+ All Categories
Home > Documents > Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

Date post: 14-Jan-2016
Category:
Upload: kristian-welch
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
47
Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008
Transcript
Page 1: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

Lecture I: introduction to QCD

Marco van LeeuwenUtrecht University

Jyväskylä Summer School 2008

Page 2: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

2

Particle Data Group topical reviews http://pdg.lbl.gov/2004/reviews/contents_sports.html

QCD and jets: CTEQ web page and summer school lectures http://www.phys.psu.edu/~cteq/

Handbook of Perturbative QCD, Rev. Mod. Phys. 67, 157–248 (1995)http://www.phys.psu.edu/~cteq/handbook/v1.1/handbook.ps.gz

QCD and Collider Physics, R. K. Ellis, W. J. Sterling, D.R. Webber, Cambridge University Press (1996)

An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Addison Wesley (1995)

Introduction to High Energy Physics, D. E. Perkins, Cambridge University Press, Fourth Edition (2000)

General QCD references

Page 3: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

3

What is QCD?

From: T. Schaefer, QM08 student talk

Page 4: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

4

QCD and hadronsQuarks and gluons are the fundamental particles of QCD(feature in the Lagrangian)

However, in nature, we observe hadrons:Color-neutral combinations of quarks, anti-quarks

Baryon multiplet Meson multiplet

Baryons: 3 quarks

I3 (u,d content)

S stra

ngen

ess

I3 (u,d content)

Mesons: quark-anti-quark

Page 5: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

5

Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons (‘jets’)

Page 6: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

6

How does it fit together?

S. Bethke, J Phys G 26, R27

Running coupling:s decreases with Q2

Pole at =

QCD ~ 200 MeV ~ 1 fm-1

Hadronic scale

Page 7: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

7

Asymptotic freedom and pQCD

At large Q2, hard processes: calculate ‘free parton scattering’

At high energies, quarks and gluons are manifest

gqqee

But need to add hadronisation (+initial state PDFs)

+ more subprocesses

Page 8: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

8

Low Q2: confinement

Lattice QCD potential

large, perturbative techniques not suitable

Lattice QCD: solve equations of motion (of the fields) on a space-time lattice by MC

String breaks, generate qq pair to reduce field energy

Bali, hep-lat/9311009

Page 9: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

9

Singularities in pQCD

Closely related to hadronisation effects

(massless case)

Soft divergence Collinear divergence

Page 10: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

10

Singularities in phase space

Page 11: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

11

How to picture a QCD event

MC event generators use this picture

Initial hard scatteringhigh virtuality Q2

generateshigh-pT partons

Followed by angle-ordered gluon

emissions:fragmentation

At hadronic scale:hadronisation prescription

(e.g. clustering in HERWIG)

Page 12: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

12

QCD matter

Bernard et al. hep-lat/0610017

Tc ~ 170 -190 MeV

Energy density from Lattice QCD

Deconfinement transition: sharp rise of energy density at Tc

Increase in degrees of freedom: hadrons (3 pions) -> quarks+gluons (37)

c ~ 1 GeV/fm3

4gTg: deg of freedom

Nuclear matterQuark Gluon Plasma

Page 13: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

13

QCD phase diagram

Tem

per

atu

re

Confined hadronic

matter

Quark Gluon Plasma(Quasi-)free quarks and gluons

Nuclear matter

Neutron stars

Elementary collisions(accelerator physics)

High-density phases?

Ea

rly u

niv

ers

e

Critical

Point

qqB ~

Bulk QCD matter: T and B drive phases

Page 14: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

14

Heavy quarks

Definition: heavy quarks, m >> QCD

Charm: m ~ 1.5 GeVBottom: m ~ 4.5 GeVTop: m ~ 170 GeV

M. Cacciari, CTEQ-MCNet summer school 2008

Complications exist: QCD, EW corrections; quark mass defined in different ways

‘Perturbative’ hadronisation

Page 15: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

15

Regimes of QCD

Asymptotic freedomDilute, hard scattering

Bulk matter, cold

Deconfined matterBulk matter, hot

Baryon-dense matter (neutron stars)

Bound statesHadrons/hadronic matter

Heavy ion physics

Page 16: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

16

Accelerators and colliders

• p+p colliders (fixed target+ISR, SPPS, TevaTron, LHC)– Low-density QCD

– Broad set of production mechanisms

• Electron-positron colliders (SLC, LEP)– Electroweak physics

– Clean, exclusive processes

– Measure fragmentation functions

• ep, p accelerators (SLC, SPS, HERA)– Deeply Inelastic Scattering, proton structure

– Parton density functions

• Heavy ion accelerators/colliders (AGS, SPS, RHIC, LHC)– Bulk QCD and Quark Gluon Plasma

Many decisive QCD measurements done

Page 17: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

17

The first and only ep collider in the world

e± p

27.5 GeV 920 GeV

√s = 318 GeV

Equivalent to fixed target experiment with 50 TeV e±

Loca

ted

in

Ham

bu

rg

H1

Zeus

The HERA Collider

Page 18: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

18

XpeXepe ee )( :CC , :NC

NC:

CC:

DIS: Measured electron/jet momentum fixes kinematics

Example DIS events

Page 19: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

19

Proton structure F2

Q2: virtuality of the x = Q2 / 2 p q‘momentum fraction of the struck quark’

Page 20: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

20

Factorisation in DIS

Integral over x is DGLAP evolution with splitting kernel Pqq

Page 21: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

21

Parton density distributionLow Q2: valence structure

Valence quarks (p = uud)x ~ 1/3

Soft gluons

Q2 evolution (gluons)

Gluon content of proton risesquickly with Q2

Page 22: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

22

p+p dijet at Tevatron

Tevatron: p + p at √s = 1.9 TeV

Jets produced with several 100 GeV

Page 23: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

23

Testing QCD at high energy

small x

large x

x = partonic momentum fraction

Dominant ‘theory’ uncertainty: PDFs

Theory matches data over many orders of magnitude

Universality: PDFs from DIS used to calculate jet-production

Note: can ignore fragmentation effects

CDF, PRD75, 092006

DIS to measure PDFs

Page 24: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

24

Testing QCD at RHIC with jets

Jets also measured at RHIC

However: signficant uncertainties in energy scale, both ‘theory’ and

experiment

STAR, hep-ex/0608030

NLO pQCD also works at RHIC

RHIC: p+p at √s = 200 GeV(recent run 500 GeV)

Page 25: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

25

e+e- → qq → jets

Direct measurement of fragmentation functions

Page 26: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

26

pQCD illustrated

c

chbbaa

abcdba

T

hpp

z

Dcdab

td

dQxfQxfdxdxK

pdyd

d

0

/222

)(ˆ

),(),(

CDF, PRD75, 092006

jet spectrum ~ parton spectrum

nTTT ppdp

dN

ˆ

1

ˆˆ

jet

hadronT

P

pz ,

fragmentation

Page 27: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

27

Note: difference p+p, e++e-

p+p: steeply falling jet spectrumHadron spectrum convolution of jet spectrum with fragmentation

e+ + e- QCD events: jetshave p=1/2 √sDirectly measure frag function

Page 28: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

28

Fragmentation function uncertaintiesHirai, Kumano, Nagai, Sudo, PRD75:094009

z=pT,h / 2√s z=pT,h / Ejet

Full uncertainty analysis being pursuedUncertainties increase at small and large z

Page 29: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

29

Global analysis of FFproton anti-protonpions

De Florian, Sassot, Stratmann, PRD 76:074033, PRD75:114010

... or do a global fit, including p+p dataUniversality still holds

Page 30: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

30

Heavy quark fragmentation

Light quarks Heavy quarks

Heavy quark fragmentation: leading heavy meson carries large momentum fraction

Less gluon radiation than for light quarks, due to ‘dead cone’

Page 31: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

31

Dead cone effect

Radiated wave front cannot out-run source quark

Heavy quark: < 1

Result: minimum angle for radiation Mass regulates collinear divergence

Page 32: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

32

Heavy Quark Fragmentation II

Significant non-perturbative effects seen even

in heavy quark fragmentation

Page 33: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

33

Factorisation in perturbative QCD

c

chbbaa

abcdba

T

hpp

z

Dcdab

td

dQxfQxfdxdxK

pdyd

d

0

/222

)(ˆ

),(),(

Parton density functionNon-perturbative: distribution of partons in protonExtracted from fits to DIS (ep) data

Matrix elementPerturbative component

Fragmentation functionNon-perturbativeMeasured/extracted from e+e-

Factorisation: non-perturbative parts (long-distance physics) can be factored out in universal distributions (PDF, FF)

Page 34: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

34

Reminder: parton kinematics

ep DIS:

Know: incoming electron 4-momMeasure: scattered electon 4-momReconstruct: exchanged 4-mommomentum fraction of struck quark

e+e-

Know: incoming electrons 4-momMeasure: scattered quark (jet) directionsReconstruct: exchanged 4-mom = parton momenta

p+p: direct access to underlying kinematics only via • , jet reconstruction• Exclusive measurements (e.g. di-leptons, di-hadrons)

Page 35: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

35

Differential kinematics in p+pExample: 0-pairs to probe low-x

p+p simulation

hep-ex/0502040

Forward pion

Second pion

Resulting x-range

Need at least two hadrons to fix kinematics in p+p

211

ees

px T

Page 36: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

36

Direct photon basics

direct

fragment

Gordon and V

ogelsang, PR

D48, 3136

Small Rate: Yields

NLO: quarks radiate photons

LO: does not fragment,direct measure of partonic kinematics

‘fragmentation photons’

Direct and fragmentation contributionsame order of magnitude

Page 37: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

37

R

Experimental challenge: 0

Below pT=5 GeV: decays dominant at RHIC

Page 38: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

38

Direct photons: comparison to theoryP. Aurenche et al, PRD73:094007

Good agreement theory-experiment From low energy (√s=20 GeV at CERN) to highest energies (1.96 TeV TevaTron)

Exception: E706, fixed target FNAL deviates from trend: exp problem?

Page 39: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

39

(fragment) / (inclusive)

Experimental access to fragmentation • Two Methods in p+p 200GeV

– Isolation cut ( 0.1*E > Econe(R=0.5) ): identifies non-fragmentation photons– Photons associated with high-pT hadron: fragmentation

PHENIX, PRL98, 012002 (2007)

R E Triggering leadinghadron

Look at associatedphotons

(Isolated)/(all direct)

Only ~10% of show significant associated hadronic activity

Page 40: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

40

Perturbative QCD processes

• Hadron production• Heavy flavours• Jet production

– e+e- → jets – p(bar)+p → jets

• Direct photon production

Measurem

ent difficulty

The

ory

diff

icul

ty

Page 41: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

41

Summary

• QCD is theory of strong interactions– Fundamental d.o.f quarks and gluons– Ground state: hadrons (bound states)

• Perturbative QCD, asymptotic freedom at high Q2, small distances

• Factorisation for pQCD at hadron colliders:– DIS to measure proton structure– e+ e- to measure fragmentation functions– Calculate jet, hadron spectra at hadron colliders

More on bulk QCD next lecture

Page 42: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

42

QCD NLO resources

• PHOX family (Aurenche et al)http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html

• MC@NLO (Frixione and Webber)http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

You can use these codes yourself to generate the theory curves!

And more: test your ideas on how to measure isolated photons or di-jets or...

Page 43: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

43

Extra slides

Page 44: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

44

DIS kinematics

dσ~

2

Lμν Wμν

Ee

E

Ep

q = k – k’, Q2 = -q2

Px = p + q , W2 = (p + q)2

s= (p + k)2

x = Q2 / (2p.q)

y = (p.q)/(p.k)

W2 = Q2 (1/x – 1)

Q2 = s x y

s = 4 Ee Ep

Q2 = 4 Ee E’ sin2θe/2y = (1 – E’/Ee cos2θe/2)x = Q2/sy

The kinematic variables are measurable

Leptonic tensor - calculable

Hadronic tensor- constrained by

Lorentz invariance

Page 45: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

45

DIS kinematics

Page 46: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

46

QCD and quark parton model

S. Bethke, J Phys G 26, R27

Running coupling:s grows with decreasing Q2

Asy

mpt

otic

free

dom

At low energies, quarks are confined in hadrons

Confinement, asymptotic freedom are unique to QCD

At high energies, quarks and gluons are manifest

gqqee

Theory only cleanly describes certaint limits

Study ‘emergent phenomena’ in QCD

Page 47: Lecture I: introduction to QCD Marco van Leeuwen Utrecht University Jyväskylä Summer School 2008.

47

Resolved kinematics inDeep Inelastic Scattering

small x

large x

x = partonic momentum fraction

DIS: Measured electron momentum fixes kinematics

),(2

),(2

14 2

22

2

2

4

2

2

2

QxFy

QxFy

yxQdxdQ

dL

eXep


Recommended