+ All Categories
Home > Documents > Lecture NoteLecture Note 4 -...

Lecture NoteLecture Note 4 -...

Date post: 12-Jun-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
43
1 Lecture Note 4 Lecture Note 4 Virtual Work & Energy Method Second Semester , Academic Year 2012 Department of Mechanical Engineering Chulalongkorn University
Transcript
Page 1: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

1

Lecture Note 4Lecture Note 4

Virtual Work & Energy Method

Second Semester, Academic Year 2012,Department of Mechanical Engineering

Chulalongkorn University

Page 2: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

2

Objectives

Use the energy method to analyze structures Describe the characteristics and properties as well as Describe the characteristics and properties as well as

determine strain energy and complementary energy and potential energyD ib th i i l f i t l k d th i i l Describe the principle of virtual work and use the principle to determine equilibrium, stability and analyze simple elasticity problems with emphasis on bending problems

A simple statically indeterminate problems with emphasis on bending

2

Page 3: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

3

Topics

Virtual Work Strain energy complementary and potential energy Strain energy, complementary and potential energy Deflections Statically indeterminate problems

3

Page 4: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

4

Work By a Force

cosFW F dr

F dr cosF dr

workFW

force that done the workdisplacement

F

Fdr

4

Page 5: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

5

Work By a Couple

( ) ( ) ( )2 2Mr rW F F Fr

W M magnitude of couple that do the workM

5

MW M small angle of rotation

Page 6: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

6

Virtual Work Virtual Movements

Imaginary or virtual movements is assumed and does not actually exist. Virtual displacement Virtual rotation Virtual rotation Virtual deformation

Virtual movements are infinitesimally small and does not violate physical constraints.

Principle of virtual work is an alternative form ofPrinciple of virtual work is an alternative form of Newton’s laws that can analyze the system in equilibrium under work and energy concepts.

6

Page 7: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

7

Virtual Work Principle of Virtual Work

Consider an object in equilibriumTh i t l k d b ll f t th bj t ith The virtual work done by all forces to move the object with a virtual displacement

1

cosr

F k v kk

W F

In equilibrium, 0FW

7

Page 8: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

8

Virtual Work Principle of Virtual Work for Rigid Bodies

t e iW W W

total virtual work doneexternal work done

tWW

external work doneinternal virtual work

e

i

WW

e iW W

8

Page 9: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

9

Exercise Virtual Work for Rigid Bodies #1

Determine the support reactions

a

, ,

00

v B v C

t

LWR W

, ,

, ,

0

0

C v C v B

C v C v C

R WaR WL

C

LaR WL

9

Page 10: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

10

Exercise Virtual Work for Rigid Bodies #2

0( ) ( ) 0

( ) ( ) 0

t

A v v v C v v

WR W a R LR R W R L W

10

( ) ( ) 00 and 0

A C v C v

A C C

R R W R L WaR R W R L Wa

Page 11: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

11

Virtual Work Virtual Work for Deformable Bodies

t e iW W W

11

Page 12: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

12

Virtual Work Internal Virtual Work from Axial Load

NN A AA

, ( )i N vA

ANw dA xA

,

, v

i N v

i N N x

w N dx

w

,

L

i N vL

w N dx

v vv

NE EA

A vi N

N Nw dx

12

,i NL

w dxEA

Page 13: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

13

Virtual Work Internal Virtual Work from Torsion

,A v

i TL

T Tw dxGJ

13

Page 14: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

14

Virtual Work Internal Virtual Work from Bending

,A v

i ML

M Mw dxEI

14

Page 15: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

15

Virtual Work Internal Virtual Work from Shear Force

S A

, ( )i S vA

S A

w dA x

, ( ) ( )vA

i SS dA xA

w

,

, v

i S

i S

vL

S x

w S dx

w

,A v

i SS Sw dxGA

L

v vv G

SGA

15

L GA

Page 16: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

16

Virtual Work Virtual Work from External Loads

w W P

, ,

( )

e v y v x

Ve vw

w W P

M T

w x xw d ,( )L

e v yw x xw d

( ( ) )e v y v x V v v yW W P M T w x dx

, , ,( ( ) )

( )

e v y v x V v v yL

A v A v A v A vi A v

N N S S M M T TW dx dx dx dx MEA GA EI GJ

16

L L L LEA GA EI GJ

Page 17: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

17

Exercise Virtual Work for Deformable Bodies #1

Determine the bending moment at B

a b

,v B a babb

17

Page 18: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

18

Exercise Virtual Work for Deformable Bodies #2

Determine the bending moment at B

(1 )a L

(1 )

0

B b b

W

,

00

t

v B B B

WW M

L

B

B

LWa Mb

WabM

18

BM L

Page 19: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

19

Exercise Virtual Work for Truss #1

Determine the force in AB

19

Page 20: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

20

Exercise Virtual Work for Truss #2

, 3

4v B

,44

30

v BC

tW

,30 0

40 kN

t

C BA v B

BA

FF

20

Page 21: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

21

Exercise Virtual Work for Cantilever Beam #1

Determine the end deflection

21

Page 22: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

22

Exercise Virtual Work for Cantilever Beam #2

2( )2

1( )

A

v

wM L x

M L x

,

3

( )1 (1)

( )

v

i M B

A v

W vM M wW dx L x dx

,

4, 0

( )2

( )8

i ML L

L

i M

W dx L x dxEI EIwW L xEI

, 0

4

,

8

From (1), 18

i M

B i M

EIwLv WEI

22

Page 23: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

23

Strain Energy DefinitionEnergy

Strain energy U: energy stored in member Complementary energy C: no physical meaning but obeys the Complementary energy C: no physical meaning but obeys the

law of energy conservation

y

U Pdy P

C ydP

23

0U Pdy 0C ydP

Page 24: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

24

Strain Energy RelationshipsEnergy

dU dC

,

Assuming function n

dU dCP ydy dP

P by

1/

0 0

1 ( )y P n

P y n

PU Pdy dPn b

0 0

D t i d f

y nC ydP n by dy

U C

Determine and for linear elastic material

U C

24

Page 25: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

25

Complementary Energy PrincipleEnergy

For an elastic body in equilibrium under the action ofFor an elastic body in equilibrium under the action of applied forces, the true internal forces (or stresses) and reactions are those for which the total complementary energy has a stationary valueenergy has a stationary value.

Compatibility

1

0n

t e i r rVr

W W W ydP P

1

01

( ) ( ) 0

rnP

i e r rVr

C C ydP P

25

Page 26: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

26

Example Deflection #1Energy

Determine the deflection, 2cross sectional area A = 1800 mm2,

E = 200 GPa.

k FL FC

212 2

0i i i

i i i

FL FCP AE P

26

Page 27: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

27

Example Deflection #2Energy

Real loadImaginary load

27

Page 28: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

28

Example Deflection #3Energy

6

, 2 5 21

6

1 1268 10 N mm 3.52 mm(1800 mm )(2 10 N/mm )

1 880 10 N

ki

B v i ii

k

FFLAE P

F

6

, 2 5 21

1 880 10 N mm 2.44 mm(1800 mm )(2 10 N/mm )

ki

D h i ii

FFLAE P

28

Page 29: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

29

Example SI Problem #1Energy

Redundant

01

ik F

i ii

C dF P

member

1

10

ik

ii

i

dFCR R

1

1 10 (4.83 2.707 ) 0

0 56

ki

i ii

FFL RL PLAE R AE

R P 0.56R P

29

Page 30: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

30

Unit Load Description Energy

,0 ,1k

i i iF F L

0

With applied dummy load i

fk nF

i i r r

P

C dF P

1

Ci i iAE

Real load

01 1

10

i i r ri r

ki

i Cif f

FCP P

Imaginary load

M M

1

1

if fk

iC i

i f

FP

0 1

0 1

M

T

M Mdz

EIT T

dzAssume unit load instead of fP

T dzGJ

30

Page 31: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

31

Example Unit Load #1Energy

Determine displacement at D

0 1 0 1x

M M T Tds ds

EI GJ x EI GJ

31

Page 32: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

32

Example Unit Load #1Energy

2 4l wl x wldx

04

211 1( )

24 2

x

y

dxEI EI

wlEI GJ

4

24 21 1( )

6 2z

EI GJ

wlEI GJ

32

Page 33: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

33

Flexibility Method Description Energy

Remove a redundant member to formulate a SD problem Solve for displacements of the SD problem Determine redundant load that negate the same

displacementsp

33

Page 34: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

34

Exercise Flexibility Method #1Energy

0, 1,j j jn n F F LF F L

, ,

, 1,

1 1

2

j j jn na j j j

BDj j

F F LAEAE

F L

1,

2

1

jn

jBD

j

F La

AE

34

0BD BD BDX a

Page 35: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

35

Exercise Flexibility Method #2Energy

2 71 4 82PL L

2.71 4.82,

From 0

BD BD

BD BD BD

PL LaAE AE

X a 0.56 AnsBDX P

35

Page 36: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

36

Potential Energy Total Potential EnergyEnergy

Total potential energy TPE is the sum of its strain (internal) energy U and the potential energy V of the applied external loadsgy p gy pp

Zero potential energy at the unloaded state

1 1

( )r

n n

r rr r

V V P

0

TPE

TPE

( )

y

n

U V P

U PU V

dy Py

1

TPE ( )rr

rU PU V

36

Page 37: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

37

Potential Energy StabilityEnergy

( ) 0U V

37

Page 38: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

38

Exercise TPE #1Energy

Assume sinB

zv vL

0 at 0 and and / 0 at / 2B

Lv z z Lv v dv dx z L

2 2

2

2 4 2 4

2M d vU dz EIEI dz

EIEI

38

2 4 2 42

4 3sin2 4

B Bv v EIEI zU dzLL L

Page 39: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

39

Exercise TPE #2Energy

2 4

3

44B

Bv EITPE U V WvL

4

3

3 3

( ) 04

2

BB

B

v EIU V vv L

WL WL

39

4

2 as compared to exact solution 48B

WL WLvEIEI

Page 40: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

40

Principle of Superposition DescriptionEnergy

If th b d i li l l ti thIf the body is linearly elastic, the effect of a number of forces is the sum of the effects of the forces applied separately.

40

Page 41: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

41

Reciprocal Theorem DescriptionEnergy

1Total deflection at point 1 in the direction of from all loadsP

influence or flexibility coefficientija

a P a P a P

1 11 1 12 2 1

2 21 1 22 2 2

......

n n

n n

a P a P a Pa P a P a P

1 1 2 2 ...n n n nn na P a P a P

1 11 12 1 1

2 21 22 2 2

n

n

a a a Pa a a P

41

1 2n n n nn na a a P

ij jia a

Page 42: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

42

Exercise Reciprocal Theorem #1Energy

The 800 mm-long beam is propped at 500 mm, giving

, g g0 mm at 0 mm

0.3 mm at 100 mmv xv x

1.4 mm at 200 mm2.5 mm at 300 mm1 9 mm at 400 mm

v xv xv x

1.9 mm at 400 mm0 mm at 500 mm2.3 mm at 600 mm

v xv xv x 4.8 mm at v x

700 mm10.6 mm at 800 mmv x

42BDetermine when the applied loads change.

Page 43: Lecture NoteLecture Note 4 - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~mkuntine/45-321/files/ch4-1.pdf · Lecture NoteLecture Note 4 Virtual Work & Energy Method Second

43

Exercise Reciprocal Theorem #2Energy

due to 40 N at 1.4 mm due to 40 N at 1.4 mm

D

C

v Cv D

due to 30 due to 30 N at 1.4 (3 / 4)

1.05 mmN at C

C

v Dv D

due to 10 N at 2.4 (1/due to 10 N at

4)0 6 mm

Cv Ev E

,

due to 10 N at 0.6 mm1.05 0.6 1.65 C tot

C

al

v Ev

1

mm1.65tan

43

1tan300B


Recommended