+ All Categories
Home > Documents > Lecture Demos in Physics I

Lecture Demos in Physics I

Date post: 03-Jan-2017
Category:
Upload: nguyendan
View: 213 times
Download: 0 times
Share this document with a friend
29
Department of Physics and Astronomy University of Missouri Yun Zhang It is hard to overemphasize the importance of practical demonstrations for a true and deep understanding of physics. While it is of course very important to understand the fundamental laws and relationships of physics in their theoretical aspects, perhaps nothing like a practical demonstration can bring them to life for a student of physics. Practical demonstrations of the laws of physics make clear to students the power of physics to systematize the seemingly random phenomena, and the power of our own mind to make sense of them.
Transcript
Page 1: Lecture Demos in Physics I

 Department  of  Physics  and  Astronomy  

University  of  Missouri  Yun  Zhang  

 It is hard to overemphasize the importance of practical demonstrations for

a true and deep understanding of physics. While it is of course very

important to understand the fundamental laws and relationships of physics

in their theoretical aspects, perhaps nothing like a practical demonstration

can bring them to life for a student of physics. Practical demonstrations of

the laws of physics make clear to students the power of physics to

systematize the seemingly random phenomena, and the power of our own

mind to make sense of them.

         

Page 2: Lecture Demos in Physics I

i

Part  1:  Mechanics  .......................................................................................................................  1  1.   Projectile  Motion:  Shoot  the  Monkey  ............................................................................................  1  2.   Centripetal  Force:  Pail  of  Water  .....................................................................................................  2  3.   Newton’s  Laws  and  Conservation  of  Momentum:  Skateboard  .......................................................  2  4.   Elastic  Collision  Between  Equal  Masses:  Newton’s  Cradle  ..............................................................  3  5.   Elastic  Collision  Between  Unequal  Masses:  Astroblaster/Collision  between  a  basketball  and  a  bouncy  ball  ...........................................................................................................................................  3  6.   Center  of  Mass:  Flying  Balancing  Bird  ............................................................................................  4  7.   Center  of  Gravity:  One  Bottle  Wine  Holder  ....................................................................................  4  8.   Center  of  gravity:  An  Arbitrary  Shape  ............................................................................................  5  9.   Bicycle  Wheel  Gyroscopic  Precession  .............................................................................................  5  10.   Toy  Gyroscope  .............................................................................................................................  6  11.   Gyroscopic  Precession:  Varying  the  Magnitude  of  the  Torque  .....................................................  7  12.   Moment  of  inertia  and  Angular  Momentum:    Rotating  Stool  and  Dumbbells  ...............................  7  13.   Angular  momentum:  Bicycle  Wheel  and  Rotating  Stool  or  platform  ............................................  8  14.   Moment  of  Inertia:  Race  Between  a  Solid  Cylinder  and  a  Hollow  One  ..........................................  8  15.   Moving  Spool  ..............................................................................................................................  9  16.   Coupled  Pendulum  ....................................................................................................................  10  17.   Coupled  Harmonic  Oscillators  –  Air  Track  ..................................................................................  11  

Part  2:  Fluids  ..............................................................................................................................  12  1.   Bed  of  Nails  .................................................................................................................................  12  2.   Water  Seeks  Its  Own  Level  (Pressure  in  a  Fluid)  ...........................................................................  12  3.   Bernoulli’s  Principle  1:  One  Sheet  of  Paper  ..................................................................................  13  4.   Bernoulli’s  Principle  2:  Two  Sheets  of  Paper  ................................................................................  13  5.   Bernoulli’s  Principle  3:  Ball  in  the  Air  ...........................................................................................  13  

Part  3:  Waves  and  Sound  ...........................................................................................................  14  1.   Long  Slinky:  Longitudinal  and  Transverse  Waves.  .........................................................................  14  2.   Sound  pipe  ..................................................................................................................................  14  3.   Sound  Tube  .................................................................................................................................  15  4.   Organ  Pipes:  Pitch  vs.  Length  .......................................................................................................  15  5.   Hearing  and  Seeing  Sound  Waves  ................................................................................................  16  6.   Tuning  Forks:  Resonance  .............................................................................................................  16  7.   Tuning  Forks:  Beats  ......................................................................................................................  17  8.   Standing  Sound  Waves  in  a  Pipe  ..................................................................................................  17  9.   Wave  Interference  .......................................................................................................................  18  10.   Doppler  Effect  ...........................................................................................................................  18  

Part  4.  Other  Demos  ..................................................................................................................  19  1.   Liquid  Nitrogen  Demonstrations  ..................................................................................................  19  2.   Liquid  Nitrogen  Ice  Cream  ............................................................................................................  19  3.   Falling  dollar  bills  .........................................................................................................................  20  4.   Projectile  Motion  (Zero  Launch  Angle)  .........................................................................................  20  5.   Inertia  ..........................................................................................................................................  20  6.   A  Large  Vertical  Force  Table  .........................................................................................................  21  7.   Friction  ........................................................................................................................................  21  8.   Centripetal  Force  .........................................................................................................................  21  9.   Centrifugal  Bulge  .........................................................................................................................  21  10.   Stacking  Meter  Sticks  ................................................................................................................  22  11.   Moment  of  Inertia  Rotator  ........................................................................................................  22  

Page 3: Lecture Demos in Physics I

ii

12.   Race  Between  Three  Identical  Balls  ...........................................................................................  22  13.   Pendulums  with  Different  Masses  .............................................................................................  23  14.   Buoyant  Force  ...........................................................................................................................  23  15.   Metal  Ball  in  a  Ring  ....................................................................................................................  23  16.   Thermal  Conductivity  1:  Conductometer  ...................................................................................  24  17.   Thermal  conductivity  2:  Conductivity  Spider  ..............................................................................  24  18.   Radiometer  ...............................................................................................................................  24  19.   Longitudinal  Wave  Apparatus  ....................................................................................................  25  20.   Singing  Rods  1:  Sound  Waves  ....................................................................................................  25  21.   Singing  Rods  2:  Standing  Waves  ................................................................................................  25  22.   Rhythm  .....................................................................................................................................  26  

 

Page 4: Lecture Demos in Physics I

1

Part  1:  Mechanics  

1. Projectile  Motion:  Shoot  the  Monkey    

A  ball  (monkey)  is  attached  to  a  free  fall  mechanism,  and  another  ball  (bullet)  is  aimed  at  the  Monkey.  The  Monkey  and  the  ball  are  released  simultaneously  and  they  collide  in  air.  

Description: This is one of the classic physics demonstrations, one not to be missed. For best results, the gun should be tightly clamped to the table. Carefully aim the gun (by looking through the small hole on the end of the trigger) directly at the monkey. Tighten the screw that controls the angle of the gun. A practice shot is always a good idea, to make sure the gun is on target; just be careful not to move the gun when firing or re-loading. When loading the ball (bullet) into the barrel of the gun, pull the trigger all the way to the back and insert the bullet ball into the barrel. When the trigger is released, the bullet ball is fired and simultaneously the target ball is released for a free fall motion.

The target ball is held by an electromagnet. If the D cell battery powering the electromagnet is weak, the target will not hold.

Discussion: The bullet is initially aimed exactly at the monkey. Both the monkey and the bullet fall under the influence of gravity, and the vertical motion of the bullet is completely independent from the horizontal motion. When the bullet passes the vertical line of the monkey, its height is below the

Page 5: Lecture Demos in Physics I

2

initial height of the monkey by the same amount that the monkey falls through. Therefore, the bullet hits the monkey.

2. Centripetal  Force:  Pail  of  Water  

A  small  pail  is  partially  filled  with  water  and  then  swung  (quickly)  around  a  vertical  circle  without  the  water  spilling.  One  can  surreptitiously  exchange  the  water  with  confetti.  

Discussion: According to Newton's first law of motion, objects in motion tend to remain in motion unless acted upon by an external force. In this case, Newton's law requires the water to continue moving along a tangent to the circle. Thus a force is required to keep it always turning toward the center of the circle. The motion of the water in this demo is similar to that of the motorcycle in the figures. At the top of the circle, apply Newton’s second law:

rv

mmgFN2

=+ . If the water maintains a sufficient speed at the top of the circle, the normal

force between the water and the pail will be positive, meaning water is in contact with the pail, and not spilling.  

 

3. Newton’s  Laws  and  Conservation  of  Momentum:  Skateboard    

Have  two  students  (of  unequal  masses)  sit  facing  each  other  on  skateboards,  approximately  3  m  apart.  Place  a  rope  in  their  hands.  Tell  them  to  pull  on  their  ends  of  the  rope.  Ask  the  class  which  person  is  exerting  more  force.  Both  students  will  accelerate  toward  each  other.  

 Discussion: The  two  forces  exerted  by  the  two  students  on  each  other  form  an  “action-­‐reaction”  pair,  and  thus  are  equal  in  magnitude  and  opposite  in  direction.  However,  since  the  two  students  have  unequal  masses,  the  forces  of  the  same  magnitude  cause  accelerations  of  different  magnitudes,  with  the  larger  mass  having  the  smaller  magnitude  of  acceleration.  As  a  result  the  two  students  have  difference  speeds,  with  the  larger  mass  having  smaller  speed.    

 

Page 6: Lecture Demos in Physics I

3

This  demonstration  can  also  be  understood  from  the  conservation  of  momentum.  The  two  students  form  a  system.  The  initial  total  momentum  of  the  system  is  zero,  since  both  students  are  at  rest.  The  final  total  momentum  of  the  system  must  also  be  zero:                                                                              .  The  final  velocities  of  the  two  students  will  be  in  opposite  directions  and  the  larger  mass  will  have  the  smaller  magnitude  of  velocity  (speed).  

4. Elastic  Collision  Between  Equal  Masses:  Newton’s  Cradle    

If  one  ball  is  lifted  from  a  certain  height  (while  all  the  other  balls  are  at  rest)  and  released,  it  will  stop  at  the  vertical  position  and  the  ball  one  the  opposite  side  will  rise  to  the  same  height.  

Discussion:  The  collision  between  two  steel  balls  is  close  to  an  elastic  collision,  in  which  both  the  total  linear  momentum  and  the  total  kinetic  energy  are  conserved.  If  the  two  balls  have  the  same  mass,  and  the  target  ball  is  stationary,  after  the  collision  the  two  balls  exchange  their  motions.  Such  motion  exchange  occurs  in  the  four  successive  collisions,  and  the  last  ball  attains  the  speed  of  the  first  ball  right  before  the  first  collision.  With  this  speed  the  last  ball  rises  to  the  initial  height  of  the  first  ball.  

     

5. Elastic  Collision  Between  Unequal  Masses:  Astroblaster/Collision  between  a  basketball  and  a  bouncy  ball    

When  the  Astroblaster  is  dropped  so  the  large  ball  hits  the  ground  first,  with  the  other  balls  stacked  vertically  on  top,  momentum  is  transferred  along  the  chain  of  balls  to  the  small  one  on  top,  causing  it  to  rise  to  a  much  larger  height  than  the  height  from  which  the  Astroblaster  was  originally  dropped.      The  small  red  ball  on  top  is  easy  to  lose,  so  please  try  to  keep  track  of  it.  Some  practice  shots  should  also  be  carried  out  

before  doing  this  in  front  of  an  audience,  too.    

A  variation  of  this  demo  is  the  collision  between  a  basketball  and  a  bouncy  ball:  put  the  bouncy  ball  at  the  

02211 =+= fff vmvmp

Page 7: Lecture Demos in Physics I

4

center  on  the  top  of  the  basketball,  and  drop  them  from  some  height.  The  bouncy  ball  rises  to  a  height  much  larger  than  the  initial  height.        

 Discussion:  In  a  one-­‐dimensional  elastic  collision  between  two  objects  (of  unequal  masses)  that  are  initially  traveling  with  equal  speeds  in  opposite  directions,  the  smaller  object  will  have  more  kinetic  energy  after  the  collision  than  before.  

6. Center  of  Mass:  Flying  Balancing  Bird    

The  bird  can  be  balanced  on  the  tip  of  its  beak.      The  center  of  mass  of  the  bird  is  located  at  the  beak.  

 

7. Center  of  Gravity:  One  Bottle  Wine  Holder      The  center  of  gravity  of  the  system  (bottle  plus  holder)  is  directly  over  the  support  point.          

         

   

Page 8: Lecture Demos in Physics I

5

 

8. Center  of  gravity:  An  Arbitrary  Shape      A  plastic  board  of  an  arbitrary  shape  can  be  suspended  from  several  different  pivot  points.  On  each  suspension,  use  the  included  axle  to  draw  a  straight  line  on  the  board.  The  intersection  of  such  straight  lines  is  the  location  of  the  center  of  gravity.  

 Discussion:  At  each  suspension,  when  the  object  is  in  equilibrium,  the  center  of  gravity  must  be  directly  below  the  suspension  point.  To  see  why,  note  that  when  the  center  of  gravity  is  directly  below  the  suspension  point,  the  torque  due  to  gravity  is  zero,  since  the  force  of  gravity  extends  right  through  the  axis  of  rotation.    

                 

 

9. Bicycle  Wheel  Gyroscopic  Precession    A  bicycle  wheel  fitted  with  handles  is  spun  with  its  axle  horizontal  and  is  held  with  a  string  tied  to  one  end  of  the  handle.  The  string  permits  the  spinning  bicycle  wheel  to  precess.    

 Discussion:    The  bottom  figure  shows  the  direction  of  the  angular  

momentum  !  (right-­‐hand  rule),  which  is  perpendicular  to  the  wheel  (along  the  axle  /handle).  Gravity  produces  a  torque  perpendicular  to  both  the  axle  of  the  wheel  and  the  vertical.    According  to  Newton’s  second  law  for  rotation,  ! = !!

!",  this  torque  

causes  the  change  in  angular  momentum.  Since  this  torque  !  is  perpendicular  to  !  ,  it  changes  only  the  direction  of    !  ,  but  not  the  magnitude.  This  results  in  the  horizontal  precession.    

On  a  less  abstract  level,  the  precession  can  be  explained  in  terms  of  the  downward  pull  of  gravity  that  tries  to  make  the  wheel  rotate  faster  at  the  bottom  than  at  the  top.  Since  the  wheel  is  rigid,  

ω

Page 9: Lecture Demos in Physics I

6

this  can  happen  only  if  the  wheel  moves  horizontally  in  the  direction  in  which  the  bottom  of  the  wheel  is  spinning.      Note  that  the  precessional  frequency  !!  is  inversely  proportional  to  the  frequency  at  which  the  wheel  is  spinning!:  !! =

!!"  ,  where   !  

is  the  magnitude  of  the  torque  produced  by  gravity,  and  I  is  the  moment  of  inertia  of  the  wheel.  This  fact  can  be  illustrated  by  observing  carefully  the  precession  as  the  spin  of  the  wheel  slows  down.        The  kinetic  energy  associated  with  the  precession  has  to  come  from  somewhere.  It  comes  from  the  gravitational  potential  energy  of  the  gyroscope  itself.  When  the  gyroscope  is  released  from  an  initial  fixed  horizontal  position,  it  starts  to  fall  in  the  usual  manner.  This  falling  motion  rapidly  transforms  into  precession,  with  the  center-­‐of-­‐mass  slightly  lower  than  it  was  initially.  Actually,  as  it  falls,  it  overshoots  its  equilibrium  position  slightly  and  oscillates  up  and  down  about  this  equilibrium,  resulting  in  nutation.  The  nutation  usually  damps  out  rather  quickly,  but  it  can  be  excited  by  a  rapid  upward  or  downward  jerk  on  the  free  end  of  the  axle  of  the  gyroscope.  If  there  is  friction  acting  to  retard  the  precession,  the  center-­‐of-­‐mass  gradually  falls  until  eventually  the  wheel  hangs  straight  down.    

10. Toy  Gyroscope    

The  toy  gyroscope  can  be  balanced  on  the  pedestal  provided  or  on  the  tip  of  a  finger.  The  gyroscope  precesses  and  begins  to  lower  from  a  vertical  place  to  a  horizontal  plane  as  it  slows  down  (due  to  friction).    

 A string is used to spin the gyroscope rapidly. Hold the frame firmly in your hand. Thread the string through the small hole near the top of the spindle. Turning the wheel, carefully let the string wind around the spindle – from hole to hub and back again. Be sure to keep the winding as smooth and tight as possible, and be sure to keep the winding between the hole and the hub. To create the rapid spin, pull the string away from the gyroscope with a quick, strong motion.

   

Page 10: Lecture Demos in Physics I

7

11. Gyroscopic  Precession:  Varying  the  Magnitude  of  the  Torque      This  demo  utilizes  a  motor  driven  gyroscope.  It  illustrates  precession  by  hanging  slotted  masses  on  the  end  of  its  axle.    The  precessional  requency  !!  is  proportional  to  the  magnitude  of  the  torque  !  produced  by  gravity.  Increasing  the  hanging  slotted  mass  increases  the  precessional  frequency.        

     

12. Moment  of  inertia  and  Angular  Momentum:    Rotating  Stool  and  Dumbbells    

A  demonstrator  sits  on  a  rotating  stool  with  arms  stretched  and  each  hand  holds  a  dumbbell.  The  demonstrator  is  spun  by  a  volunteer  and  then  brings  the  dumbbells  to  chest.  This  will  reduce  the  moment  of  inertia  and  increase  the  angular  velocity.  

Page 11: Lecture Demos in Physics I

8

HAZARDS:  Dizziness  can  be  induced  by  the  rotating  stool.  A  pause  of  a  few  moments  to  regain  equilibrium  before  getting  off  is  recommended.    

Discussion:  The  person  and  the  stool  rotate  together,  and  can  be  treated  as  a  single  object.  The  conservation  of  angular  momentum  for  a  single-­‐object  system  is  expressed  as:    !!!! = !!!! .    

 

13. Angular  momentum:  Bicycle  Wheel  and  Rotating  Stool  or  platform  

A  demonstrator  sits  on  a  rotating  stool  (or  stands  on  a  rotating  platform)  and  holds  a  bicycle  wheel  fitted  with  handles.  The  bicycle  wheel  is  spun  by  a  volunteer  and  the  demonstrator  slowly  flips  the  wheel  180  degrees.  The  demonstrator  will  then  turn  on  the  stool  (or  the  platform),  in  the  same  direction  as  the  bicycle  wheel’s  INITIAL  spin.    Discussion:  The  system  consists  of  the  demonstrator,  the  stool  and  the  bicycle  wheel.  Initially  the  total  angular  momentum  of  the  system  comes  entirely  from  the  spinning  wheel.  !! = !!,!!!!" .  

As  the  wheel  is  inverted,  !!,!!!!"  = −!!,!!!!" .  The  demonstrator  applies  a  torque  to  the  wheel,  but  this  torque  is  internal  to  the  system.  No  external  torque  is  acting  on  the  system  about  the  vertical  axis.  Therefore,  the  total  angular  momentum  of  the  system  is  conserved.  !! = !!.  

!! = !!,!"#$%&!!"##$+!!,!!!!"  = !!,!!!!" ,                                    !!,!"#$%&!!"##$−!!,!!!!"  = !!,!!!!"    

                                                                                                                 !!,!"#$%&!!"##$  = 2!!,!!!!"  

14. Moment  of  Inertia:  Race  Between  a  Solid  Cylinder  and  a  Hollow  One  

A  solid  cylinder  and  a  hollow  cylinder  with  the  same  radius  are  placed  at  the  same  height  at  the  top  of  a  long  incline  and  are  released  at  the  same  time.  The  solid  cylinder  reaches  the  bottom  first.    

Use  carton  boxes  to  catch  the  cylinders  to  avoid  the  cylinders’  hitting  the  floor.    

Discussion:  As  the  cylinders  roll  down  the  incline  without  slipping,  total  mechanical  energy  is  conserved  (since  the  frictional  force  is  static,  and  hence  does  no  work),  while  gravitational  potential  energy  is  converted  to  kinetic  energy.  Kinetic  energy  is  the  sum  of  the  translational  kinetic  energy  and  the  rotational  kinetic  energy.  The  two  cylinders  have  different  moments  of  inertia,  !!!""!# = !!!  ,  !!"#$% = !

!!!!.  For  the  hollow  cylinder,  a  

larger  portion  of  the  kinetic  energy  is  rotational  since  its  moment  of  inertia  is  larger,  and  

Page 12: Lecture Demos in Physics I

9

hence  less  kinetic  energy  is  for  the  translational  motion.  As  a  result,  the  hollow  cylinder  rolls  down  more  slowly  and  loses  the  race.  In  a  rolling  motion,  

       

 Apply  conservation  of  mechanical  energy:      

15. Moving  Spool  

A  large  wooden  spool  (or  yo-­‐yo)  with  a  string  wound  around  it  from  below  can  be  made  to  move  either  in  the  direction  in  which  the  string  is  pulled  or  in  the  opposite  direction  depending  upon  the  angle  of  the  string  with  respect  to  the  horizontal.    

The  demonstration  is  effectively  introduced  by  asking  the  audience  to  predict  whether  the  spool  will  move  forward  or  backward  when  the  string  is  pulled.  Whichever  way  the  majority  of  the  audience  votes,  the  spool  can  be  made  to  go  the  opposite  direction  by  pulling  the  string  at  the  appropriate  angle.  A  small  angle  (theta)  between  the  string  and  the  horizontal  will  make  the  spool  move  in  the  direction  of  the  pull,  and  a  large  (theta)  will  make  the  spool  move  away  from  the  pull.  A  change  in  angle  so  small  that  the  audience  does  not  notice  reverses  the  direction.  The  behavior  of  the  spool  is  quite  mysterious.        

22

21

21 ωImvKE +=

22

21

21

⎟⎠⎞⎜

⎝⎛+=RvImv 2

222 )(

21

21 mv

RvmRmvKEHollow =⎟⎠⎞⎜

⎝⎛+=

22

22

43)

21(

21

21 mv

RvmRmvKEsolid =⎟⎠⎞⎜

⎝⎛+=

KEmgh =0

0ghvhollow = 034 ghvsolid =<

Page 13: Lecture Demos in Physics I

10

Discussion:  The  explanation  involves  a  consideration  of  the  forces  and  torques  on  the  spool  (see  the  top  diagram).  It  is  easiest  to  consider  the  case  where  the  string  is  pulled  with  a  force  and  at  an  angle  such  that  the  spool  is  just  on  the  verge  of  slipping  without  rolling.    

There  are  four  forces:  the  weight  (mg),  the  upward  normal  force  of  the  table  (N),  the  tension  in  the  string  (T)  and  the  friction  force  (µN).    In  the  vertical  direction,  net  force  =  0,                    !"#$%+! =!"                              ! =!"− !"#$%      (1)  If  the  spool  is  not  yet  moving,  the  net  horizontal  force  is  zero,  or    !"#$!! = !".            (2)  Only  two  of  the  forces  produce  a  torque  about  the  center  of  the  spool  (T  and  µN),  and  these  torques  must  be  equal  and  opposite  if  the  spool  is  to  slip  rather  than  rotate.  Equating  the  torques  gives  !!! = !!!".  (3)  

Dividing  equation  (3)  into  equation  (2)  gives  !"#!! =!!!!.      

Thus  the  critical  angle  that  determines  which  way  the  spool  will  rotate  depends  only  of  the  ratio  of  the  two  radii  and  is  independent  of  the  mass  of  the  spool,  the  tension  in  the  string  and  the  coefficient  of  friction.  With  calipers  and  a  protractor,  one  can  verify  the  predicted  critical  angle.    

If  the  actual  angle  ! < !!,  it  is  possible  that  the  net  horizontal  force  is  to  the  right  while  the  net  torque  is  clockwise.  Likewise,  If  the  actual  angle  ! > !!,  it  is  possible  that  the  net  horizontal  force  is  to  the  left  while  the  net  torque  is  counterclockwise.  

16. Coupled  Pendulum    

Two  identical  pendulums  are  hanged  over  the  same  horizontally  stretched  string.  The  coupled  pendulums  transfer  energy  to  each  other  through  the  thin  string  that  couples  them.  This  setup  allows  introducing  resonance  and  the  normal  modes  of  oscillation.    

Resonance:  Both  pendulums  are  brought  to  rest.  One  then  starts  one  pendulum  swinging.  After  a  while,  the  first  pendulum  will  stop  swinging,  and  the  other  will  be  swinging  with  a  large  amplitude.  Then  the  first  will  slowly  begin  swinging  again  while  the  second  comes  to  rest  and  so  forth  until  the  energy  is  damped  away  through  friction.  

Page 14: Lecture Demos in Physics I

11

Normal  modes  of  two  coupled  pendulums:  

Instead  of  using  the  two  individual  angular  coordinates  (!!  !"#  !!)  to  describe  the  motion  of  the  system,  introduce  two  new  coordinates:  the  center  of  mass  !!"  (!!" = !!!!!

!),  and  

the  relative  coordinate    !!  (!! = !! − !!).  These  two  new  coordinates  are  in  oscillations,  and  are  independent  from  one  another,  and  are  hence  called  “normal”  modes.  This  property  makes  it  possible  to  “energize”  only  one  of  the  two  modes,  keeping  the  other  one  still.      To  “energize”  the  center  of  mass  mode,  the  two  pendulums  must  be  released  from  the  same  height  and  from  the  same  side  (to  keep  the  relative  coordinate  constant).      To  “energize”  the  relative  mode,  the  two  pendulums  must  be  released  from  the  same  height  but  from  the  opposite  sides  (to  keep  the  center  of  mass  still).      

17. Coupled  Harmonic  Oscillators  –  Air  Track    

Up  to  5  air-­‐track  gliders  are  coupled  with  springs  and  mounted  on  an  air  track  to  investigate  normal  modes  of  oscillation.  

 For two coupled harmonic Oscillators, the discussion is similar to the Coupled Pendulum.

 

   

Page 15: Lecture Demos in Physics I

12

Part  2:  Fluids  

1. Bed  of  Nails  

This  demonstration  is  very  useful  to  introduce  the  concept  of  pressure.      If  a  person  is  to  lie  down  on  the  nail  bed,  cautions  must  be  taken:  (1) The  tips  of  the  nails  must  be  even.    (2) The  person  must  be  lowered  carefully,  slowly,  and  evenly  to  ensure  the  person  makes  

simultaneous  contact  with  a  large  number  of  nails,       Discussion:  pressure  is  defined  as  magnitude  of  the  force  /  the  area  in  which  the  force  is  applied.  When  the  person  makes  simultaneous  contact  with  a  large  number  of  nails,  his  weight  is  spread  over  a  large  area,  thus  reducing  the  pressure  each  nail  exerts  on  his  skin.      

                 

2. Water  Seeks  Its  Own  Level  (Pressure  in  a  Fluid)    

Several  tubes  of  different  shapes  and  sizes  are  connected  to  a  common  reservoir  filled  with  water.  It  is  observed  that  the  heights  of  the  water  are  the  same  in  all  of  the  tubes.  

Discussion:  Pressure  in  a  fluid  varies  with  the  depth  (vertical  height).  Pressure  at  the  surface  is  the  same  in  all  the  tubes.  The  tubes  are  connected  at  the  bottom.  In  equilibrium  the  pressure  at  the  bottom  must  be  the  same  everywhere.  Therefore,  the  vertical  height  of  the  fluid  in  all  the  tubeds  must  be  the  same,  regardless  of  the  shape  and  the  cross-­‐sectional  area  of  the  tubes.    

 

Page 16: Lecture Demos in Physics I

13

3. Bernoulli’s  Principle  1:  One  Sheet  of  Paper  

Hold  a  piece  of  paper  by  its  end,  it  will  bend  downward.  Blowing  across  the  top  of  the  paper  reduces  the  pressure  there,  resulting  in  a  net  upward  force  which  lifts  the  paper  to  a  nearly  horizontal  position.  

 Discussion:  In  the  region  where  a  fluid  flows  faster,  the  fluid  pressure  is  reduced.    Blowing  the  air  above  the  sheet  of  paper  makes  the  air  pressure  above  the  sheet  lower  than  that  below  the  sheet.  This  pressure  difference  results  in  a  net  upward  force  on  the  sheet.      

4. Bernoulli’s  Principle  2:  Two  Sheets  of  Paper    

Hold  two  sheets  of  paper  facing  each  other  vertically.  Blowing  in  the  middle  between  the  two  sheets  reduces  the  pressure  there,  causing  the  two  sheets  moving  toward  each  other.    

             

5. Bernoulli’s  Principle  3:  Ball  in  the  Air  

A  large  beach  ball  filled  with  air  is  suspended  in  the  output  stream  of  a  leaf  blower.    A  ping  pong  ball  floats  above  the  nozzle  of  a  hair  dryer.    

Discussion:  The  viscous  force  of  air  balances  the  weight,  and  the  lower  pressure  in  the  jet  keeps  the  object  trapped  in  the  air-­‐stream.  If  the  ball  makes  a  lateral  displacement,  the  higher  pressure  at  the  outside  due  to  stationary  air  will  push  the  ball  back  toward  the  jet  stream.            

   

Lower pressure

higher pressure

Page 17: Lecture Demos in Physics I

14

Part  3:  Waves  and  Sound  

1. Long  Slinky:  Longitudinal  and  Transverse  Waves.  A  longitudinal  wave  on  a  slinky:    

   A  transverse  wave  on  a  slinky:  

       

2. Sound  pipe  

A  metal  pipe  is  used  as  resonant  acoustical  open  tube  that  generates  its  sound  from  the  noise  generated  by  convection  currents.  A  piece  of  metal  gauze  is  inserted  into  the  pipe  near  one  end.  The  metal  gauze  is  heated  to  red  hot  using  a  burner  and  the  burner  is  then  removed.    If  the  pipe  is  held  vertically,  the  convection  currents  created  in  the  pipe  by  the  air  heated  by  the  hot  gauze  create  a  noise  spectrum  that  leads  to  a  sound  resonance  in  the  pipe.    The  pipe  is  then  tipped  to  a  horizontal  orientation,  causing  the  convection  currents  to  stop  and  the  pipe  will  no  longer  make  any  sound.  

       

Page 18: Lecture Demos in Physics I

15

3. Sound  Tube  

A  long  corrugated  plastic  tube,  open  on  both  ends,  is  twirled  around  in  a  circle.  The  fundamental  and  several  harmonics  may  be  excited  by  twirling  it  at  various  speeds.  

                                                       

Discussion:  A  tube  open  at  both  ends  resonates  at  certain  frequencies.  These  frequencies  are  the  ones  where  an  integer  number  of  half-­‐wavelengths  fit  inside  the  tube.  At  the  fundamental  frequency,  one  half  of  the  wavelength  fits  the  tube.    

A  tube  with  a  length  L  =  0.66  m  has  a  1.32m  wavelength  at  resonance  (! = 2!).  Frequency  = !

!= !

!!  ,  where  v  is  the  speed  of  sound  in  air,  v  =  343  m/s  in  regular  air  conditions.  The  

calculated  fundamental  frequency  is  260  Hz.  This  tube  resonates  to  integer  multiples  of    260  Hz.    

Note  the  fundamental  frequency  is  not  heard  (explained  below).    The  notes  with  medium  frequencies  are  easily  obtainable.  Higher  frequencies  require  faster  twirling.    

The  frequency  of  the  twirling  tube  is  proportional  to  the  speed  of  the  air  flowing  through  the  tube,  which  is  proportional  to  the  speed  of  the  rotating  end  (in  a  rotation,  tangential  speed  of  a  point    = !" = !(2!")).    The  air  flowing  over  the  corrugations  causes  vortices  which  cause  oscillating  pressures  in  the  air,  heard  as  a  whistle.  When  the  frequency  of  the  vortex  matches  one  of  the  natural  frequencies  of  the  tube,  the  volume  of  the  sound  is  greatly  amplified.  At  low  speeds,  the  air  flowing  through  the  tube  is  a  smooth  flow  causing  no  vortices,  and  thus  the  fundamental  frequency  does  not  sound.      

   

4. Organ  Pipes:  Pitch  vs.  Length  

Wooden  organ  pipes  of  different  lengths  are  used  to  demonstrate  the  relationship  of  pitch  to  length.  The  fundamental  frequencies  of  pipes  open  at  both  ends  ! = !

!= !

!!.    The  longer  the  pipe,  the  lower  the  pitch.    

   

Page 19: Lecture Demos in Physics I

16

5. Hearing  and  Seeing  Sound  Waves  A  microphone  is  connected  to  an  oscilloscope.  The  microphone  picks  up  sound  signals,  converts  them  into  electric  signals  and  the  waveforms  are  displayed  on  the  oscilloscope.    Sound  sources:  human  voices  (shown  in  the  bottom  picture),  or  two  speakers  driven  by  a  function  generator.                      

6. Tuning  Forks:  Resonance  

This  demonstration  utilizes  two  identical  tuning  forks  that  are  mounted  on  hollow  wooden  boxes  that  are  open  at  both  ends.  The  boxed  are  lined  up  with  the  open  ends  facing  each  other  and  one  of  the  tuning  forks  is  struck.  The  other  tuning  fork  will  then  begin  vibrating  in  resonance,  and  can  be  heard  by  stopping  the  vibration  of  the  struck  tuning  fork.    Two  identical  tuning  forks  are  mounted  on  wooden  resonance  boxes.  One  of  the  tuning  forks  is  excited  and  immediately  dampened.  The  second  tuning  fork  will  resonate  in  sympathy  with  the  first.    

         

Page 20: Lecture Demos in Physics I

17

7. Tuning  Forks:  Beats  

In  this  demonstration  two  identical  tuning  forks,  one  with  tines,  are  excited  using  a  mallet.  The  tines  on  one  are  adjusted  so  as  to  produce  beats.  

8. Standing  Sound  Waves  in  a  Pipe  

This  demonstration  utilizes  a  metal  pipe,  about  1  m  in  length,  and  6  cm  in  diameter,  on  top  of  which  are  a  line  of  tiny  holes.  One  end  of  the  pipe  is  connected  to  a  natural  gas  source,  and  the  other  end  is  connected  to  a  function  generator.  The  gas  is  sent  through  the  pipe  and  lit  above  the  tiny  holes,  and  the  frequency  of  the  function  generator  is  changed  continuously  so  as  to  find  resonance  frequencies.  The  nodes  (low  flames  in  the  regions  of  rarefaction)  and  antinodes  (high  flames  in  the  regions  of  condensation)  are  clearly  visible  to  a  large  audience.  The  pitch  of  the  sound  waves  is  also  clearly  heard  by  the  audience.      

 

           

Page 21: Lecture Demos in Physics I

18

9. Wave  Interference  

In  this  demonstration  a  model  is  used  to  show  how  two  sine  waves  combine.  The  model  consists  of  a  combination  of  colored  beads  and  tubes,  is  supported  on  steel  rods  in  a  free-­‐standing  wood  frame.  The  model  shows  a  sine  wave  (basic  wave)  extending  over  2  -­‐  ½  wavelengths.  Two  separate  acrylic  sine  wave  profiles  with  different  characteristics  slide  into  the  model  and  combine  with  the  basic  wave.  The  larger  profile  has  a  wavelength  and  amplitude  identical  to  the  basic  wave,  whereas  the  smaller  profile  has  twice  the  frequency  and  half  the  amplitude  of  the  basic  wave.  

     

   

10. Doppler  Effect    

Five  inch  foam  ball  has  a  battery-­‐powered  buzzer  inside.  Start  the  buzzer  and  play  catch,  Throw  it  fast  enough  and  student  can  hear  the  frequency  shift.  Attach  a  string  to  swing  the  ball  in  a  circle.        

 

 

 

 

Constructive Interference: Destructive Interference:

Page 22: Lecture Demos in Physics I

19

Part  4.  Other  Demos  

1. Liquid  Nitrogen  Demonstrations    

A  racket  ball,  a  banana,  a  balloon  are  put  into  liquid  nitrogen.  The  racket  ball  becomes  brittle  and  it  shatters  if  dropped  on  the  floor.  The  banana  is  hardened  and  can  be  used  as  a  hammer  to  drive  a  nail  into  a  wooden  board.  The  balloon  shrinks  when  cooled  and  expands  after  being  taken  out  of  the  liquid  nitrogen.      

 

2. Liquid  Nitrogen  Ice  Cream  If  you  have  access  to  liquid  nitrogen  and  the  proper  safety  equipment  and  training,  try  this  

in  place  of  your  normal  cryogenics  demonstration!  

Ingredients:  -­‐  5  or  more  liters  of  liquid  nitrogen  and  associated  safety  gear  -­‐  2  quarts  (1.9  liters)  of  Half  and  Half  -­‐  1  cup  (237  ml)  of  sugar  -­‐  4  teaspoons  (20  ml)  of  vanilla  (optional)  -­‐  2  cups  (473  ml)  of  strawberries  (or  whatever  flavor  you  like)  -­‐  wooden  spoon  -­‐  wire  wisk  -­‐  large  plastic  punch  bowl  

Directions:  1.  Mix  the  Half  and  Half,  sugar  and  vanilla  in  a  large  plastic  punch  bowl  with  a  wire  wisk.  

2.  Add  the  flavoring.  Wire  wisk  the  mixture  further  if  needed.  

3.  Pour  a  small  amount  (about  250  ml)  of  liquid  nitrogen  directly  into  the  plastic  punch  bowl.  

4.  Stir  the  mixture  with  a  wooden  spoon.  Be  careful  not  to  splash!  (Helpers  should  be  wearing  gloves  and  goggles!!)  

5.  Keep  adding  small  amounts  of  liquid  nitrogen  until  the  mixture  becomes  too  thick  to  stir.  

6.  Allow  any  excess  liquid  nitrogen  to  boil  off  before  serving.    

It  has  been  our  experience  that  5  liters  of  liquid  nitrogen  is  more  than  enough  to  'cook  up'  two  batches  of  ice  cream!  

From  Thomas  Jefferson  National  Accelerator  Facility  –  Office  of  Science  Education  

Page 23: Lecture Demos in Physics I

20

 

3. Falling  dollar  bills  

A  flat  and  a  crumpled  dollar  bill  are  dropped  simultaneously.  The  crumpled  bill  should  have  an  acceleration  close  to  g  while  the  flat  bill  encounters  a  significant  air  resistance.  

     

 

4. Projectile  Motion  (Zero  Launch  Angle)    Two  steel  balls  are  set  on  this  apparatus.  When  the  trigger  is  pressed,  one  ball  is  projected  horizontally,  while  the  other  ball  falls  freely.  The  two  balls  hit  the  floor  at  the  same  time.      

                   

5. Inertia  

A  large  beaker  is  filled  with  water  and  placed  on  cloth.  The  cloth  is  then  pulled  from  under  the  beaker  without  spilling  any  water.  

Page 24: Lecture Demos in Physics I

21

6. A  Large  Vertical  Force  Table  

This  force  table  can  illustrate  force  addition,  resolution  of  forces  into  components,  and  static  equilibrium.          

 

7. Friction    

An  inclined  plane  is  slowly  raised  until  a  block  resting  on  it  just  begins  to  slide.      

8. Centripetal  Force    

This  demo  utilizes  a  centripetal  force  apparatus  which  consists  of  two  marbles  enclosed  in  a  case  and  free  to  roll  on  a  wooden  semicircular  base.  The  base  has  two  holes  of  larger  diameter  than  the  marbles  drilled  on  the  ends  of  it.  When  the  apparatus  is  rotated  the  marble  slide  over  to  the  holes  and  remain  there.  

 

9. Centrifugal  Bulge  

Two  bronze  straps  are  mounted  at  right  angles  on  a  vertical  support.  The  bottom  ends  are  fixed  but  the  top  ends  slide  freely  on  the  vertical  rod.  When  the  support  is  spun  rapidly  the  two  hoops  flatten  at  the  top  and  bottom,  assuming  the  shape  of  an  oblate  spheroid,  similar  to  the  Earth.    

         

   

Page 25: Lecture Demos in Physics I

22

10. Stacking  Meter  Sticks    

10  meter  sticks  are  stacked  on  top  of  each  other  so  that  the  top  one  overhangs  by  49cm.  The  meter  sticks  are  stacked  as  follows:  mark  one  meter  stick  at  4.6  cm  to  serve  as  the  bottom  of  the  stack.  The  next  stick  is  marked  at  5.3  cm,  the  next  6.1,  then  7.3,  then  9.0,  11.5,  15.7,  24.0,  49.0,  with  the  last  one  overhanging  49cm.  

 

11. Moment  of  Inertia  Rotator  

This  apparatus  consists  of  two  heavy  iron  balls  mounted  on  a  center  axis  that  is  free  to  spin.  When  spun  and  the  handle  of  the  apparatus  compressed,  the  balls  moves  in  closer  to  the  center  and  spin  more  rapidly.  

           

12. Race  Between  Three  Identical  Balls  

On  the  wooden  incline,  there  are  three  trenches  of  different  widths.  Three  identical  balls  roll  down  the  incline  along  the  three  trenches.  The  one  along  the  narrowest  trench  reaches  the  bottom  first.      Discussion:  The  center  of  gravity  of  the  ball  on  the  narrowest  trench  is  the  highest  above  the  incline.  The  gravitational  force  generates  the  largest  torque,  and  resulting  in  the  largest  angular  acceleration.  The  linear  acceleration  of  the  center  of  the  mass  is  therefore  the  largest.      

     

Page 26: Lecture Demos in Physics I

23

13. Pendulums  with  Different  Masses  

One  pendulum  with  a  steel  bob  with  mass  63  g  and  another  with  a  plastic  bob  with  mass  19.2  g  are  released  at  the  same  angle  initially.  The  two  pendulums  have  the  same  length.  It  is  observed  that  the  periods  of  the  two  pendulums  are  the  same.  Note:  without  a  projector,  students  cannot  see  the  pendulums.    The  demo  works  fine  until  about  5  periods.  After  that  time  the  air  resistance  is  significant  for  the  plastic  bob.            

14. Buoyant  Force    

A  large  coke  bottle  filled  with  sand  is  hung  from  a  large  spring  scale.  When  the  bottle  is  immersed  in  water,  it  is  observed  that  the  reading  of  the  spring  scale  is  reduced.    

           

15. Metal  Ball  in  a  Ring  

This  demo  utilizes  a  metal  ball  attached  to  a  metal  rod  with  an  insulated  handle,  and  a  metal  ring  attached  to  a  metal  rod  with  an  insulated  handle.  The  ring  and  the  ball  are  made  from  different  metals.  At  room  temperature,  the  ball  does  not  go  through  the  ring.  When  both  are  heated  using  a  burner,  the  ball  pass  easily  through  the  ring  due  to  the  difference  in  the  temperature  coefficients  of  the  thermal  expansion  between  the  two  metals.  

             

Page 27: Lecture Demos in Physics I

24

16. Thermal  Conductivity  1:  Conductometer  

A  brass  disk  is  attached  to  a  brass  rod  with  an  insulated  handle.  Five  metal  rods  composed  of  nickel,  copper,  iron,  zinc,  and  aluminum  of  the  same  diameter  are  attached  to  the  disk.  On  each  metal  rod,  including  the  brass  one,  a  notch  is  engraved  for  holding  a  piece  of  wax.  The  disk  is  then  heated  using  a  Bunsen  burner  and  the  order  in  which  wax  melts  on  each  of  the  rods  is  monitored.  

       

17. Thermal  conductivity  2:  Conductivity  Spider  

On  a  plexiglass  base  the  names  of  four  metals,  namely,  aluminum,  iron,  brass,  and  copper,  are  marked.  The  metal  rods  are  inserted  into  a  central  metal  disk  and  the  disk  is  placed  onto  the  rim  of  a  glass  empty  reservoir.  On  each  rod  a  notch  is  engraved  for  holding  a  piece  of  wax.  The  entire  setup  is  placed  on  an  over-­‐head  projector  and  boiling  water  poured  into  the  glass  reservoir.  The  order  in  which  wax  melts  on  each  of  the  rods  is  monitored.

 

18. Radiometer  Four  vanes  each  having  one  side  black  and  one  side  white,  are  mounted  on  a  pivot  which  is  enclosed  in  a  partially  evacuated  glass  bulb.  Shining  a  light  on  the  vanes  causes  it  to  spin  in  a  direction  that  depends  on  how  much  air  is  in  the  bulb.    Tentative  explanation:  The  vanes  are  heated  unequally  on  both  sides  with  the  air  near  the  dark  surface  heated  more  than  the  air  near  the  bright  side.  A  gas-­‐stream  pattern  called  thermal  creep  is  then  initiated,  which  exerts  a  force  on  the  vane.  The  force  is  such  that  the  dark  side  moves  away  from  the  radiation.  The  radiometer  action  reaches  a  maximum  at  about  1  Torr  pressure,  where  the  mean  free  path  of  the  molecules  is  much  less  than  the  dimensions  of  the  enclosing  bulb.

   

Page 28: Lecture Demos in Physics I

25

19. Longitudinal  Wave  Apparatus    

When  the  apparatus  is  cranked,  the  balls  move  in  the  horizontal  direction,  forming  a  longitudinal  wave.    

 

20. Singing  Rods  1:  Sound  Waves      

Hold  a  rod  between  the  thumb  and  forefinger  at  one  of  the  three  marked  nodes.  Place  a  little  of  the  included  special  rosin  on  your  other  hand.  Then  rub  that  hand  along  the  rod  from  middle  to  the  end.  As  the  hand  strokes  the  rod,  friction  creates  a  standing  wave  pattern  which  emits  a  tone  that  grows  louder  with  each  stroke.  

   

       

21. Singing  Rods  2:  Standing  Waves  A  singing  rod  is  marked  at  the  quarter  and  halfway  points.  Holding  it  at  halfway  point  makes  that  spot  a  nodal  point  (while  the  two  ends  are  anti-­‐nodal  points)  and  creates  the  first  harmonic.  Moving  the  hand  to  a  quarter  point  forces  the  second  harmonic  and  a  higher  pitch.  

           

Page 29: Lecture Demos in Physics I

26

22. Rhythm  

This  demonstration  utilizes  the  Beyer  Metronome  and  is  used  to  illustrate  the  concept  of  rhythm  in  musical  compositions.  The  metronome  consists  of  an  upright  pendulum  which  can  oscillate  from  left  to  right.  A  small  weight  is  attached  to  the  pendulum  which  can  be  slid  up  and  down  to  set  the  tempo.  The  pitch  can  be  adjusted  by  using  the  bell  tone  selector  attached  to  the  side  of  the  device.    

 


Recommended