝑛𝑐𝑙.

𝐡 =πœ‡0𝐼𝑒𝑛𝑐𝑙.

2πœ‹π‘Ÿ

André-Marie Ampère1775-1836

Page 11: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Orientation of magnetic field linesRight hand rule

Page 12: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic field of two straight wires𝐹1 = π‘ž1𝑣1π‘₯𝐡2

𝐹2 = π‘ž2𝑣2π‘₯𝐡1

𝐹𝑖 = 𝐼𝑖 𝑑 𝑣𝑖 𝐡𝑗 𝑠𝑖𝑛90Β° = 𝐼𝑖 𝑙𝑖 𝐡 𝑗

𝐡𝑗 =πœ‡0𝐼𝑗

2πœ‹π‘Ž

𝐹 =πœ‡0𝐼1𝐼2𝑙

2πœ‹π‘Ž=

4πœ‹. 10βˆ’7. 1.1.1

2πœ‹. 1

𝐹 = 2. 10βˆ’7𝑁

Page 13: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Ampere’s law – magnetic field inside a current loop and solenoid

π‘π‘™π‘œπ‘ π‘’π‘‘ π‘π‘Žπ‘‘β„Ž

𝐡βˆ₯Δ𝐿 = πœ‡0πΌπ‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘

𝐡βˆ₯ β‰  π‘π‘œπ‘›π‘ π‘‘

𝐡 =πœ‡0𝐼

2𝑅

𝑁

π‘π‘™π‘œπ‘ π‘’π‘‘ π‘π‘Žπ‘‘β„Ž

𝐡βˆ₯Δ𝐿 = π‘πœ‡0πΌπ‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘

𝑁𝐡βˆ₯

π‘π‘™π‘œπ‘ π‘’π‘‘ π‘π‘Žπ‘‘β„Ž

Δ𝐿 = π‘πœ‡0πΌπ‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘

π΅π‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘πΏπ‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘ = π‘πœ‡ 0𝐼

π΅π‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘ =π‘πœ‡ 0𝐼

πΏπ‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘

Page 14: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic flux – electromagnetic induction, Faraday’s law

Faraday’s law of electromagnetic induction: the magnitude of the inducedelectromotive force (emf) equals to the rate of the change of the magnetic flux

Φ𝐡 = 𝐡𝑆 Φ𝐡 = π΅π‘†π‘π‘œπ‘ πœƒ Φ𝐡 = 0

magnetic flux πœ™ = 1 π‘Šπ‘ π‘€π‘’π‘π‘’π‘Ÿ = 1π‘‡π‘š2

Φ𝐡 = 𝐡. Ԧ𝑆Φ𝐡 = π΅π‘†π‘π‘œπ‘ πœƒ

Induced voltage

πœ€π‘–π‘›π‘‘(π‘ˆ) = βˆ’π‘‘Ξ¦π΅

𝑑𝑑

Page 15: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Lenz’s law

The magnetic field produced by an induced current always opposes any

changes in the magnetic flux. π‘ˆπ‘–π‘›π‘‘ = βˆ’π‘‘Ξ¦π΅

𝑑𝑑

Page 16: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.
Page 17: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Induced voltage, solenoid’s inductance

π‘ˆπ‘–π‘›π‘‘ = βˆ’π‘‘Ξ¦π΅

𝑑𝑑= βˆ’

𝑑𝑁𝐡𝑆

𝑑𝑑

𝐡 =π‘πœ‡0𝐼

𝑙

π‘ˆπ‘–π‘›π‘‘ = βˆ’π‘2πœ‡0𝑆

𝑙

𝑑𝐼

𝑑𝑑= βˆ’πΏ

𝑑𝐼

𝑑𝑑

L depends on the geometry of the conductor, high L – solenoids

Electric circuit with direct current (DC), I=const. β†’ magnetic flux Ξ¦=const.

emf Uind is induced only at swithching on and switching off the current

𝑆 π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“π‘ π‘–π‘›π‘”π‘™π‘’ π‘™π‘œπ‘œπ‘

Total fluxΞ¦π‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑁𝐡𝑆

Page 18: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Ξ¦ = π΅π‘†π‘π‘œπ‘ πœƒ π‘ˆ = βˆ’π‘‘Ξ¦

π‘‘π‘‘πœƒ = 𝑓(𝑑)

Page 19: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

π‘ˆπ‘šπ‘Žπ‘₯

πΌπ‘šπ‘Žπ‘₯π‘ˆπ‘ˆπ‘šπ‘Žπ‘₯

π‘ˆ πΌπ‘šπ‘Žπ‘₯

∼

Alternating current - AC (harmonic motion)

π‘ˆ = βˆ’π‘‘Ξ¦π΅

𝑑𝑑= βˆ’π΅π‘†

π‘‘π‘π‘œπ‘ πœ”π‘‘

π‘‘π‘‘πœ” = 2πœ‹π‘“π‘ˆ = π΅π‘†πœ” π‘ π‘–π‘›πœ”π‘‘ = π‘ˆπ‘šπ‘Žπ‘₯π‘ π‘–π‘›πœ”π‘‘

𝐼 =π‘ˆ

𝑅=

π‘ˆπ‘šπ‘Žπ‘₯π‘ π‘–π‘›πœ”π‘‘

𝑅= πΌπ‘šπ‘Žπ‘₯π‘ π‘–π‘›πœ”π‘‘

The voltage and the current are in phase (πœ‘ = 0).

Page 20: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

U

π‘ƒπ‘šπ‘Žπ‘₯ = π‘ˆπ‘šπ‘Žπ‘₯πΌπ‘šπ‘Žπ‘₯

Power in AC resistor circuit

𝑃 = π‘ˆπΌπ‘ƒ = π‘ˆπ‘šπ‘Žπ‘₯ sin πœ”π‘‘ πΌπ‘šπ‘Žπ‘₯ sin πœ”π‘‘π‘ƒ = π‘ˆπ‘šπ‘Žπ‘₯πΌπ‘šπ‘Žπ‘₯𝑠𝑖𝑛2(πœ”π‘‘)

Time average π‘ƒπ‘Žπ‘£ = 0

(π‘ˆπ‘Žπ‘£)2 =1

2(π‘ˆπ‘šπ‘Žπ‘₯)2

π‘ˆπ‘Ÿπ‘šπ‘  =π‘ˆπ‘šπ‘Žπ‘₯

2= 0,71π‘ˆπ‘šπ‘Žπ‘₯

(πΌπ‘Žπ‘£)2 =1

2(πΌπ‘šπ‘Žπ‘₯)2

πΌπ‘Ÿπ‘šπ‘  =πΌπ‘šπ‘Žπ‘₯

2= 0,71πΌπ‘šπ‘Žπ‘₯

π‘ƒπ‘Ÿπ‘šπ‘  =π‘ˆπ‘šπ‘Žπ‘₯

2

πΌπ‘šπ‘Žπ‘₯

2=

1

2π‘ˆπ‘šπ‘Žπ‘₯πΌπ‘šπ‘Žπ‘₯

Page 21: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

AC circuit with capacitor, capacitive reactance

∼ =

𝑄 = πΆπ‘ˆ 𝐼 =𝑑𝑄

𝑑𝑑

𝐼 = πΆπ‘‘π‘ˆ

𝑑𝑑= 𝐢

π‘‘π‘ˆπ‘šπ‘Žπ‘₯π‘ π‘–π‘›πœ”π‘‘

𝑑𝑑

𝐼 = πΆπ‘ˆπ‘šπ‘Žπ‘₯πœ” π‘π‘œπ‘ πœ”π‘‘ = πΌπ‘šπ‘Žπ‘₯π‘π‘œπ‘ πœ”π‘‘

πΌπ‘šπ‘Žπ‘₯ = 𝐢 π‘ˆπ‘šπ‘Žπ‘₯πœ”

𝑋𝐢 =π‘ˆπ‘šπ‘Žπ‘₯

πΌπ‘šπ‘Žπ‘₯=

1

πœ”πΆ=

1

2πœ‹π‘“πΆ

Page 22: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

π‘ˆ = π‘ˆπ‘šπ‘Žπ‘₯π‘ π‘–π‘›πœ”π‘‘

𝐼 = πΌπ‘šπ‘Žπ‘₯cos(πœ”π‘‘) = πΌπ‘šπ‘Žπ‘₯ sin πœ”π‘‘ + ΰ΅—πœ‹2

πœ‘ = ΰ΅—πœ‹2 = 90Β° βˆ’ π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘

π‘ˆπ‘šπ‘Žπ‘₯

U

Page 23: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

AC circuit with inductor

∼

π‘ˆ = βˆ’πΏπ‘‘πΌ

𝑑𝑑𝐼 = πΌπ‘šπ‘Žπ‘₯ sin πœ”π‘‘

π‘ˆ = βˆ’πΌπ‘šπ‘Žπ‘₯𝐿ω cos πœ”π‘‘ π‘ˆ = βˆ’π‘ˆπ‘šπ‘Žπ‘₯π‘π‘œπ‘ πœ”π‘‘

πœ‘ = βˆ’πœ‹

2= βˆ’90Β° βˆ’ π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘

π‘ˆπ‘šπ‘Žπ‘₯ = πΌπ‘šπ‘Žπ‘₯πœ”πΏ

𝑋𝐿 =π‘ˆπ‘šπ‘Žπ‘₯

πΌπ‘šπ‘Žπ‘₯= πœ”πΏ

𝑋𝐿 = 2πœ‹π‘“πΏ

U

Page 24: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

RLC circuit, Z – impedance of the circuit

𝑍 =π‘ˆ

𝐼= 𝑅2 + πœ”πΏ βˆ’

1

πœ”πΆ

2

π‘ˆπ‘… = πΌπ‘…π‘ˆπ‘…π‘–π‘› βˆ’ π‘β„Žπ‘Žπ‘ π‘’

π‘ˆπΏ = πΌπœ”πΏπ‘ˆπΏ π‘™π‘’π‘Žπ‘‘π‘  𝐼

π‘ˆπΆ = 𝐼1

πœ”πΆπ‘ˆπΆ π‘™π‘Žπ‘”π‘  𝐼

π‘ˆπ‘… π‘ˆπΏ π‘ˆπΆ

U

π‘ˆπΏ

π‘ˆπ‘…

π‘ˆπΆ

Page 25: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

π‘ˆπ‘…

π‘ˆπΆ

π‘ˆπΏ

𝑋𝑅

𝑋𝐿 βˆ’ 𝑋𝐢

π‘π‘ˆπ‘†

π‘ˆπ‘† = π‘ˆπ‘…2 + π‘ˆπΏ βˆ’ π‘ˆπΆ

2 π‘‘π‘”πœ‘ =π‘ˆπΏ βˆ’ π‘ˆπΆ

π‘ˆπ‘…

𝑍 = 𝑅2 + 𝑋𝐿 βˆ’ 𝑋𝐢2 π‘‘π‘”πœ‘ =

π‘‹πΏβˆ’π‘‹πΆ

𝑅

Page 26: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

π‘ˆπΏ = πΌπœ”πΏ

π‘ˆπ‘… = 𝐼𝑅

π‘ˆπΆ = 𝐼1

πœ”πΆ

RLC circuit - resonance

𝑍 =π‘ˆ

𝐼= 𝑅2 + πœ”πΏ βˆ’

1

πœ”πΆ

2

𝑍 = π‘π‘šπ‘–π‘› = 𝑅 β‡’ πœ”πΏ βˆ’1

πœ”πΆ= 0

Resonance condition –Thompson’s law

πœ” =1

𝐿𝐢𝑓 =

1

2πœ‹

1

𝐿𝐢

Page 27: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Power of AC circuit𝑃 = π‘ˆπΌ = π‘ˆπ‘šπ‘Žπ‘₯ sin πœ”π‘‘ + πœ‘ . πΌπ‘šπ‘Žπ‘₯ sin πœ”π‘‘

2 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽 = cos 𝛼 βˆ’ 𝛽 βˆ’ cos 𝛼 + 𝛽

𝑃 =1

2π‘ˆπ‘šπ‘Žπ‘₯. πΌπ‘šπ‘Žπ‘₯ cπ‘œπ‘  πœ”π‘‘ + πœ‘ βˆ’ πœ”π‘‘ βˆ’ cos πœ”π‘‘ + πœ‘ + πœ”π‘‘

𝑃 =1

2π‘ˆπ‘šπ‘Žπ‘₯. πΌπ‘šπ‘Žπ‘₯ cπ‘œπ‘  πœ‘ βˆ’

1

2π‘ˆπ‘šπ‘Žπ‘₯. πΌπ‘šπ‘Žπ‘₯cos 2πœ”π‘‘ + πœ‘

ഀ𝑃 =π‘ˆπ‘šπ‘Žπ‘₯

2

πΌπ‘šπ‘Žπ‘₯

2π‘π‘œπ‘ πœ‘ = π‘ˆπ‘Ÿπ‘šπ‘ πΌπ‘Ÿπ‘šπ‘ π‘π‘œπ‘ πœ‘

-1000

-500

0

500

1000

1500

0.00 0.01 0.02 0.03 0.04 0.05 0.06

P (

W)

t (s)

Page 28: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic fileds of microscopic currents

a. Orbital magnetic moment of the electrons

b. Spin of the electrons (EPR)

c. Magnetic moment of protons and neutrons – ~1000 times weaker than the magnetic moment of electrons (NMR)

Page 29: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Orbital moment 𝐿 = Τ¦π‘Ÿπ‘₯ Ԧ𝑝 = π‘šπ‘’ Τ¦π‘Ÿπ‘₯ Ԧ𝑣

Magnetic moment

Τ¦πœ‡ = βˆ’π‘”πΏπ‘’

2π‘šπ‘’πΏ πœ‡πΏπ‘§ = βˆ’π‘”πΏ

𝑒ℏ

2π‘šπ‘’π‘šπ‘™ = βˆ’π‘šπ‘™πœ‡π΅

g-factor 𝑔𝐿 = 1

Bohr magneton πœ‡ 𝐡 =𝑒ℏ

2π‘šπ‘’= 9,274015π‘₯10βˆ’24J/T

Page 30: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Spin of the electrons

πœ‡π‘  = βˆ’π‘”π‘ π‘’

π‘šπ‘’

Ԧ𝑆

πœ‡π‘†π‘§ = βˆ’π‘”π‘ 

𝑒ℏ

2π‘šπ‘’π‘šπ‘  = βˆ’2π‘šπ‘ πœ‡π΅

𝑔𝑆- g factor𝑔𝑠 = βˆ’2,0023

Page 31: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Nuclear magnetic moment

πœ‡ = 𝑔𝑒

2π‘šπ‘πΌ πœ‡π‘§ = 𝑔

𝑒ℏ

2π‘šπ‘π‘šπ‘™ = π‘”πœ‡π‘π‘šπΌ πœ‡π‘ = 5,05084π‘₯10βˆ’27𝐽/𝑇

π‘π‘Ÿπ‘œπ‘‘π‘œπ‘› 𝑔 = 5,5856947

Page 32: Lecture 9 - uniba.sk...Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Summary𝐡 = πœ‡0πœ‡π‘Ÿπ»

𝐹 = π‘žπΈ + π‘žπ‘£π‘₯𝐡

π‘Ÿ =π‘š

π‘ž

2π‘ˆ

𝐡2

straight conductor

𝐡 =πœ‡0𝐼𝑒𝑛𝑐𝑙.

2πœ‹π‘ŸπΉπ‘– = 𝐼𝑖 𝑙𝑖 𝐡 𝑗

𝐹 =πœ‡0𝐼1𝐼2𝑙

2πœ‹π‘ŸLoop

𝐡 =πœ‡0𝐼

2𝑅Solenoid

π΅π‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘ =π‘πœ‡ 0𝐼

πΏπ‘ π‘œπ‘™π‘’π‘›π‘œπ‘–π‘‘

Φ𝐡 = π΅π‘†π‘π‘œπ‘ πœƒ

πœ€π‘–π‘›π‘‘(π‘ˆ) = βˆ’π‘‘Ξ¦π΅

𝑑𝑑

π‘ˆπ‘–π‘›π‘‘ = βˆ’πΏπ‘‘πΌ

𝑑𝑑

𝑋𝐢 =1

πœ”πΆ=

1

2πœ‹π‘“πΆ

𝑋𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ

𝑍 = 𝑅2 + πœ”πΏ βˆ’1

πœ”πΆ

2

π‘‘π‘”πœ‘ =𝑋𝐿 βˆ’ 𝑋𝐢

𝑅

πœ” =1

𝐿𝐢𝑓 =

1

2πœ‹

1

𝐿𝐢

ഀ𝑃 = π‘ˆπ‘Ÿπ‘šπ‘ πΌπ‘Ÿπ‘šπ‘ π‘π‘œπ‘ πœ‘


Recommended