+ All Categories
Home > Documents > Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200...

Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200...

Date post: 30-Mar-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
115
Lecture Set 4: DC Machines and Drives S.D. Sudhoff Spring 2021
Transcript
Page 1: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture Set 4:DC Machines and Drives

S.D. SudhoffSpring 2021

Page 2: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

2

About this Lecture Set

• Reading– Electromechanical Motion Devices, 2nd Edition, Sections

3.1-3.9• Goal– Become familiar with DC machines and drives

Page 3: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 28

Physical Configuration of the DC Machine

3

Page 4: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

4

General Comments on DC Machines

• Attractive Features

• Drawbacks

Page 5: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

5

DC Machine Cutaway View

Page 6: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

6

DC Machine Cutaway View

Page 7: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 29

An Elementary DC Machine

7

Page 8: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

8

Configuration

Page 9: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

9

Flux Linkage Equations

Page 10: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

10

Flux Linkage Equations

Page 11: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

11

Armature Voltage

Page 12: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

12

Operation

Page 13: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

13

Operation

Page 14: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

14

A More Practical DC Machine

Page 15: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 30

An Ideal DC Machine

15

Page 16: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

16

Configuration

Page 17: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Flux Linkage Equations

17

Page 18: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

18

Flux Linkage Equations

Page 19: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

19

Armature Voltage Equation

Page 20: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

20

Armature Voltage Equation

Page 21: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

21

Field Voltage Equation

Page 22: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

22

Field Voltage Equation

Page 23: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

23

Torque

Page 24: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

24

Torque

Page 25: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

25

Model Summary

Page 26: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

26

Mechanical Dynamics

Page 27: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 31

Separately Excited DC Machine

27

Page 28: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

28

Separately Excited Machine

Page 29: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

29

A Quick Example

• Consider a machine with following parameters– ra=200 m– LAF=200 mH– Rf=10

• Suppose the armature voltage is 100 V, the field voltage is 10 V, and the speed is 4600 rpm. Compute the torque, output power, input power and efficiency

Page 30: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

30

A Quick Example

Page 31: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

31

A Quick Example

Page 32: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

32

Derivation of Torque Speed Curve

Page 33: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

33

Derivation of Torque Speed Curve

Page 34: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

34

Capability Curve

• Let’s consider a machine with the following parameters– ra = 200 m– LAF = 200 mH– rf = 10

• And subject to the following limits– Armature current: 20 A– Armature voltage: 150 V– Field Current: 1 A

Page 35: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 32

Separately Excited DC MachineCapability Curve

35

Page 36: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

36

Derivation

Page 37: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

37

Derivation

Page 38: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

38

Derivation

Page 39: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

39

Torque

Page 40: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

40

Capability Curve: Torque

0 200 400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

55

0

T emax i

2 1032.002 i

Page 41: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

41

Power

Page 42: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

42

Capability Curve: Power

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

30002.92 103

0

T emax i i

2 1032.002 i

Page 43: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 33

Shunt Connected DC Machine

43

Page 44: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

44

Shunt Connected Machine

Page 45: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

45

Torque Versus Speed

Page 46: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

46

Torque Versus Speed

Page 47: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 34

Series Connected DC Machine

47

Page 48: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

48

Series Connected Machine

Page 49: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

49

Torque Versus Speed

Page 50: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

50

Torque Versus Speed

Page 51: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 35

Permanent Magnet DC Machine

51

Page 52: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

52

PM DC Machine

Page 53: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

53

Torque Speed Curve

Page 54: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

54

A Simple Example

• Consider a machine with an armature resistance of 0.4 Ohms and a back emf constant of 0.2 Vs. Suppose it is desired to operate at a load torque requiring 10 Nm at a speed of 500 rad/s. What is the required armature voltage ?

Page 55: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

55

Machine Properties

• Let’s look at the performance of a machine with the following properties: armature resistance 20 m, torque constant 30 mVs.

• We will look at a speed range of 0 to 750 rad/s• We will apply 10 V and 20 V to the armature

Page 56: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

56

Notes

Page 57: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

57

Torque

0 100 200 300 400 500 600 700 80020

10

0

10

20

3029.932

18.75

T e v a1 j T e v a2 j

7501.5 j

Page 58: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

58

Output Power

0 100 200 300 400 500 600 700 8001.5 104

1 104

5000

0

50005 103

1.406 104

P out v a1 j P out v a2 j

7501.5 j

Page 59: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

59

Input Power

0 100 200 300 400 500 600 700 8001 104

0

1 104

2 104

1.995 104

6.25 103

P in v a1 j P in v a2 j

7501.5 j

Page 60: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

60

Efficiency

0 100 200 300 400 500 600 700 8000

0.2

0.4

0.6

0.8

0.999

2.25 10 3

v a1 j v a2 j

7501.5 j

Page 61: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 36

Permanent Magnet DC MachineCapability Curve and Parameter ID

61

Page 62: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

62

Capability Curve

• Consider a machine with a armature resistance of 0.2 , and a back emf constant of 0.2 Vs. If the armature current is limited to 20 A, and the armature voltage to 150 V, what is the operating range

Page 63: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

63

Capability Curve

Page 64: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

64

Capability Curve

0 200 400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

55

0

T emax i

2 1030 i

Page 65: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

65

Capability Curve (Separately Excited)

0 200 400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

55

0

T emax i

2 1032.002 i

Page 66: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

66

Parameter Identification

• One approach

• Another approach

Page 67: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

67

Parameter Identification

Page 68: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

68

Parameter Identification Example

• At operating point 1, the armature voltage is 100 V, the armature current is 20 A, and the speed is 400 rad/s

• At operating point 2, the armature voltage is 90 V, the armature current is 10 A, and the speed is 800 rad/s

• Find the machine parameters

Page 69: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

69

Parameter Identification Example

Page 70: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 37

Permanent Magnet DC Machine Drives

70

Page 71: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

71

DC Drives

• Motivation: How do we control the armature voltage or current in a dc machine ?

Page 72: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

72

Single Quadrant Chopper

+

-

+

-

+-rvk

aaLsi

dcv

ai

av

di

ar

Page 73: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

73

Operating Waveforms (Continuous Mode)

si

ai

av

di

fswdc vv

fdv

mximni

swT

swdT

+

-

+

-

+-rvk

aaLsi

dcv

ai

av

di

ar

Page 74: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

74

Average-Value Analysis (VSO, Cont. Mode)

• Definition of Steady State Average

• Definition of Fast Average

swss

ss

Tt

tswdttx

Tx )(1

t

Ttsw sw

dtxT

tx )(1)(ˆ

Page 75: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

75

Average-Value Analysis (VSO, Cont. Mode)

Page 76: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

76

Average-Value Analysis (VSO, Cont Mode)

• Armature Voltage Equation

• Torque Equation

• Mechanical Dynamics

Page 77: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

77

Average-Value Analysis (VSO, Cont Mode)

• Derivation of Average Armature Voltage

• Thus we have

)1()(ˆ dvdvvv fdfswdca

Page 78: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

78

Average Value Analysis (VSO, Cont Mode)

• Derivation of armature current

• Thus we have

dii as ˆˆ

Page 79: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

79

Average Value Model (VSO, Cont Mode)

Page 80: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

80

Average Value Analysis (VSO, Cont Mode)

• Comments on Power– Power into converter

– Power into motor

– Power into mechanical system

sdccnv ivp

aamtr ivp

remech Tp

Page 81: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

81

Average Value Analysis (VSO, Cont Mode)

Page 82: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

82

Average Value Analysis (VSO, Cont Mode)

Page 83: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

83

A Quick Example• Consider a model with the following parameters– kv= 0.2 Vs– ra = 100 m

• The converter has the following parameters– vfd = 2.0– vfsw = 2.4– vdc =100 V

• Suppose the duty cycle is 0.7 and the speed is 300 rad/s. Find the average armature current, the average switch current, the converter efficiency, the motor efficiency, and the system efficiency.

Page 84: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

84

A Quick Example (Continued)

Page 85: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

85

A Quick Example (Continued)

Page 86: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 38

Permanent Magnet DC Machine DriveCurrent Ripple

86

Page 87: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

87

Steady-State Current Ripple

• It can be shown that

(1 )swmx mn dc fsw fd

aa

Ti i v v v d dL

Page 88: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

88

Steady-State Current Ripple

Page 89: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

89

Steady-State Current Ripple

Page 90: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

90

Steady-State Current Ripple

Page 91: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

91

Steady-State Current Ripple

Page 92: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

92

Quick Example (Part 2)

• Consider the previous example. Suppose – LAA = 0.2 mH

• Find (1) the switching frequency so the peak-to-peak ripple is less than 5% of the average current (2) the minimum switching frequency for continuous operation

Page 93: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

93

Quick Example (Part 2)

Page 94: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

94

Quick Example (Part 2)

Page 95: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

95

Quick Example (Part 2)

Page 96: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 39

Permanent Magnet DC Machine DriveVSO Discontinuous Mode

96

Page 97: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

97

VSO Discontinuous Mode

+

-

+

-

+-rvk

aaLsi

dcv

ai

av

di

ar

si

ai

av

di

fswdc vv

fdv

mxi

swT

swdT

rvk

dt

Page 98: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

98

• Peak current

2

2rdc fsw v

mxaa sw a

d v v ki

L f dr

VSO Discontinuous Mode

Page 99: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

99

VSO Discontinuous Mode

Page 100: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

100

• Time required for current to go to zero

2

aa mxd

mxfd a v r

L it iv r k

VSO Discontinuous Mode

Page 101: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

101

VSO Discontinuous Mode

Page 102: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

102

• Average Current

sw

dmxmxdmxsw

swa T

tdiitidT

Ti

21

21

211

VSO Discontinuous Mode

Page 103: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

103

Example

• Consider a machine with the following parameters– Vdc = 20 V – ra = 1 – kv = 0.05 Vs– Laa = 3 mH– vfsw = 1 V– vfd = 0.8 V– fsw = 1 kHz

• Plot the torque speed curve for a duty cycles of 0.2, 0.4, 0.6, and 0.8

Page 104: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

104

Solution Algorithm

Page 105: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

105

Results

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.80.751

1.654 10 3

T e ri0.8

T e ri0.6

T e ri0.4

T e ri0.2

3000.6 ri

Page 106: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 40

Permanent Magnet DC Machine DriveCurrent Source Operation

106

Page 107: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

107

Hysteresis Current Control

Page 108: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

108

Current Source Operation

Page 109: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

109

Current Source Operation

Page 110: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

110

Current Source Operation

Page 111: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

Lecture 41

Permanent Magnet DC Machine DriveTwo and Four Quadrant Converters

111

Page 112: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

112

Two Quadrant Converter

Page 113: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

113

Two Quadrant Converter

Page 114: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

114

Two Quadrant Converter

Page 115: Lecture Set 4 - Purdue University College of Engineeringsudhoff... · =200 mH – R f =10 ... 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 2.92 10

115

Four Quadrant Converter


Recommended